Engineering and Applied Science Letters
ISSN: 2617-9709 (Online) 2617-9695 (Print)
DOI: 10.30538/psrp-easl2018.0002
Complete Monotonicity Properties of a Function Involving the Polygamma Function
Kwara Nantomah\(^1\)
Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P. O. Box 24, Navrongo, UE/R, Ghana; (K.N)
\(^{1}\)Corresponding Author; knantomah@uds.edu.gh
Abstract
Index Terms:
1. Introduction
The classical Gamma function, which is an extension of the factorial notation to noninteger values is usually defined as \begin{align*} \Gamma(x)&=\int_{0}^{\infty} t^{x-1}e^{-t}\,dt, \quad x>0, \end{align*} and satisfying the basic property \begin{align*} \Gamma(x+1)&=x\Gamma(x), \quad x>0. \end{align*} Its logarithmic derivative, which is called the Psi or digamma function is defined as (see [1] and [2])2. Some Lemmas
In order to establish our main results, we need the following lemmas.Lemma 2.1. Let a function \(q_{\alpha, \beta}(t)\) be defined as
Lemma 2.2. Let \(a\in(0,1)\). Then the inequality
Proof. Note that the function \(h(t)=\frac{1-e^{-at}}{1-e^{-t}}\) which is obtained from Lemma 2.1 by letting \(\alpha=0\) and \(\beta=a\in(0,1)\) is increasing on \((0,\infty)\). Also, \begin{equation*} \lim_{t\rightarrow 0^+}h(t)=a \quad \text{and} \quad \lim_{t\rightarrow \infty}h(t)=1 . \end{equation*} Then for \(t\in(0,\infty)\), we have \begin{equation*} a=\lim_{t\rightarrow 0^+}h(t)=h(0)< h(t)< h(\infty)=\lim_{t\rightarrow \infty}h(t)=1 , \end{equation*} which gives inequality (8).
3. Main Results
We now present our results in this section.Theorem 3.1. Let \(f_{a,k}(x)\) and \(h_{a,r}(x)\) be defined for \(a\in(0,1)\), \(k\in \{ 2s: s\in \mathbb{N}_0 \}\), \(r\in \{ 2s+1: s\in \mathbb{N}_0 \}\) and \(x\in(0,\infty)\) as
Proof. By repeated differentiations with respect to \(x\), and by using (2) and (4), we obtain \begin{align*} f_{a,k}^{(n)}(x)&=\psi^{(k+n)}(x+a) - \psi^{(k+n)}(x) - \frac{(-1)^{n}a(k+n)!}{x^{k+n+1}} \\ &= (-1)^{k+n+1}\int_{0}^{\infty}\frac{t^{k+n}e^{-(x+a)t}}{1-e^{-t}}\,dt - (-1)^{k+n+1}\int_{0}^{\infty}\frac{t^{k+n}e^{-xt}}{1-e^{-t}}\,dt \\ & \quad - (-1)^na\int_{0}^{\infty}t^{k+n}e^{-xt}\,dt. \end{align*} This implies that \begin{align*} (-1)^nf_{a,k}^{(n)}(x)&= -\int_{0}^{\infty}\frac{t^{k+n}e^{-xt}e^{-at}}{1-e^{-t}}\,dt + \int_{0}^{\infty}\frac{t^{k+n}e^{-xt}}{1-e^{-t}}\,dt - a\int_{0}^{\infty}t^{k+n}e^{-xt}\,dt \\ % &= \int_{0}^{\infty} \left[\frac{1-e^{-at}}{1-e^{-t}} - a \right]t^{k+n}e^{-xt}\,dt \\ &>0, \end{align*} which is as a result of Lemma 2.2. Alternatively, we could proceed as follows. \begin{align*} (-1)^nf_{a,k}^{(n)}(x)&= \int_{0}^{\infty} \left[\frac{1-e^{-at}}{1-e^{-t}} - a \right]t^{k+n}e^{-xt}\,dt \\ &= a\int_{0}^{\infty} \left[\frac{1-e^{-at}}{at} - \frac{1-e^{-t}}{t} \right]\frac{t^{k+n+1}e^{-xt}}{1-e^{-t}}\,dt \\ &>0. \end{align*} Notice that, since the function \(\frac{1-e^{-t}}{t}\) is strictly decreasing on \((0,\infty)\), then for \(a\in(0,1)\), we have \(\frac{1-e^{-at}}{at} > \frac{1-e^{-t}}{t}\). Hence \(f_{a,k}(x)\) is strictly completely monotonic on \((0,\infty)\). Similarly, we have \begin{align*} - h_{a,r}^{(n)}(x) &=\frac{(-1)^{n}a(r+n)!}{x^{r+n+1}} + \psi^{(r+n)}(x) - \psi^{(r+n)}(x+a) \\ &= (-1)^na\int_{0}^{\infty}t^{r+n}e^{-xt}\,dt + (-1)^{r+n+1}\int_{0}^{\infty}\frac{t^{r+n}e^{-xt}}{1-e^{-t}}\,dt \\ & \quad - (-1)^{r+n+1}\int_{0}^{\infty}\frac{t^{r+n}e^{-(x+a)t}}{1-e^{-t}}\,dt , \end{align*} which implies that \begin{align*} (-1)^n \left(- h_{a,r}\right)^{(n)}(x) &= a\int_{0}^{\infty}t^{r+n}e^{-xt}\,dt + \int_{0}^{\infty}\frac{t^{r+n}e^{-xt}}{1-e^{-t}}\,dt - \int_{0}^{\infty}\frac{t^{r+n}e^{-xt}e^{-at}}{1-e^{-t}}\,dt \\ &= \int_{0}^{\infty} \left[a + \frac{1-e^{-at}}{1-e^{-t}} \right]t^{r+n}e^{-xt}\,dt \\ &>0 . \end{align*} Hence \(-h_{a,r}(x)\) is strictly completely monotonic on \((0,\infty)\).
Remark 3.2. Since every completely monotonic function is convex and decreasing, it follows that \(f_{a,k}(x)\) is strictly convex and strictly decreasing on \((0,\infty)\). In this way, \(h_{a,r}(x)\) is strictly concave and strictly increasing on \((0,\infty)\).
Corollary 3.3. The inequality
Proof. Since \(f_{a,k}(x)\) is decreasing, then for \(x\in(1,\infty)\) and by applying (3), we obtain \begin{align*} 0=\lim_{x\rightarrow \infty}f_{a,k}(x) < f_{a,k}(x) < f_{a,k}(1)&=\psi^{(k)}(a+1) - \psi^{(k)}(1) - ak! \\ &=\psi^{(k)}(a) - \psi^{(k)}(1) + \frac{k!}{a^{k+1}} - ak! , \end{align*} which completes the proof.
Remark 3.4. In particular, if \(a=\frac{1}{2}\) and \(k=0\) in Corollary 3.3, then we obtain
Corollary 3.5. The inequality
Proof. Likewise, since \(h_{a,r}(x)\) is increasing, then for \(x\in(1,\infty)\), we obtain \begin{equation*} \psi^{(r)}(a) - \psi^{(r)}(1) - \frac{r!}{a^{r+1}} - ar! = h_{a,r}(1) < h_{a,r}(x) < \lim_{x\rightarrow \infty}h_{a,r}(x)=0, \end{equation*} which yields (14).
Remark 3.6. If \(a=\frac{1}{2}\) and \(r=1\) in Corollary 3.5, then we obtain
Remark 3.7. If \(k=0\) in Theorem 3.1, then we obtain the main results of [4] as a special case of the present results.
Remark 3.8. This paper is a modified version of the preprint [8].
Competing Interests
The author declares that there are no competing interests regarding the publication of this paper.References
- Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th Printing, Washington.[Google Scholor]
- Olver, F. W., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (Eds.). (2010). NIST handbook of mathematical functions. Cambridge University Press, New York.[Google Scholor]
- Qiu, S. L., & Vuorinen, M. (2005). Some properties of the gamma and psi functions, with applications. Mathematics of computation, 74(250), 723-742.[Google Scholor]
- Mortici, C. (2010). A sharp inequality involving the psi function. Acta Universitatis Apulensis, 22, 41-45. [Google Scholor]
- Guo, B. N., & Qi, F. (2009). Properties and applications of a function involving exponential functions. Commun. Pure Appl. Anal., 8(4), 1231-1249. [Google Scholor]
- Qi, F. (2010). Bounds for the ratio of two gamma functions. Journal of Inequalities and Applications, 2010(1), 493058. [Google Scholor]
- Qi, F., & Luo, Q. M. (2012). Bounds for the ratio of two gamma functions-From Wendel's and related inequalities to logarithmically completely monotonic functions. Banach Journal of Mathematical Analysis, 6(2), 132-158. [Google Scholor]
- Nantomah, K. (2018). Complete monotonicity properties of a function involving the polygamma function. arXiv preprint arXiv:1807.05257. [Google Scholor]