Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2018.0022
Coefficient Estimates of some Classes of Rational Functions
Hanan Darwish, Suliman Sowileh, Abd AL-Monem Lashin\(^1\)
Department of Mathematics Faculty of Science Mansoura, University Mansoura, 35516, Egypt.; (HD & S.S) & A.A.L)
\(^{1}\)Corresponding Author; s_soileh@yahoo.com
Abstract
Keywords:
1. Introduction
Let \(\mathcal{A\ }\) be the class of all analytic functions \(f\) in the open unit disk \(\Delta =\{z\in \mathbb{C} :\left\vert z\right\vert < 1\}\) and normalized by the conditions \(f(0)=0\) and \(f^{\prime }(0)=1.\) Also, by \(\wp\) we shall denote the subclass of all functions in \(\mathcal{A}\) which are univalent in \(\Delta.\) Let \(P\) denote the class of functions \(p(z)\) of the form \begin{equation*} p(z)=1+\sum\limits_{n=1}^{\infty }c_{_{n}}z^{n} \end{equation*} which are analytic in \(\Delta\) such that \begin{equation*} p(0)=1\text{and Re}\left\{ p(z)\right\} >0\ \ \ \left( z\in \Delta \right) . \end{equation*} If the functions \(f\) and \(g\) are analytic in \(\Delta ,\) then \(f\) is said to be subordinate to \(g,\) written \(f(z)\prec g(z),\) provided there is an analytic function \(w(z)\) defined on \(\Delta\) with \(w(0)=0\) and \(\left\vert w(z)\right\vert < 1\) so that \(f(z)=g(w(z)).\) Furthermore , if the function \(g(z)\) is univalent in \(\mathbb{\triangle },\) then we have the following equivalence (see for details, [1, 2, 3, 4, 5,6, 7, 8, 9, 10,11, 12]): \begin{equation*} f(z)\prec g(z)\Leftrightarrow f(0)=g(0)\ \textrm{and}\ f(\mathbb{\triangle })\subset g(\mathbb{\triangle }). \end{equation*} Some of the important and well-investigated subclasses of the univalent function class \(\wp\) include (for example) the class \(S(\alpha )\) of starlike functions of order \(\alpha\) in \(\Delta\) and the class \( C(\alpha )\) of convex functions of order \(\alpha\) in \(\Delta\). By definition, we haveIn [35], Reade et al. derived coefficient conditions that guarantee the univalence, starlikeness or convexity of rational functions of the form (5), these results have been improved and generalized in [36]. In this paper, estimates on the initial coefficients for bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type of rational form (5) are obtained. Several related classes are also considered.
In order to derive our main results, we require the following lemma.Lemma 1.1. (see 37) If \(p(z)\in P\), then
2. Coefficients estimates
A function \(\psi (z)\in \mathcal{A}\) with Re \(\left( \psi ^{\prime }(z)\right) >0\) is known to be univalent. This motivates the following class of functions.Definition 2.1. A function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\phi )\) if the following conditions are satisfied: \begin{equation*} \psi ^{\prime }(z)\prec \phi (z)\left( z\in \Delta \right) \ \text{and} \ g^{\prime }(w)\prec \phi (w)\left( w\in \Delta \right) ,\ \ \ \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2\gamma ^{2}z^{2}+...\left( 0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.1 of the bi-univalent function class \( \mathcal{H}_{\sigma }(\phi )\) we obtain a new class \(\mathcal{H}_{\sigma }(\gamma )\) given by Definition 2.2 below.Definition 2.2. For \(0< \gamma \leq 1,\) a function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\gamma )\) if the following conditions are satisfied: \begin{equation*} \psi ^{\prime }(z)\prec \left( \frac{1+z}{1-z}\right) ^{\gamma }\left( z\in \Delta \right) \ \ \text{and}\ \ g^{\prime }(w)\prec \left( \frac{1+w}{1-w}% \right) ^{\gamma }\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+...\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.1 of the bi-univalent function class \( \mathcal{H}_{\sigma }(\phi )\) we obtain, a new class \(\mathcal{H}_{\sigma }(\nu )\) given by Definition 2.3 below.Definition 2.3. For \(0< \nu \leq 1,\) a function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\nu )\) if the following conditions hold true: \begin{equation*} \psi ^{\prime }(z)\prec \frac{1+(1-2\nu )z}{1-z}\left( z\in \Delta \right) \ \text{and} \ g^{\prime }(w)\prec \frac{1+(1-2\nu )w}{1-w}\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
Theorem 2.4. Let \(\psi (z)\in \mathcal{H}_{\sigma }(\phi )\) be of the form (5). Then
Proof. Let \(\psi (z)\in \mathcal{H}_{\sigma }(\phi )\) and \(g=\psi ^{-1}.\) Then there exist two functions \(u\) and \(v,\) analytic in \(\Delta,\) with \noindent \(u(0)=v(0)=0,\ \ \left\vert u(z)\right\vert < 1\) and \( \left\vert v(w)\right\vert < 1,\ z,w\in \Delta ,\) such that
Corollary 2.5. For \(0< \gamma \leq 1,\) let the function \(\psi \in \mathcal{H} _{\sigma }(\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{\sqrt{2}\gamma }{\sqrt{\gamma +2}}\ \ \ \text{and}\ \left\vert a_{2}\right\vert \leq \frac{2}{3}\gamma . \end{equation*}
Using the parameter setting of Definition 2.3 in Theorem 2.1, we get the following corollary.Corollary 2.6. For \(0< \nu \leq 1,\) let the function \(\psi \in \mathcal{H} _{\sigma }(\nu )\) be given by (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2}{3}\left( 1-\nu \right) }\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{2}{3}\left( 1-\nu \right) . \end{equation*}
Definition 2.7. A function \(\psi \in \sigma\) is given by (5) is said to be in the class \(S_{\sigma }(\alpha ,\phi )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \phi (z)\left( z\in \Delta \right) \ \ \ \text{and }% \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)}% \prec \phi (w)\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2 \gamma ^{2}z^{2}+...\left(0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.4 of the bi-univalent function class \( S_{\sigma }(\alpha ,\phi ),\) we obtain a new class \(S_{\sigma }(\alpha ,\gamma )\) given by Definition 2.5 below.Definition 2.8. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( S_{\sigma }(\alpha ,\gamma )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \left( \frac{1+z}{1-z}\right) ^{\gamma }\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)}% \prec \left( \frac{1+w}{1-w}\right) ^{\gamma }\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+...\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.4 of the bi-univalent function class \( S_{\sigma }(\alpha ,\phi )\) we obtain a new class \(S_{\sigma }(\alpha ,\nu )\) given by Definition 2.6 below.Definition 2.9 For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( S_{\sigma }(\alpha ,\nu )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \frac{1+(1-2\nu )z}{1-z}\left( z\in \Delta \right) \end{equation*} and \begin{equation*} \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)}% \prec \frac{1+(1-2\nu )w}{1-w}\left( w\in \Delta \right) , \end{equation*} where \(g(w)=\psi ^{-1}(w).\)
Note that \(S(\phi )=S_{\sigma }(0,\phi ).\) For functions in the class \(S_{\sigma }(\alpha ,\phi ),\) the following coefficient estimates are obtained,Theorem 2.10 Let \(\psi (z)\in S_{\sigma }(\alpha ,\phi )\) be of the form (5). Then
Proof. Let \(\psi \in S_{\sigma }(\alpha ,\phi ),\) there are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that
Corollary 2.11. Let \(\psi\) given by (7) be in the class \(S(\phi ).\) Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert B_{1}^{2}+B_{1}-B_{2}\right\vert }},\ \ \ and\ \ \ \left\vert a_{2}\right\vert \leq B_{1}. \end{equation*}
Using the parameter setting of Definition 2.8 in Theorem 2.10, we get the following corollary.Corollary 2.12. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) let the function \(\psi \in S_{\sigma }(\alpha ,\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{2\gamma }{\sqrt{\left( 1+2\alpha \right) ^{2}+\gamma \left[ 1+4\alpha -4\alpha ^{2}\right] }}\ \ \ \text{and}% \ ~\ \left\vert a_{2}\right\vert \leq \frac{2\gamma }{1+3\alpha }. \end{equation*}
Using the parameter setting of Definition 2.9 in Theorem 2.10 we get the following corollary.Corollary 2.13. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) let the function \(\psi \in S_{\sigma }(\alpha ,\nu )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2\left( 1-\nu \right) }{ 1+4\alpha }}\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{2\left( 1-\nu \right) }{1+3\alpha }. \end{equation*}
Definition 2.14. A function \(\psi \in \sigma\) given by (5) belongs to the class \(M_{\sigma }(\alpha ,\phi )\) \(\left( 0\leq \alpha \leq 1\right),\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})\prec \phi (w),\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2\gamma ^{2}z^{2}+...\left( 0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.14 of the bi-univalent function class \( M_{\sigma }(\alpha ,\phi ),\) we obtain a new class \(M_{\sigma }(\alpha ,\gamma )\) given by Definition 2.15 below.Definition 2.15. For \( 0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( M_{\sigma }(\alpha ,\gamma )\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \left( \frac{1+z}{1-z} \right) ^{\gamma }\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})\prec \left( \frac{1+w}{1-w}\right) ^{\gamma }\left( w\in \Delta \right) , \end{equation*} \(g(w):=\psi ^{-1}(w).\)
Corollary 2.16. If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+...\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.14 of the bi-univalent function class \( M_{\sigma }(\alpha ,\phi )\) we obtain a new class \(M_{\sigma }(\alpha ,\nu)\) given by Definition 2.17 below.
Definition 2.17. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( M_{\sigma }(\alpha ,\nu )\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \frac{1+(1-2\nu )z}{1-z}% \left( z\in \Delta \right) , \end{equation*}
and \begin{equation*} (1-\alpha )\frac{w\psi ^{\prime }(w)}{\psi (w)}+\alpha (1+\frac{w\psi ^{\prime \prime }(w)}{\psi ^{\prime }(w)})\prec \frac{1+(1-2\nu )w}{1-w}% \left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\) A function in the class \(M_{\sigma }(\alpha ,\phi )\) is called bi-Mocanu-convex function of Ma-Minda type. This class unifies the classes \( S(\alpha )\) and \(C(\alpha ).\) For functions in the class \(M_{\sigma }(\alpha ,\phi ),\) the following coefficients estimates hold.Theorem 2.18 Let \(\psi (z)\in M_{\sigma }(\alpha ,\phi )\) be of the form (5). Then
Proof. If \(\psi \in M_{\sigma }(\alpha ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that
Corollary 2.19 Let \(\psi \) given by (5) be in the class \(C(\phi ).\) Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{2\left\vert B_{1}^{2}+2(B_{1}-B_{2})\right\vert },\ \ \ \text{and}\ \ \ \left\vert a_{2}\right\vert \leq \frac{B_{1}}{6}. \end{equation*}
Using the parameter setting of Definition 15 in Theorem 18 we get the following corollary.Corollary 2.20. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) let the function \(\psi \in M_{\sigma }(\alpha ,\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{2\gamma }{\sqrt{\left( 1+\alpha \right) \left[ \left( 1+\alpha \right) +\gamma \left( 1-\alpha \right) % \right] }}\ \ \ \text{and \ \ }\left\vert a_{2}\right\vert \leq \frac{\gamma }{1+2\alpha }. \end{equation*}
Using the parameter setting of Definition 17 in Theorem 18 we get the following corollary.Corollary 2.21. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) let the function \(\psi \in M_{\sigma }(\alpha ,\nu )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2\left( 1-\nu \right) }{% 1+\alpha }}\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{\left( 1-\nu \right) }{1+2\alpha }. \end{equation*}
Definition 2.22. A function \(\psi \in \sigma \) given by (5) is said to be in the class \(\Im _{\alpha }(\alpha ,\phi )\left( 0\leq \alpha \leq 1\right) ,\) if the following subordinations hold: \begin{equation*} \left( \frac{z\psi ^{\prime }(z)}{\psi (z)}\right) ^{\alpha }\left( 1+\frac{% z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)}\right) ^{1-\alpha }\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \left( \frac{wg^{\prime }(w)}{g(w)}\right) ^{\alpha }\left( 1+\frac{% wg^{\prime \prime }(w}{g^{\prime }(w)}\right) ^{1-\alpha }\prec \phi (w)\left( w\in \Delta \right) , \end{equation*} \(g(w):=\psi ^{-1}(w).\) This class also reduces to classes of Ma-Minda bi-starlike and bi-convex functions. For functions in this class, the following coefficient estimates are obtained.
Theorem 2.23 Let \(\psi (z)\in \Im _{\alpha }(\alpha ,\phi )\) be of the form(5). Then
Proof. Let \(\psi \in \Im _{\alpha }(\alpha ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that
Definition 2.24. A function \(\psi \in \sigma\) given by (5) is said to be in the class \(\beta _{\alpha }(\lambda ,\phi ),\ \lambda \geq 0,\) if the following subordinations hold: \begin{equation*} \left( 1-\lambda \right) \frac{\psi (z)}{z}+\lambda \psi ^{\prime }(z)\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \left( 1-\lambda \right) \frac{g(w)}{w}+\lambda g^{\prime }(w)\prec \phi (w)\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)
Theorem 2.25. Let \(\psi (z)\in \beta _{\alpha }(\lambda ,\phi ),\ \lambda \geq 0\) be of the form (5). Then
Proof. Let \(\psi \in \beta _{\alpha }(\lambda ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that
Competing Interests
The authors declares that he has no competing interests.References
- Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 225 Marcel Dekker. Inc., New York.[Google Scholor]
- Bulboaca, T. (2005). Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publishers, ClujNapoca. Romania. [Google Scholor]
- Darwish1, H.E., Lashin A.Y., Soileh, S.M. (2013). An application of multiplier transformation for certain subclasses of meromorphic p-valent functions. Int. J. Pure. Appl. Math., 85(2), 415-433.
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2013). Certain Subclass of Meromorphic p-Valent Functions With Alternating Coefficients. Int. J. Basic. Appl. Sci., 13(2), 108-119. [Google Scholor]
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2014). On a certain subclass of analytic functions defined by a generalized differential operator and multiplier transformation, J. Frac. Cal. Appl., 5(2), 16-27.
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2015). Some subordination and Superordination results with an integral operator, Le Matematiche, 70(1), 39-51. [Google Scholor]
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2015). Differential subordinations and superordinations of certain meromorphic functions associated with an integral operator, Kyungpook Math. J., 55(3), 625-639.
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2016). Fekete-Szegö type coefficient inequalities for certain subclasses of analytic functions involving Salagean operator, Punjab Univ. J. Math., 48(2), 65-80.
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2016). On certain subclasses of starlike \(p-\)valent functions, Kyungpook Math. J., 56(3), 867-876.
- Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2017). Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order, Ann. Univ. Marie Curie-Sklodowska, Sect. A., 71(1), 1-9.
- Darwish, H. E., Lashin, A. Y., \& Soileh, S. M. (2018). Convolution properties for certain subclasses of meromorphic bounded functions, \emph{J. Comput. Anal. Appl.}, 2(24), 258-265. [Google Scholor]
- Darwish, H. E., Lashin, A. Y., \& Soileh, S. M. (2018). Some differential subordination and superordination results associated with the generalized Bessel functions, J. Mod. Sci. Engin., 2(2), 25-35.
- Duren, P. L. (1983). Univalent functions, A Series of comprehensive studies in mathematics, Vol. 259. Grundlehren der Mathematischen Wissenschaften. [Google Scholor]
- Ma, W., & Minda, D. (1994). A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press (pp. 157-169).[Google Scholor]
- Deniz, E. (2013). Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal, 2(1), 49-60.[Google Scholor]
- [Google Scholor]
- Brannan, D. A., & Clunie, J. G. (1980). Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979). [Google Scholor]
- Netanyahu, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(\left\vert z\right\vert <1\). Archive for Rational Mechanics and Analysis, 32(2), 100-112. [Google Scholor]
- Brannan, D. A., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications, 31(2), 70-77. [Google Scholor]
- Taha, T. S. (1981). Topics in univalent function theory. University of London, Phd thesis.[Google Scholor]
- Ali, R. M., Lee, S. K., Ravichandran, V., & Supramaniam, S. (2012). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351. [Google Scholor]
- Aouf, M. K., El-Ashwah, R. M., & Abd-Eltawab, A. M. (2013). New subclasses of biunivalent functions involving Dziok-Srivastava operator. International Scholarly Research Notices, 2013, Article ID 387178. [Google Scholor]
- Bulut, S. (2013). Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math, 43(2), 59-65. [Google Scholor]
- El-Ashwah, R. M. (2014). Subclasses of bi-univalent functions defined by convolution. Journal of the Egyptian Mathematical Society, 22(3), 348-351. [Google Scholor]
- Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573.[Google Scholor]
- Lashin, A. Y. (2016). On certain subclasses of analytic and bi-univalent functions. Journal of the Egyptian Mathematical Society, 24(2), 220-225.[Google Scholor]
- Magesh, N., & Yamini, J. (2013). Coefficient bounds for certain subclasses of bi-univalent functions. In International Mathematical Forum 8, 1337-1344. [Google Scholor]
- Murugusundaramoorthy, G., Magesh, N., & Prameela, V. (2013). Coefficient bounds for certain subclasses of bi-univalent function. In Abstract and Applied Analysis (Vol. 2013), Article ID 573017. [Google Scholor]
- Porwal, S., & Darus, M. (2013). On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society, 21(3), 190-193.[Google Scholor]
- Srivastava, H. M., & Bansal, D. (2015). Coefficient estimates for a subclass of analytic and bi-univalent functions. Porwal, S., & Darus, M. (2013). On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society, 21(3), 190-193., 23, 242-246. [Google Scholor]
- Srivastava, H. M., Murugusundaramoorthy, G., & Magesh, N. (2013). Certain subclasses of bi-univalent functions associated with the Hohlov operator. Global J. Math. Anal., 1(2), 67-73. [Google Scholor]
- Xu, Q. H., Gui, Y. C., & Srivastava, H. M. (2012). Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6), 990-994. [Google Scholor]
- Xu, Q. H., Xiao, H. G., & Srivastava, H. M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218(23), 11461-11465. [Google Scholor]
- Mitrinović, D. S. (1979). On the univalence of rational functions. Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, (634/677), 221-227. [Google Scholor]
- Reade, M. O., Silverman, H., & Todorov, P. G. (1984). On the starlikeness and convexity of a class of analytic functions. Rendiconti del Circolo Matematico di Palermo, 33(2), 265-272. [Google Scholor]
- Obradović, M., Ponnusamy, S., Singh, V., & Vasundhra, P. (2002). Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis, 22(3), 225-242. [Google Scholor]
- Pommerenke, C. (1975). Univalent functions. Vandenhoeck and Ruprecht.