Super \((a,d)\)-\(C_3\)-antimagicness of a Corona Graph
OMS-Vol. 2 (2018), Issue 1, pp. 371–378 Open Access Full-Text PDF
Noshad Ali, Muhammad Awais Umar, Afshan Tabassum, Abdul Raheem
Abstract:A simple graph \(G=(V(G),E(G))\) admits an \(H\)-covering if \(\forall \ e \in E(G)\ \Rightarrow\ e \in E(H’)\) for some \((H’ \cong H )\subseteq G\). A graph \(G\) with \(H\) covering is an \((a,d)\)-\(H\)-antimagic if for bijection \(f:V\cup E \to \{1,2,\dots, |V(G)|+|E(G)| \}\), the sum of labels of all the edges and vertices belong to \(H’\) constitute an arithmetic progression \(\{a, a+d, \dots, a+(t-1)d\}\), where \(t\) is the number of subgraphs \(H’\). For \(f(V)= \{ 1,2,3,\dots,|V(G)|\}\), the graph \(G\) is said to be super \((a,d)\)-\(H\)-antimagic and for \(d=0\) it is called \(H\)-supermagic. In this paper, we investigate the existence of super \((a,d)\)-\(C_3\)-antimagic labeling of a corona graph, for differences \(d=0,1,\dots, 5\).