Open Journal of Mathematical Sciences
ISSN: 2523-0212 (Online) 2616-4906 (Print)
DOI: 10.30538/oms2019.0058
On the two-variable generalized Laguerre polynomials
Department of Mathematics, Aden University, Aden, Yemen.
\(^{1}\)Corresponding Author: ah-a-atash@hotmail.com
Abstract
Keywords:
1. Introduction
The two variable Laguerre polynomials (2VLP) \(L_n(x,y)\) are defined by the series (see [1, 2, 3]) as follows: Equation (1)2. The two variable generalized Laguerre polynomials (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\)
In this section, we first define the two variable generalized Laguerre polynomials (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\). We present some generating functions for these polynomials.Definition 1. The two variables generalized Laguerre polynomials (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\) are defined as: Equation (18)
Remark 1.
- For \(\alpha=\beta=0\) the (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\) in (18) reduces to the (2VLP) \(L(x,y)\).
- For \(\alpha=0 ~~ or ~~\beta=0\) the (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\) in (18) reduces to the (2VALP) \(L^{(\alpha)}_n(x,y)\).
Theorem 2. For the two variables generalized Laguerre polynomials (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\). The following generating functions holds true: Equation (19)
Proof. (19)
Denoting the left hand side of (19) by \(L\) and using the definition (18}), we get
\begin{align*}
L &= \sum_{n=0}^{\infty}\sum_{r=0}^{n}\frac{(1+\alpha)_n(1+\beta)_n(-1)^r~y^{n-r}x^rt^n}{(1+\alpha+\beta)_r~n!(n-r)!~r!} \\
&=\sum_{n=0}^{\infty}\sum_{r=0}^{\infty}\frac{(1+\alpha)_{n+r}(1+\beta)_{n+r}(-1)^r~y^nx^rt^{n+r}}{(1+\alpha+\beta)_r~(n+r)!n!~r!} \\
&=\sum_{r=0}^{\infty}\frac{(1+\alpha)_r(1+\beta)_r(-xt)^r}{(1+\alpha+\beta)_r(r!)^2}{}_2F_1[1+\alpha+r,1+\beta+r;1+r;yt].
\end{align*}
This completes the proof of (19).
Proof. (20)
Denoting the left hand side of (20) by \(L\) and using the definition (18), we get
\begin{align*}
L &= \sum_{n=0}^{\infty}\sum_{r=0}^{n}\frac{(c)_n(-1)^r~y^{n-r}x^rt^n}{(1+\alpha+\beta)_r~(n-r)!~r!} \\
&=\sum_{n=0}^{\infty}\sum_{r=0}^{\infty}\frac{(c)_{n+r}(-1)^r~y^nx^rt^{n+r}}{(1+\alpha+\beta)_r~n!~r!} \\
&=\sum_{r=0}^{\infty}\frac{(c)_r(-xt)^r}{(1+\alpha+\beta)_r~r!}\sum_{n=0}^{\infty}\frac{(c+r)_n(yt)^n}{n!}\\
&=\sum_{r=0}^{\infty}\frac{(c)_r(-xt)^r}{(1+\alpha+\beta)_r~r!}(1-yt)^{-c-r} \\
&=(1-yt)^{-c}{}_1F_1
\left[
\begin{array}{cc}
c&;\\
1+\alpha+\beta&;
\end{array}
\begin{array}{c}
\dfrac{-xt}{1-yt}
\end{array}
\right].
\end{align*}
This completes the proof of (20). Similarly, (21) can be proved.
Special cases of (19),(20) and (21)
- For \(\alpha=\beta=0\) and \(\beta=0\), (19) reduces respectively to (2) and (8).
- For \(\alpha=\beta=0\) and \(\beta=0\), (21) reduces respectively to (3) and (9).
- For \(\alpha=\beta=0\) and \(\beta=0\), (20) reduces respectively to the following well-known generating functions: Equation (22)
\begin{equation}\label{eq22} \sum_{n=0}^{\infty}\frac{(c)_nL_n(x,y)t^n}{n!} =(1-yt)^{-c}{}_1F_1 \left[c;1;\frac{-xt}{1-yt} \right] \end{equation}(22)\begin{equation}\label{eq23} \sum_{n=0}^{\infty}\frac{(c)_nL^{(\alpha)}_n(x,y)t^n}{(1+\alpha)_n} =(1-yt)^{-c}{}_1F_1 \left[c;1+\alpha;\frac{-xt}{1-yt} \right]. \end{equation}(23)
- Taking \(c=\beta+1\) and \(c=\alpha+1\) in equation (20) and using Kummer's first theorem [4] Equation (24)
\begin{equation}\label{eq24} {}_1F_1[a;c;z]=e^z{}_1F_1[c-a;c;-z], \end{equation}(24)\begin{equation}\label{eq25} \sum_{n=0}^{\infty}\frac{n!{}_GL^{(\alpha,\beta)}_n(x,y)t^n}{(1+\alpha)_n} =(1-yt)^{-\beta-1}\exp\left(\frac{-xt}{1-yt}\right) {}_1F_1 \left [ \begin{array}{cc} \alpha&;\\ 1+\alpha+\beta&; \end{array} \begin{array}{c} \dfrac{xt}{1-yt} \end{array} \right] \end{equation}(25)\begin{equation}\label{eq26} \sum_{n=0}^{\infty}\frac{n!{}_GL^{(\alpha,\beta)}_n(x,y)t^n}{(1+\beta)_n} =(1-yt)^{-\alpha-1}\exp\left(\frac{-xt}{1-yt}\right) {}_1F_1 \left [ \begin{array}{cc} \beta&;\\ 1+\alpha+\beta&; \end{array} \begin{array}{c} \dfrac{xt}{1-yt} \end{array} \right]. \end{equation}(26)
- Taking \(c=\alpha+\beta+1\) in equation (20) and using (8), we have Equation (27)
\begin{equation}\label{eq27} {}_GL^{(\alpha,\beta)}_n(x,y)=\frac{(1+\alpha)_n(1+\beta)_n}{n!(1+\alpha+\beta)_n}L^{(\alpha+\beta)}_n(x,y). \end{equation}(27)
- Replacing \(x\) by \(xy\) in equation (21) and using (12), we have Equation (28)
\begin{equation}\label{eq28} {}_GL^{(\alpha,\beta)}_n(xy,y)=y^n\frac{(1+\alpha)_n(1+\beta)_n}{n!(1+\alpha+\beta)_n}L^{(\alpha+\beta)}_n(x). \end{equation}(28)
3. Summation formulae
Theorem 3. The following summation formulae for the (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\) holds true: Equation (29)
Proof. (29)
From (25), we have Equation (33)
Similarly, we can obtain (30) by using (8) and (23) in (33).
Proof. (31)
From (26), we have Equation (35)
Similarly, we can obtain (32) by using (8) and (23) in (35).
Remark 2.
- For \(\alpha=0\) or \(\beta=0\), the results (29), (30), (31) and (32) reduces to summation formulae for the (2VALP) \(L^{(\alpha)}_n(x,y)\).
- For \(\alpha=\beta=0\), the results (29), (30), (31) and (32) reduces to summation formulae for the (2VLP) \(L_n(x,y)\).
4. Expansions of polynomials
Theorem 4. The following expansions of Jacobi polynomials \(P^{(\alpha,\beta)}_n(x)\) in terms of the (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\) holds true: Equation (37)
Proof. (37)
Taking the generating function (14), replacing \(\alpha\) and \(\beta\) by \(\alpha+\lambda\) and \(\beta+\mu\) respectively and using (21), we have
\begin{eqnarray*}
\sum_{n=0}^{\infty}\frac{P^{(\alpha+\lambda,\beta+\mu)}_n(x)t^n}{(\alpha+\lambda+1)_n(\beta+\mu+1)_n}&=&\left(\sum_{n=0}^{\infty}\frac{n!{}_GL^{(\alpha,\lambda)}_n(\frac{1}{2}(1-x),y)t^n}{(1+\alpha)_n(1+\lambda)_n}\right)\left(\sum_{r=0}^{\infty}\frac{r!{}_GL^{(\beta,\mu)}_r(-\frac{1}{2}(1+x),-y)t^r}{(1+\beta)_r(1+\mu)_r}\right) \\ &=&\sum_{n=0}^{\infty}\sum_{r=0}^{n}\frac{(n-r)!r!{}_GL^{(\alpha,\lambda)}_{n-r}(\frac{1}{2}(1-x),y){}_GL^{(\beta,\mu)}_r(-\frac{1}{2}(1+x),-y)t^n}{(1+\alpha)_{n-r}(1+\lambda)_{n-r}(1+\beta)_r(1+\mu)_r}.
\end{eqnarray*}
Now, equating the coefficient of \(t^n\) from both sides, we get the desired result (37).
Similarly, we can prove (38) and (39).
Remark 3. For \(\lambda=\mu=0\), the results (37), (38) and (39) reduces to the expansions of Jacobi polynomials \(P^{(\alpha,\beta)}_n(x)\) in terms of the (2VALP) \(L^{(\alpha)}_n(x,y)\). \end{remark}
Remark 4. For \(\alpha=\beta=\lambda=\mu=0\), the results (37), (38) and (39) reduces to the following summation formulae for the classical Legendre polynomials \(P_n(x)\) in terms of the (2VLP) \(L_n(x,y)\): Equation (40)
Remark 5. The results (40) and (41) are known results of Khan and Al-Gonah [9].
Theorem 5. The following expansions of Ragab polynomials \(L^{(\alpha,\beta)}_n(x,y)\) in terms of the (2VGLP) \({}_GL^{(\alpha\beta)}_n(x,y)\) holds true: Equation (43)
Proof. (43)
Taking the generating function (17), replacing \(\alpha\) and \(\beta\) by \(\alpha+\lambda\) and \(\beta+\mu\) respectively and using (21), we have
\begin{align*}
\sum_{n=0}^{\infty}\frac{n!L^{(\alpha+\lambda,\beta+\mu)}_n(x,y)t^n}{(\alpha+\lambda+1)_n(\beta+\mu+1)_n}=&\left(\sum_{n=0}^{\infty}\frac{n!{}_GL^{(\alpha,\lambda)}_n(x,y)t^n}{(1+\alpha)_n(1+\lambda)_n}\right)\left(\sum_{r=0}^{\infty}\frac{r!{}_GL^{(\beta,\mu)}_r(y,-y)t^r}{(1+\beta)_r(1+\mu)_r}\right)\left(\sum_{s=0}^{\infty}\frac{t^s}{s!}\right) \\
=&\sum_{n=0}^{\infty}\sum_{r=0}^{n}\sum_{s=0}^{n-r}\frac{(n-r-s)!r!{}_GL^{(\alpha,\lambda)}_{n-r-s}(x,y){}_GL^{(\beta,\mu)}_r(y,-y)t^n}{(1+\alpha)_{n-r-s}(1+\lambda)_{n-r-s}(1+\beta)_r(1+\mu)_rs!}
\end{align*}
Now, equating the coefficient of \(t^n\) from both sides, we get the desired result (43).
Similarly, we can prove (44), (45) and (46).
Remark 6. For \(\lambda=\mu=0\), the results (43), (44), (45) and (46) reduces to the expansions of Ragab polynomials \(L^{(\alpha,\beta)}_n(x,y)\) in terms of the (2VALP) \(L^{(\alpha)}_n(x,y)\).
5. Conclusion
In this paper, the two variable generalized Laguerre polynomials (2VGLP) \({}_GL_n^{(\alpha,\beta)}(x,y)\) are introduced and certain properties of these polynomials are deduced. The results of this paper are important tool for discuss certain properties of other polynomials.Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Competing Interests
The author(s) do not have any competing interests in the manuscript.References
- Dattoli, G. (2000). Generalized polynomials, operational identities and their applications. Journal of Computational and Applied Mathematics , 118, 111--123. [Google Scholor]
- Dattoli, G. & Torre, A. (1998). Operational methods and two variable Laguerre polynomials. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 132, 1--7. [Google Scholor]
- Dattoli G, Torre, A. & Mancho A. M. (2000). The generalized Laguerre polynomials, the associated Bessel functions and applications to propagation problems. Radiat Phys Chem, 59, 229--237. [Google Scholor]
- Srivastava, H. M. & Manocha, H. L. (1984). A Treatise on Generating Functions. Halsted Press, New York. [Google Scholor]
- Rainville, E. D. (1960). Special Functions. Macmillan. New York.[Google Scholor]
- Andrews, L. C.(1985). Special Functions for Engineers and Applied Mathematicians. Macmillan Company, New York. [Google Scholor]
- Ragab, S. F. (1991). On Laguerre polynomials of two variables \(L^{(\alpha,\beta)}_n(x,y)\). Bull.Cal. Math. Sco., 83, 252--262. [Google Scholor]
- Chatterjea, S. K. (1991). A note on Laguerre polynomials of two variables. Bull. Cal. Math. Sco., 82, 263--266.[Google Scholor]
- Khan, S. & Al-Gonah, A. A. (2012). Summation formulae for the Legendre polynomials. Acta Math. Univ. Comenianae, 81, 127--139. [Google Scholor]