Open Journal of Mathematical Sciences
ISSN: 2523-0212 (Online) 2616-4906 (Print)
DOI: 10.30538/oms2019.0060
Multilinear fractional integral with rough kernel on variable exponent Morrey-Herz spaces
College of Science, Dalanj University, Sudan.; (A.A)
College of Education, Shendi University, Sudan.; (O.A)
College of Mathematics and Statistics, Northwest Normal University, China.; (S.T)
\(^{1}\)Corresponding Author: afeefy86@gmail.com
Abstract
Keywords:
1. Introduction
Suppose that \( S^{n-1} (n> 1) \) denote the unit sphere in \(\mathbb{R}^{n}\) with the normalized Lebesgue measure \( \mathrm{d}\sigma(x')\). Let \(\Omega\in{L^{s}(S^{n-1})}(1< s< \infty)\) be a homogeneous function of degree zero on \(\mathbb{R}^{n}.\) The multilinear fractional integral operator with rough kernel \(T^{A}_{\Omega,\mu}( 0< \mu< n)\) is defined by $$ T^{A}_{\Omega,\mu}f (x)= \int_{\mathbb{R}^{n}} \frac{\Omega( x-y )}{|x -y|^{n-\mu+m}}R_{m+1}(A;x,y)f(y)dy, $$ where \(A\) is a function defined on \(\mathbb{R}^{n}\) and \(R_{m+1}(A;x,y)\) is the \(mth\) reminder of Taylor series of \(A\) at \(x\) about \(y\). More precisely $$ R_{m+1}(A;x,y)= A(x) -\sum_{|\gamma|\leq m}\frac{1}{\gamma!}D^{\gamma} A(y)(x-y)^{\gamma}, $$ when \(m=1\), \(T^{A}_{\Omega,\mu}\) is just the commutators of the fractional integral with rough kernel with function \(A.\) $$ T^{A}_{\Omega,\mu}f (x)= \int_{ \mathbb{R}^{n}}\frac{\Omega( x-y )}{|x -y|^{n-\mu}}(A(x)-A(y))f(y)dy. $$ The multilinear fractional maximal operator with rough kernel is defined as $$ M^{A}_{\Omega,\mu}f (x) = \sup\limits_{r>0}\frac{1}{r^{(n-\mu + m)}}\int\limits_{|x-y|< r} |\Omega(x-y)R_{m+1}(A;x,y)f(y)|dy. $$In 1975, Coifman and Meyer [1] introduced multilinear integral and the boundedness of the multilinear fractional integral operator on Lebesgue spaces established in [2, 3, 4]. Li and Tao [5] discussed the boundedness of multilinear commutators with rough kernels on Morrey-Herz spaces.
On the other hand, the theory of the variable exponent function spaces has been rapidly developed after it was introduced by Kováčik and Rákosník [6]. After that, many researchers work in this direction has been done, see for example [7, 8, 9, 10, 11, 12, 13]. The boundedness of the multilinear fractional integral operator on variable Lebesgue spaces are established in [14, 15]. Recently, Lu and Zhu [16] established the boundedness of the multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents.
In this article, we study the boundedness of the multilinear fractional integral operator and multilinear fractional maximal operator with rough kernels on variable exponent Lebesgue spaces. The boundedness of the multilinear fractional integral operator is established on Morrey-Herz spaces \({MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\).
Throughout this paper, let \(|E|\) be a Lebesgue measurable set in \(\mathbb{R}^{n}\) with measure \(|E|>0\) and \(\chi_{E}\) be its characteristic function. We shall recall some definitions.Definition 1. [7]. Let \(p(\cdot): E \rightarrow {[1,\infty)}\) be a measurable function, the variable exponent Lebesgue spaces \(L^{p(\cdot)}(E)\) is defined as $$ L^{p(\cdot)}(E)= \{{ f~ \mbox{is measurable}: \int_{E}\left(\frac{|f(x)|}{\eta}\right)^{p(x)} dx < \infty}~ \mbox{for some constant } \eta > 0\}. $$ The space \(L _{loc}^{p(\cdot)} {(E)}\) is defined as $$ L_{loc}^{p(\cdot)} {(E)}= \{ \mbox {f is measurable} : f\in {L^{p(\cdot)} {(K)}}~for~all~compact~K\subset E\}. $$ The relation between Lebesgue spaces \(L^{p(\cdot)} {(E)}\) and Banach spaces is defined as $$ \|f\|_{L^{p(\cdot)}(E)}= \inf\left\{\eta> 0: \int_{E}\left(\frac{|f(x)|}{\eta}\right)^{p(x)}dx \leq 1\right\}. $$
We denote \(p_{-}=\) essinf \(\{p(x): x \in E\} , \) \( p_{+}=\) esssup\( \{p(x): x \in E\} \). Then \(\mathcal{P}(E)\) consists of all \(p(\cdot)\) satisfying \(p_{-} > 1\) and \(p_{+} < \infty\). Next, we give the definition of Morrey-Herz space with variable exponents \( q(\cdot),p(\cdot),\alpha(\cdot)\). Let \(B_{k}=\{ x\in\mathbb{R}^{n}: |x|\leq 2^{k}\} , C_{k}= B_{k}\backslash B_{k-1} , \chi_{k}= \chi_{C_{k}} , \) \( k \in{\mathbb{Z}}\).Definition 2. [18]. Let \(q (\cdot),p(\cdot)\in \mathcal{P} (\mathbb{R}^{n})\), \( 0\leq \lambda < \infty\) and \( \alpha(\cdot): \mathbb{R}^{n} \longrightarrow \mathbb{R}\) with \(\alpha \in L^{\infty}(\mathbb{R}^{n})\). The nonhomogeneous Morrey-Herz space with variable exponents \({MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\) is defined as $$ {MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})= \{f\in {L_{\mathrm{loc}}^{p(\cdot)}}(\mathbb{R}^{n}\backslash\{0\}) : \|f\|_{{MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}< \infty \}, $$ where $$ \|f\|_{{MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})} = \inf\left\{ \eta> 0 : \sup\limits_{k_{0}\in z } 2^{-k_{0}\lambda} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|f\chi_{k}|}{\eta}\right)^{q(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q(\cdot)}}}\leq 1\right\}. $$ The homogeneous Morrey-Herz space with variable exponents \(M\dot{K}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\) is defined as $$ M\dot{K}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})= \{f\in {L_{\mathrm{loc}}^{p(\cdot)}}(\mathbb{R}^{n}\backslash\{0\}) : \|f\|_{M\dot{K}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}< \infty \}, $$ where $$ \|f\|_{M\dot{K}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})} = \inf\left\{ \eta> 0 : \sup\limits_{k_{0}\in z} 2^{-k_{0}\lambda} \sum\limits_{k=-\infty}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|f\chi_{k}|}{\eta}\right)^{q(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q(\cdot)}}}\leq 1\right\}. $$
2. Preliminaries
In this section, we give some properties of variable exponents that will be helpful in proving our main results.Proposition 1.[7]. If \(p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) satisfies the follows inequalities: \begin{align*} | p(x) - p(y)|&\leq \frac{ -C}{log( |x - y|)}~,| x - y| \leq 1/ 2;\\ | p(x) - p(y)|&\leq \frac{ C}{log( e +|x|)}~,|y|\geq|x|. \end{align*} then, we have \(p(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\).
Proposition 2. [14]. Suppose that \(p_{1}(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\), \(\Omega\in{L^{r}(S^{n-1})}\), \(0 < \mu\leq\frac{n}{( p_{1})_{+}}\), \(\frac{1}{p_{1}(x)}- \frac{1}{p_{2}(x)} = \frac{\mu}{n}\), then for all \(f \in L^{p_{1}(\cdot)}(\mathbb{R}^{n})\), we have $$ \|M_{\Omega,\mu} f\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C\| f\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}. $$
Now, we recall some lemmas.Lemma 1. [7].
- Let \(p(\cdot): \mathbb{R}^{n} \rightarrow [ 1, \infty)\), for all function \(f\) and \(g\), then $$ \int_{\mathbb{R}^{n}}|f(x) g(x)| \mathrm{d}x \leq C\|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\|g\|_{L^{p'(\cdot)}(\mathbb{R}^{n})}. $$
- If \( p(\cdot), q (\cdot), r(\cdot) \in \mathbb{R}^{n} \), \( p(\cdot)\) and \( \frac{1}{p(\cdot)}= \frac{1}{q(\cdot)} + \frac{1}{r(\cdot)}\). Then there exists a constant C such that for all \( f \in L^{q(\cdot)}(\mathbb{R}^{n}), g \in L^{r(\cdot)}(\mathbb{R}^{n}) \), we have $$ \|fg\|_{L^{p(\cdot)}}\leq C\|f\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\|g\|_{L^{r(\cdot)}(\mathbb{R}^{n})}. $$
Lemma 2.[7]. Let \(x \in \mathbb{R}^{n}\) and \(\frac{1}{p(\cdot)}= \frac{1}{q} + \frac{1}{\widetilde{q}(\cdot)}\), then for all measurable function \(f\) and \(g\), we have $$ \|f(x)g(x)\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C \|g(x)\|_{L^{q}(\mathbb{R}^{n})}\|f(x)\|_{L^{\widetilde{q}(\cdot)}(\mathbb{R}^{n})}. $$
Lemma 3.[9]. Suppose that \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\) and \( 0 < p^{-}\leq p^{+} < \infty \), then we have
- for any cube \(|Q|\leq 2^{n}\), and all the \(\chi \in Q\), we have \(\|\chi_{Q}\|_{L^{p(\cdot)}}\approx |Q|^{1/p(x)}\),
- for any cube \(|Q|\geq 1\), we have \(\|\chi_{Q}\|_{L^{p(\cdot)}}\approx |Q|^{1/p_{\infty}}\), where \( p_{\infty} = \lim_{ x \rightarrow\infty} p(x)\).
Lemma 4.[11]. If \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), then there exist constants \(\delta_{1},\delta_{2},C > 0 \) such that for all balls \(B\) in \(\mathbb{R}^{n}\) and all measurable subset \(S\subset B\), we have $$ \frac{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{S}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}} \leq C \frac{|B|}{|S|},~ \frac{\|\chi_{S}\|_{L^{p'_{1}(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{B}\|_{L^{p'_{1}(\cdot)}(\mathbb{R}^{n})}} \leq C \left(% \begin{array}{ccc} \frac{|S|}{|B|}\end{array}\right)^{\delta_{1}}, ~ \frac{\|\chi_{S}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}} {\|\chi_{B}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}} \leq C \left(% \begin{array}{ccc} \frac{|S|}{|B|}\end{array}\right)^{\delta_{2}}. $$
Lemma 5.[19]. For \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\), there exists constant \(C > 0\) such that for any balls B in \(\mathbb{R}^{n}\), we have $$ \frac{1}{|B|}\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \|\chi_{B}\|_{L^{p'(\cdot)}(\mathbb{R}^{n})}\leq C. $$
Lemma 6.\label{lem10}[13]. Let \(p(\cdot), q(\cdot) \in\mathcal{P}(\mathbb{R}^{n})\). If \(f\in L^{p(\cdot)q(\cdot)}\), then $$ \min ( \|f\|_{L^{p(\cdot)q(\cdot)}}^{q_{+}}~,~ \|f\|_{L^{p(\cdot)q(\cdot)}}^{q_{-}} )\leq\||f|^{q(\cdot)}\|_{L^{p(\cdot)}}\leq\max \left( \|f\|_{L^{p(\cdot)q(\cdot)}}^{q_{+}} ~,~ \|f\|_{L^{p(\cdot)q(\cdot)}}^{q_{-}} \right). $$
Lemma 7.[20]. Let \(b\in BMO (\mathbb{R}^{n})\), where \(n\) is a positive integer, and let the constant \(C> 0\). Then for any \( l,j \in\mathbb{Z}\) with \(l>j\), we have
- \( C^{-1}\|b\|^{n}_{*}\leq \sup\limits_{B} \frac{1}{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\|( b- b_{B})^{n}\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \leq C\|b\|_{*}^{n},\)
- \(\|( b- b_{B_{j}})^{n}\chi_{B_{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \leq C (l - j)^{n}\|b\|^{n}_{*}\| \chi_{B_{k}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}.\)
Lemma 8.[2]. For any \( \varepsilon > 0\) with \( 0< \mu -\varepsilon< \mu +\varepsilon< n\), we have $$ | T^{A} _{\Omega,\mu} f(x)|\leq C [M^{A}_{\Omega,\mu+\varepsilon}f(x)]^\frac{1}{2}[M^{A}_{\Omega,\mu-\varepsilon}f(x)]^\frac{1}{2}.$$
Lemma 9.[4]. Let \(A\) be a function with derivatives of order \(m\) in \( \dot{\wedge}_{\beta}( 0< \beta< 1)\). Then there exists a constant \(C > 0 \) such that $$ |R_{m+1}(A;x,y)|\leq C \left(\sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}\right)|x-y|^{m+\beta}. $$
Lemma 10.[21]. Let \(b(x)\) be a function on \(\mathbb{R}^{n}\) and \( D^{\gamma}b \in L^{q}_{loc}(\mathbb{R}^{n})\), where \(q>n\), then $$ |R_{m}(b,x,y)|\leq C |x-y|^{m}\sum\limits_{|\gamma|=m}\left(\frac{1}{B(x,y)}\int\limits_{B(x,y)}|D^{\gamma}b(z)|dz\right)^{\frac{1}{q}}. $$ where \(B(x,y)\) is the cube centered at \(x\) and having diameter \(5\sqrt{n}|x-y|\).
Lemma 11.[7]. Let \(q(\cdot) \in\mathcal{P}(\mathbb{R}^{n})\) and \( q^{+}< \infty\), then for any \(s>0\), we have $$ \||f|^{s}\|_{q(\cdot)(\mathbb{R}^{n})}=\|f\|^{s}_{s q(\cdot)(\mathbb{R}^{n})}. $$
Lemma 12. Let \({D^{\gamma}A}\in BMO(\mathbb{R}^{n})(|\gamma|=|m|, m\geq1),\) \(\Omega\in{L^{r}(S^{n-1})}\), \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\) and \(\frac{1}{p_{1}(x)} - \frac{1}{p_{2}(x)} = \frac{\mu}{n}\), then we have $$ \|M_{\Omega,\mu}^{A}f(x)\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f \|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}, $$ where C is independent of \(f\) and \(A.\)
Proof. If \( \widetilde{M}^{A}_{\Omega,\mu}\) is defined by: $$ \widetilde{M}^{A}_{\Omega,\mu}f(x)= \sup\limits_{r>0}\frac{1}{r^{(n-\mu + m)}}\int\limits_{\frac{r}{2}< |x-y|< r} |\Omega(x-y)R_{m+1}(A;x,y)f(y)|\mathrm{d}y. $$ Let \(Q(x,r)\) be the cube centered at \( x \) and having diameter \(5\sqrt{nr}\). If \(\frac{r}{2}< |x-y|< r \), by Lemma 10, we have \begin{align*} |R_{m+1}(A;x,y)| &= |R_{m+1}(A_{k};x,y)|\leq |R_{m}(A_{k};x,y)| +\sum_{|\gamma|=m}\frac{1}{\gamma!}|D^{\gamma}A_{k}(y)||x-y|^{m}\\ &\quad\leq C |x-y|^{m}\left(\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} +\sum_{|\gamma|=m} |D^{\gamma} A(y)-m_{B_{k}}(D^{\gamma}A)| \right). \end{align*} By using Hölder's inequality, we get \begin{align*} \widetilde{M}^{A}_{\Omega,\mu}f(x)&= \sup\limits_{r>0}\frac{1}{r^{n-\mu }}\int\limits_{\frac{r}{2}< |x-y|< r}\left(\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} +\sum_{|\gamma|=m} |D^{\gamma} A(y)-m_{B_{k}}(D^{\gamma}A)| \right)\\ &\quad\times|\Omega(x-y)f(y)|\mathrm{dy} \\ &\leq C\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \left(M_{|\Omega|^{t},\mu t}(|f|^{t})(x)\right)^{\frac{1}{t}}. \end{align*} By the boundedness of the fractional maximal operator on \(L^{p(\cdot)}(\mathbb{R}^{n})\) spaces, we obtain that \begin{align*} \|\widetilde{M}^{A}_{\Omega,\mu}f(x)\|_{{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}}&\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|M_{|\Omega|^{t},\mu t}(|f|^{t})(x)\|^{\frac{1}{t}}_{L^{\frac{p_{2}(\cdot)}{t}}}\\ &\leq C\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \||f|^{t}\|^{\frac{1}{t}}_{L^{\frac{p_{1}(\cdot)}{t}}}\\ &\leq C\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f\|_{L^{{p_{1}(\cdot)}}(\mathbb{R}^{n})}. \end{align*} Since \({M}^{A}_{\Omega,\mu}f(x)\leq \widetilde{M}^{A}_{\Omega,\mu}f(x)\) for all \(x\in\mathbb{R}^{n}\), we have \begin{align*} \| {M}^{A}_{\Omega,\mu}f(x)\|_{{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}} &\leq \| \widetilde{M}^{A}_{\Omega,\mu}f(x)\|_{{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}}\\ &\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f\|_{L^{{p_{1}(\cdot)}}(\mathbb{R}^{n})}. \end{align*} Then, we get $$ \|M_{\Omega,\mu}^{A}f(x)\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f \|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}. $$ This completes the proof of Lemma 12.
Lemma 13. Let \({D^{\gamma}A}\in BMO(\mathbb{R}^{n})(|\gamma|=|m|, m\geq1)\), \(\Omega\in{L^{r}(S^{n-1})}\), \( p(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\) and \(\frac{1}{p_{1}(x)} - \frac{1}{p_{2}(x)} = \frac{\mu}{n}\), then we have $$ \|T_{\Omega,\mu}^{A}f(x)\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f \|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}. $$ where C is independent of \(f\) and \(A.\)
Proof. Let \( 0< \varepsilon < \min (\mu , n-\mu)\), and \(r(\cdot): \mathbb{R}^{n} \longrightarrow [1, +\infty )\), and let \begin{align*} &\frac{1}{p_{1}(\cdot)} - \frac{1}{\frac{r(\cdot)p_{2}(\cdot)}{2}} = \frac{\mu -\varepsilon}{2},\\ &\frac{1}{p_{1}(\cdot)} - \frac{1}{\frac{r'(\cdot)p_{2}(\cdot)}{2}} = \frac{\mu +\varepsilon}{2}. \end{align*} By Lemma 8 and applying Hölder's inequality, we have $$ \|T^{A} _{\Omega,\mu} f(x)\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C\|(M^{A}_{\Omega,\mu+\varepsilon}f)^{\frac{1}{2}}\|_{L^{p_{2}(\cdot)r'(\cdot)}} \|(M^{A}_{\Omega,\mu-\varepsilon}f)^{\frac{1}{2}}\|_{L^{p_{2}(\cdot)r(\cdot)}}. $$ Since \begin{align*} \|(M^{A}_{\Omega,\mu-\varepsilon}f)^{\frac{1}{2}}\|_{L^{p_{2}(\cdot)r(\cdot)}}&\leq C \|(M^{A}_{\Omega,\mu-\varepsilon}f)\|^{\frac{1}{2}}_{L^{\frac{{p_{2}(\cdot)r(\cdot)}}{2}}}\\ &\leq C \left(\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}\right)^{\frac{1}{2}}\|f\|^{\frac{1}{2}}_{L^{{p_{1}(\cdot)}}(\mathbb{R}^{n})}.\quad\quad\quad \end{align*} Similar way, we concluded that $$ \|(M^{A}_{\Omega,\mu+\varepsilon}f)^{\frac{1}{2}}\|_{L^{p_{2}(\cdot)r'(\cdot)}} \leq C \left(\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}\right)^{\frac{1}{2}}\|f\|^{\frac{1}{2}}_{L^{{p_{1}(\cdot)}}(\mathbb{R}^{n})}, $$ then, we have $$ \|T_{\Omega,\mu}^{A}f(x)\|_{L^{p_{2}(\cdot)}(\mathbb{R}^{n})}\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f \|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}. $$ This completes the proof of Lemma 13.
3. Main results
In this section, we investigate the boundedness of the multilinear fractional integral operator with rough kernel on variable nonhomogeneous Morrey-Herz spaces \({MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})\).Theorem 1. Suppose that \({D^{\gamma}A}\in BMO(\mathbb{R}^{n})(|\gamma|=|m|, m\geq1)\). Let \( 0< \mu< n\), \(\Omega\in L^{r}(s^{n-1})\), \(q_{1}(\cdot), q_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) with \((q_{2})_{-} \geq (q_{1})_{+}\), and \(p_{1}(\cdot), p_{2}(\cdot) \in \mathfrak{B}(\mathbb{R}^{n})\) satisfy \(0< \mu\leq\frac{n}{( p_{1})_{+}} \), \(\frac{1}{p_{1}(x)} - \frac{1}{p_{2}(x)} = \frac{\mu}{n}\). If \((\lambda_{1})(q_{2})_{+}=(\lambda_{2})(q_{1})_{-}\) and \(\mu- n\delta_{2}+(\lambda_{1})/(q_{1})_{-}< \alpha_{+}< n \delta_{1}+\frac{n}{r}+(\lambda_{1})/(q_{1})_{-} \). Then \(T_{\Omega,\mu}^{A}\) is bounded from \({MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+}, \lambda_{1}}(\mathbb{R}^{n})\) to \({MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot), \lambda_{2}}(\mathbb{R}^{n})\).
Proof.
Let \({D^{\gamma}A}\in BMO(\mathbb{R}^{n})\), \(f \in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+},\lambda_{1}}(\mathbb{R}^{n})}\), we write
\begin{eqnarray*}
f(x) = \sum_{j=0}^{\infty}f(x)\chi_{j}(x)= {\sum_{j=0}^{ \infty}} f_{j}(x).
\end{eqnarray*}
By the definition of \( {{MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\), we have
\begin{eqnarray*}
\|T^{A}_{\Omega, \mu}(f)\chi_{k}\|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}=
\inf \left\{ \eta> 0: \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega , \mu} (f)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\}.
\end{eqnarray*}
For any \(k_{0}\in z\), we see that
\begin{eqnarray*}
&&2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\|\left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega, \mu} (f)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\|\left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{\infty} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{11}+\eta_{12}+\eta_{13}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&&\leq2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{11}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\quad+2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{12}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&&+2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\|\left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{13}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}},
\end{eqnarray*}
where
\begin{align*}
{\eta_{11}} &= \left\|\sum\limits_{j=0}^{k-2}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}\\
&=\inf \left\{ \eta> 0: \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\},\\
{\eta_{12}} &= \left\|\sum\limits_{k-1}^{k+1}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}\\
&=\inf \left\{ \eta> 0 : \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\},
\end{align*}
\begin{align*}
{\eta_{13}} &= \left\|\sum\limits_{j=k+2}^{\infty}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}\\
&=\inf \left\{ \eta> 0 : \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\|\left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\}.
\end{align*}
If \({\eta} = {\eta_{11}} +{\eta_{12}}+{\eta_{13}}\), thus
$$
{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}} \leq C.
$$
That is
$$
\|T^{A}_{\Omega , \mu} (f)\chi_{k} \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}
\leq C \eta \leq C [ \eta_{11} +\eta_{12}+\eta_{13}].
$$
Hence, it suffices to prove
$$
\eta_{11} , \eta_{12} ,\eta_{13} \leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \| f\|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})},
$$
Denote \( \eta_{1} =\| f \|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.\)
Now we consider \({\eta_{12}}\) firstly. Applying Lemma 6, noting that \(T_{\Omega,\mu}^{A}\) is bounded on \(L^{p(\cdot)}(\mathbb{R}^{n})\), it follows
\begin{align*}
&\quad2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\\
&\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right\|^{(q^{1}_{2})_k}_{L^{{p_{2}(\cdot)}}}
\\
&\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left(\sum\limits_{j=k-1}^{k+1}\left\| \frac{2^{(k-j)\alpha_{+}}2^{j\alpha_{+}}| T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right\|_{L^{{p_{2}(\cdot)}}}\right)^{(q^{1}_{2})_k}\\
&\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left(\sum\limits_{j=k-1}^{k+1}\left\| \frac{2^{j\alpha_{+}} |f_{j}| }{\eta_{1} }\right\|_{L^{{p_{1}(\cdot)}}}\right)^{(q^{1}_{2})_k},
\end{align*}
where
$$
{(q^{1}_{2})_k}= \left\{\begin{array}{ll}
(q_{2})_{-},~~~~ ~~~~ \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} \leq 1, \\
(q_{2})_{+},~~~~ ~~~~ \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} >1.
\end{array}\right.
$$
Since \(f\in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}\), we have
$$
2^{-k_{0}\lambda_{1}}\left\|\left( \frac{2^{k\alpha_{+}} |f \chi_{k}| }{\eta_{1} }\right)^{q_{1}(\cdot)}\right\|_{L^{\frac{p_{1}(\cdot)}{q_{1}(\cdot)}}}\leq 1.
$$
From this and again applying Lemma 6, if \((q_{1})_{+}\leq (q_{2})_{-}\) and \(\lambda_{1}(q_{2})_{+} = \lambda_{2}(q_{1})_{-}\), we can obtain that
\begin{align*}
&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\leq C2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left(\left\| \frac{2^{k\alpha_{+}} |f \chi_{k}| }{\eta_{1} }\right\|_{L^{{p_{1}(\cdot)}}}\right)^{(q^{1}_{2})_k}\\
&\leq C2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\|\left( \frac{2^{k\alpha_{+}} |f \chi_{k}| }{\eta_{1} }\right)^{q_{1}(\cdot)}\right\|^{\frac{(q^{1}_{2})_k}{(q^{1}_{1})_j}}_{L^{\frac{p_{1}(\cdot)}{q_{1}(\cdot)}}}
\leq C\sum\limits_{k=0}^{k_{0}}\left\{2^{-k_{0}\lambda_{1}}\left\|\left( \frac{2^{k\alpha_{+}} |f \chi_{k}| }{\eta_{1} }\right)^{q_{1}(\cdot)}\right\|_{L^{\frac{p_{1}(\cdot)}{q_{1}(\cdot)}}} \right\}^{\frac{(q^{1}_{2})_k}{(q^{1}_{1})_j}}
\leq C,
\end{align*}
where
$${(q^{1}_{1})_j}= \left\{\begin{array}{ll}
(q_{1})_{+},\qquad \left\| \frac{2^{k\alpha_{+}}| f_{ \chi_{k}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} \leq 1, \\
(q_{1})_{-},\qquad \left\| \frac{2^{k\alpha_{+}}| f_{ \chi_{k}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} >1.
\end{array}\right.
$$
This implies that
$$
\eta_{12}\leq C \eta_{1}\leq C \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \| f\|_{\dot{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Now we estimate of \( {\eta_{11}}\). Let \( x \in C_{k} ~ j \leq k-2 \), then \( | x- y|\sim |x|\), we can write that
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq C \int_{ C_{j}}\frac{|\Omega( x-y )|}{|x -y|^{n-\mu+m}}|R_{m+1}(A;x,y)||f_{j}(y)|\mathrm{d}y,
$$
where
$$
A_{k}(x)= A(x) -\sum_{|\gamma|=m}\frac{1}{\gamma!}(D^{\gamma} A)x^{\gamma},
$$
and
$$
R_{m+1}(A;x,y) = R_{m+1}(A_{k};x,y),~D^{\gamma}A_{k}(x)= D^{\gamma} A(x)- m_{\gamma_k}(D^{\gamma}A), ~|\gamma|= m.
$$
Applying Lemma 10, we see that
\begin{align*}
|R_{m+1}(A;x,y)|&= |R_{m+1}(A_{k};x,y)|\\
&\leq |R_{m}(A_{k};x,y)| +\sum_{|\gamma|=m}\frac{1}{\gamma!}|D^{\gamma}A_{k}(y)||x-y|^{m}\\
&\leq C |x-y|^{m}\sum_{|\gamma|=m}\left(\left(\frac{1}{|\widetilde{Q}(x,y)|}\int_{\tilde{Q}(x,y)}{|D^{\gamma}A_{k}(z)|^{q}}\mathrm{d}z\right)^{\frac{1}{q}}
+\frac{1}{\gamma!}|D^{\gamma} A_{k}(y)|\right) \\
&\leq C |x-y|^{m}\sum_{|\gamma|=m}\left(\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} + |D^{\gamma} A_{k}(y)| \right).
\end{align*}
Thus, we get
\begin{align*}
|T^{A}_{\Omega,\mu}f_{j} (x)|&\leq C
\int_{ C_{j}}\frac{|\Omega( x-y )|}{|x -y|^{n-\mu}}\sum_{|\gamma|=m}\left[\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} + |D^{\gamma} A_{k}(y)| \right]|f_{j}(y)|\mathrm{d}y\\
&\leq C \sum_{|\gamma|=m}
\int_{ C_{j}}{\frac{|\Omega( x-y )|}{|x -y|^{n-\mu}}}\left[\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} + |D^{\gamma} A_{k}(y)| \right]|f_{j}(y)|\mathrm{d}y\\
&\leq C\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}\int_{ C_{j}}{\frac{|\Omega( x-y )|}{|x -y|^{n-\mu}}}|f_{j}(y)|\mathrm{d}y\\
&\,\,\,+
\sum_{|\gamma|=m }\int_{ C_{j}}{\frac{|\Omega( x-y )|}{|x -y|^{n-\mu}}}|D^{\gamma} A_{k}(y)||f_{j}(y)|\mathrm{d}y\\
&=: L_{1} + L_{2}.
\end{align*}
Applying the generalized Hölder's inequality, we have
$$
L_{1}\leq C \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}\|f_{j}\|_{L^{p_{1}(\cdot)}}
\left\|\frac{\Omega( x-y )}{|x -y|^{n-\mu}} \chi_{j}\right\|_{L^{{p'}_{1}(\cdot)}}.
$$
If \(\frac{1}{\acute{p}_{1}(\cdot)}= \frac{1}{r} + \frac{1}{\widetilde{p_{1}'}(\cdot)} \), by Lemma 2, then we have
\begin{align*}
L_{1} &\leq
\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \|f_{j}\|_{L^{p_{1}(\cdot)}}\|\Omega( x-y )\|_{L^{r}}\left\| \frac{\chi_{j}}{|x -y|^{n-\mu}}\right\|_{L^{\widetilde{p'_{1}}(\cdot)}}\end{align*}
\begin{align*}
&\leq C\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} 2^{-k(n-\mu)}\|f_{j}\|_{L^{p_{1}(\cdot)}} \|\chi_{j}\|_{L^{\widetilde{p_{1}'}(\cdot)}}
\left[ \int\limits_{2^{k-2}}^{2^{k}}r^{n-1} \mathrm{d}r\int_{s^{n-1}}|{\Omega(y')}|^{r}\mathrm{d}{\sigma}(y')\right]^{\frac{1}{r}}\\
&\leq C\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} 2^{-k(n-\mu)}\|f_{j}\|_{L^{p_{1}(\cdot)}} \|\chi_{j}\|_{L^{\widetilde{p_{1}'}(\cdot)}} 2^{\frac{kn}{r}}
\|\Omega\|_{L^{r}(S^{n-1})}\\
&\leq C\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} 2^{-k(n-\mu)}2^{\frac{kn}{r}}\|f_{j}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_j}\|_{L^{\widetilde{p_{1}'}(\cdot)}}.
\end{align*}
According to Lemma 3 and the formula \( \frac{1}{\widetilde{p_{1}'}(\cdot)}= \frac{1}{{p_{1}'}(\cdot)}-\frac{1}{r}\), we have
$$
\|\chi_{B_{j}}\|_{L^{\widetilde{p_{1}'}(\cdot)}} \approx\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} |B_{j}|^{\frac{-1}{r}}
$$
Then, we obtain
$$
L_{1}
\leq \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}2^{-k(n-\mu)}2^{(k-j)\frac{n}{r}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}}
.
$$
For \(L_{2}\), applying the generalized Hölder's inequality, we get
$$
L_{2}\leq C\sum_{|\gamma|=m }\|f_{j}\|_{L^{p_{1}(\cdot)}} \left\|\frac{\Omega( x-y )}{|x -y|^{n-\mu}} \chi_{j} |D^{\gamma} A_{k}(y)|\right\|_{L^{{p'}_{1}(\cdot)}}.
$$
If \(\frac{1}{{p'}_{1}(\cdot)}= \frac{1}{r} + \frac{1}{\widetilde{p_{1}'}(\cdot)} \), by Lemma 3, we have
\begin{align*}
L_{2}&\leq C\sum_{|\gamma|=m }{2^{-k(n-\mu)}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\Omega( x-y )\|_{L^{r}}
\left\|\chi_{j}|D^{\gamma} A_{k}(y)| \right\|_{L^{\widetilde{p'_{1}}(\cdot)}}\\
&\leq C{2^{-k(n-\mu)}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\Omega( x-y )\|_{L^{r}}\sum_{|\gamma|=m }
\left\|\chi_{j}(D^{\gamma} A(x)- m_{\gamma_k}(D^{\gamma}A)) \right\|_{L^{\widetilde{p'_{1}}(\cdot)}}.
\end{align*}
Similarly, and applying Lemma 7, we conclude that
$$
L_{2}\leq \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}(k-j)2^{-k(n-\mu)}2^{(k-j)\frac{n}{r}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'
(\cdot)}}.
$$
Combining the above two estimates about \(L_{1},L_{2}\), we obtain
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq C \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}(k-j)2^{-k(n-\mu)}2^{(k-j)\frac{n}{r}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'
(\cdot)}}.
$$
From this and using Lemma 6, we deduce that
\begin{align*}
2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right\|^{(q_{2}^{2})_k}_{L^{{p_{2}(\cdot)}}},
\end{align*}
where
$$
{(q^{2}_{2})_k}= \left\{\begin{array}{ll}
(q_{2})_{-},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} \leq 1, \\
(q_{2})_{+},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} >1.
\end{array}\right.
$$
Noting that if \(\frac{1}{p_{1}(\cdot)}-\frac{1}{p_{2}(\cdot)}=\frac{\mu}{n}\), then
\(C_{1}|B|^{\frac{\mu}{n}}\|\chi_{B}\|_{L^{p_{2}(\cdot)}}\leq\|\chi_{B}\|_{L^{p_{1}(\cdot)}}\leq C_{2}|B|^{\frac{\mu}{n}} \|\chi_{B}\|_{L^{p_{2}(\cdot)}}\)
(see[22], p.370).
Therefore, together with this and applying Lemma 4 and Lemma 5, we have
\begin{eqnarray*}
&&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&&\leq 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{-k(n-\mu)}2^{(k-j)\frac{n}{r}}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}
\right]^{(q^{2}_{2})_k}\\
&&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{-k(n-\mu)}2^{(k-j)\frac{n}{r}}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} |B_{k}|^{-\frac{\mu}{n}}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{2}_{2})_k}\\
&&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=-\infty}^{\infty} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}(k-j)2^{(k-j)\frac{n}{r}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_j}\|_{L^{p_{1}'(\cdot)}}}{\|\chi_{B_k}\|_{L^{p_{1}'(\cdot)}}}
\right]^{(q^{2}_{2})_k}\\
&&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}(k-j)2^{(j-k)(n\delta_{1}-\frac{n}{r}})
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}
\right]^{(q^{2}_{2})_k}\\
&&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=0}^{k-2}(k-j) 2^{(j-k)(n\delta_{1}-\frac{n}{r}-\alpha_{+}})
\left\|\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{2}_{2})_k}.
\end{eqnarray*}
Since \(f \in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+},\lambda_{1}}(\mathbb{R}^{n})}\), \((\lambda_{2})/(q_{2})_{+}=(\lambda_{1})/(q_{1})_{-}\)
and \(\alpha_{+}< n\delta_{1}+\frac{n}{r}+(\lambda_{1})/(q_{1})_{-}\), we have
\begin{eqnarray*}
&&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=0}^{k-2}(k-j) 2^{(j-k)(n\delta_{1}-\frac{n}{r}-\alpha_{+}})
\left\|\left(\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q^{2}_{1})j}}_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{2}_{2})_k}\\
&&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=0}^{k-2}(k-j) 2^{(j-k)(n\delta_{1}-\frac{n}{r}-\alpha_{+}})
\left( 2^{j\lambda}2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})}
\right)^{\frac{1}{(q^{2}_{1})j}} \right]^{(q^{2}_{2})_k}\\
&&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \\
&&\times\left[ \sum\limits_{j=0}^{k-2}(k-j) 2^{(j-k)((\lambda_{1})/(q_{1})_{-} +n\delta_{1}-\frac{n}{r}-\alpha_{+})}\left( 2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right)^{\frac{1}{(q^{2}_{1})j}} \right]^{(q^{2}_{2})_k}\\
&&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \left[ \sum\limits_{j=0}^{k-2}(k-j) 2^{(j-k)((\lambda_{1})/(q_{1})_{-} +n\delta_{1}-\frac{n}{r}-\alpha_{+})}
\right]^{(q^{2}_{2})_k}
\leq C,
\end{eqnarray*}
where
$$
{(q^{2}_{1})_j}= \left\{\begin{array}{ll}
(q_{1})_{-},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} \leq 1, \\
(q_{1})_{+},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} >1.
\end{array}\right.
$$
This implies that
$$
\eta_{11}\leq C \eta_{1}\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} = \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} \| f\|_{\dot{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Finally, we estimate of \(\eta_{13}\). Let \( x \in C_{k} , ~ j \geq k+2 \), then \( | x- y|\sim |y|\), by an argument similar to used in \(\eta_{11}\), we have
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq C \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}(k-j)2^{-j(n-\mu)}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'
(\cdot)}}.
$$
Applying Lemma 6, we have
\begin{align*}
2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right\|^{(q_{2}^{3})_k}_{L^{{p_{2}(\cdot)}}},
\end{align*}
where
$$
{(q^{3}_{2})_k}= \left\{\begin{array}{ll}
(q_{2})_{-},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} \leq 1, \\
(q_{2})_{+},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1}\sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} >1.
\end{array}\right.
$$
Therefore, applying Lemma 4 and Lemma 5, we get
\begin{align*}
&2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{-j(n-\mu)}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}
\right]^{(q^{3}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{-j(n-\mu)}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} 2^{-\mu k}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{3}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{(j-k)\mu}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} 2^{-jn}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{3}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{(j-k)\mu}(k-j)
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}}{\|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}}}
\right]^{(q^{3}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}(k-j)
2^{(k-j)(n\delta_{2}-\mu)}\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}
\right]^{(q^{3}_{2})_k}.
\end{align*}
Notice that \(f \in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+},\lambda_{1}}(\mathbb{R}^{n})}\), \((\lambda_{2})/(q_{2})_{+}=(\lambda_{1})/(q_{1})_{-}\)
and \(\alpha_{+}>\mu- n\delta_{2}+(\lambda_{1})/(q_{1})_{-}\), we have
\begin{align*}
&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum_{|\gamma|=m }\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=k+2}^{\infty}(k-j)2^{(k-j)(n\delta_{2}-\mu+\alpha_{+})}
\left\|\left(\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q^{3}_{1})j}}_{L^\frac{p_{1}(\cdot)}
{q_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{3}_{2})_k}
\end{align*}
\begin{align*}
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=k+2}^{\infty}(k-j) 2^{(k-j)(n\delta_{2}-\mu+\alpha_{+}})
\left( 2^{j\lambda}2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right)^{\frac{1}{(q^{3}_{1})j}} \right]^{(q^{3}_{2})_k}\\
&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \\&\qquad\times\left[ \sum\limits_{j=k+2}^{\infty}(k-j) 2^{(k-j)( n\delta_{2}-\mu -(\lambda_{1})/(q_{1})_{-} +\alpha_{+})}
\left( 2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right)^{\frac{1}{(q^{3}_{1})j}} \right]^{(q^{3}_{2})_k}\\
&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \left[ \sum\limits_{j=k+2}^{\infty}(k-j) 2^{(k-j)( n\delta_{2}-\mu -(\lambda_{1})/(q_{1})_{-} -\alpha_{+})}
\right]^{(q^{3}_{2})_k} \leq C,
\end{align*}
where
$$
{(q^{3}_{1})_j}= \left\{\begin{array}{ll}
(q_{1})_{-},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} \leq 1, \\
(q_{1})_{+},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} >1.
\end{array}\right.
$$
This implies that
$$
\eta_{13}\leq C \eta_{1}\sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})} = \sum_{|\gamma|=m}\|D^{\gamma}A\|_{BMO(\mathbb{R}^{n})}
\| f\|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
The proof of Theorem 1 is finished.
Theorem 2. Suppose that \({D^{\gamma}A}\in \dot{\wedge}_{\beta}(|\gamma|=|m|, m\geq1)\). Let \( 0< \mu< n,\Omega\in L^{r}(s^{n-1})\), \(q_{1}(\cdot),~q_{2}(\cdot) \in \mathcal{P}(\mathbb{R}^{n})\) with \( (q_{2})_{-} \geq (q_{1})_{+}\), and \(p_{1}(\cdot), p_{2}(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\) satisfy \(0< \mu+\beta\leq\frac{n}{( p_{1})_{+}}\), \(\frac{1}{p_{1}(x)} - \frac{1}{p_{2}(x)} = \frac{\mu+\beta}{n}\). If \((\lambda_{1})(q_{2})_{+}=(\lambda_{2})(q_{1})_{-}\) and \((\mu+\beta)- n\delta_{2}+(\lambda_{1})/(q_{1})_{-}< \alpha_{+}< n\delta_{1}+\frac{n}{r}+(\lambda_{1})/(q_{1})_{-} \). Then \(T_{\Omega,\mu}^{A}\) is bounded from \({MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+}, \lambda_{1}}(\mathbb{R}^{n})\) to \({MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot), \lambda_{2}}(\mathbb{R}^{n})\).
Proof.
Let \({D^{\gamma}A}\in \dot{\wedge}_{\beta}(\mathbb{R}^{n})\), \(f \in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+},\lambda_{1}}(\mathbb{R}^{n})}\), we write
$$
f(x) = \sum_{j=0}^{\infty}f(x)\chi_{j}= {\sum_{j=0}^{ \infty}} f_{j}(x).
$$
By the definition of \( {{MK}_{q(\cdot),p(\cdot)}^{\alpha(\cdot),\lambda}(\mathbb{R}^{n})}\), we have
$$
\left\|T^{A}_{\Omega, \mu} (f)\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}=
inf \left\{ \eta> 0 : \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega , \mu} (f)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\}.
$$
For any \(k_{0}\in z\), we see that
\begin{eqnarray*}
&2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega, \mu} (f)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{\infty} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{21}+\eta_{22}+\eta_{23}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&\leq 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{21}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}+2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{22}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&
+2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega, \mu} (f_{j})\chi_{k}|}{\eta_{23}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}},
\end{eqnarray*}
where
\begin{align*}
{\eta_{21}} &= \left\|\sum\limits_{j=0}^{k-2}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})} \\
&=\inf \left\{ \eta> 0 : \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\},
\end{align*}
\begin{align*}
{\eta_{22}} &= \left\|\sum\limits_{k-1}^{k+1}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}\\
&=\inf \left\{ \eta> 0 : \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\},
\end{align*}
\begin{align*}
{\eta_{23}} &= \left\|\sum\limits_{j=k+2}^{\infty}T^{A}_{\Omega, \mu} (f_{j})\chi_{k}\right \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}\\
&=\inf \left\{ \eta> 0: \sup_{k_{0}\in z}{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}} \left\| \left( \frac{2^{k\alpha(\cdot)}|
\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j})\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\leq 1\right\}.
\end{align*}
And \({\eta} = {\eta_{21}} +{\eta_{22}}+{\eta_{23}}\), thus
$$
{2^{-k_{0}\lambda_{2}}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}| T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}} \leq C.
$$
So, we have
$$
\|T^{A}_{\Omega , \mu} (f)\chi_{k} \|_{{MK}_{q_{2}(\cdot),p_{2}(\cdot)}^{\alpha(\cdot),\lambda_{2}}(\mathbb{R}^{n})}
\leq C \eta \leq C [ \eta_{21} +\eta_{22}+\eta_{23}].
$$
Hence
$$
\eta_{21}, \eta_{22},\eta_{23} \leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \|f\|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Denote \( \eta_{1} =\| f \|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})} \).
Now we consider \({\eta_{22}}\) firstly. Noting that \(T_{\Omega,\mu}^{A}\) is bounded on \(L^{p(\cdot)}\) ( Theorem 5 in [14]), as argued about
\(\eta_{12}\) in proof of Theorem 1, we can get
$$
2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k-1}^{k+1} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}
{q_{2}(\cdot)}}} \leq C.
$$
This implies that
$$
\eta_{22}\leq C \eta_{1}\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \| f\|_{\dot{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Next, we consider \({\eta_{21}}\). Let \( x \in C_{k}\), \(j \leq k-2 \), then \( | x- y|\sim |x|\), we get
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq \int_{ C_{j}}\frac{|\Omega( x-y )f_{j}(y)|}{|x -y|^{n-\mu+m}}|R_{m+1}(A;x,y)|\mathrm{d}y.
$$
By Lemma 9, and applying Hölder's inequality, we have
\begin{align*}
|T^{A}_{\Omega,\mu}f_{j} (x)|&\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \int_{ C_{j}}\frac{|\Omega( x-y )f_{j}(y)|}{|x -y|^{n-(\mu+\beta)}}\mathrm{d}y\\
&\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}\|f_{j}\|_{L^{p_{1}(\cdot)}}
\left\|\frac{\Omega( x-y )}{|x -y|^{n-(\mu+\beta)}} \chi_{j}\right\|_{L^{{p'}_{1}(\cdot)}}.
\end{align*}
In the same way as we estimated \(L_{1}\) in Theorem 1, we obtain that
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}
2^{-k(n-(\mu+\beta))} 2^{(k-j)\frac{n}{r}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}}.
$$
Applying Lemma 6, we get that
$$
2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}
{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right\|^{(q_{2}^{1})_k}_{L^{{p_{2}(\cdot)}}}.
$$
Where
$$
{(q^{1}_{2})_k}= \left\{\begin{array}{ll}
(q_{2})_{-},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} \leq 1, \\
(q_{2})_{+},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} >1.
\end{array}\right.
$$
Since \(\frac{1}{p_{1}(\cdot)}-\frac{1}{p_{2}(\cdot)}=\frac{\mu+\beta}{n}\), then
\(\|\chi_{B}\|_{L^{p_{2}(\cdot)}}\leq C 2^{-k(\mu+\beta)} \|\chi_{B}\|_{L^{p_{1}(\cdot)}}\) (see[22], P. 370). Therefore, applying Lemma 4 and Lemma 5, we deduce that
\begin{align*}
&\quad2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}
{q_{2}(\cdot)}}}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{-k(n-(\mu+\beta))}2^{(k-j)\frac{n}{r}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}
\right]^{(q^{1}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{-k(n-(\mu+\beta))}2^{(k-j)\frac{n}{r}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} 2^{-k(\mu+\beta)}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{1}_{2})_k}
\\
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=-\infty}^{\infty} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{(k-j)\frac{n}{r}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_j}\|_{L^{p_{1}'(\cdot)}}}{\|\chi_{B_k}\|_{L^{p_{1}'(\cdot)}}}
\right]^{(q^{1}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=0}^{k-2}2^{(j-k)(n\delta_{1}-\frac{n}{r}})
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}
\right]^{(q^{1}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=0}^{k-2} 2^{(j-k)(n\delta_{1}-\frac{n}{r}-\alpha_{+}})
\left\|\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{1}_{2})_k}
\end{align*}
\begin{align*}
\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=0}^{k-2} 2^{(j-k)(n\delta_{1}-\frac{n}{r}-\alpha_{+}})
\left\|\left(\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q^{1}_{1})j}}_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{1}_{2})_k}.
\end{align*}
Notice that \(f \in {{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha_{+},\lambda_{1}}(\mathbb{R}^{n})}\), \((\lambda_{2})/(q_{2})_{+}=(\lambda_{1})/(q_{1})_{-}\)
and \(\alpha_{+}< n\delta_{1}+\frac{n}{r}+(\lambda_{1})/(q_{1})_{-}\). In the same way as we estimated \( \eta_{11}\) in Theorem 1, we obtain that
\begin{align*}
&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|
_{L^{\frac{p_{2}(\cdot)}{q_{2}(\cdot)}}}\\
&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \left[ \sum\limits_{j=0}^{k-2} 2^{(j-k)((\lambda_{1})/(q_{1})_{-} +n\delta_{1}-\frac{n}{r}-\alpha_{+})}\right.
\left. \times \left( 2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right)^{\frac{1}{(q^{1}_{1})j}} \right]^{(q^{1}_{2})_k}\\
&\leq C,
\end{align*}
where
$$
{(q^{1}_{1})_j}= \left\{\begin{array}{ll}
(q_{1})_{-},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} \leq 1, \\
(q_{1})_{+},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} >1.
\end{array}\right.
$$
This implies that
$$
\eta_{21}\leq C \eta_{1}\sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} = \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \| f\|_{\dot{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Finally, we consider \(\eta_{23}\). Let \( x \in C_{k},~ j \geq k+2 \), then \( | x- y|\sim |y|\), we have
$$
|T^{A}_{\Omega,\mu}f_{j} (x)|\leq \int_{ C_{j}}\frac{|\Omega( x-y )||f_{j}(y)|}{|x -y|^{n-\mu+m}}|R_{m+1}(A;x,y)|\mathrm{d}y.
$$
Applying Lemma 10 and Hölder's inequality, then we have
\begin{align*}
|T^{A}_{\Omega,\mu}f_{j} (x)|&\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \int_{ C_{j}}\frac{|\Omega( x-y )||f_{j}(y)|}{|x -y|^{n-(\mu+\beta)}}\mathrm{d}y\\
&\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} {2^{-j(n-(\mu+\beta))}}\|f_{j}\|_{L^{p_{1}(\cdot)}}
\left\|\Omega( x-y ) \chi_{j}\right\|_{L^{{p'}_{1}(\cdot)}}\\
&\leq C \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}
{2^{-j(n-(\mu+\beta))}}\|f_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}}.
\end{align*}
From this and applying Lemma 4 and Lemma 5, we conclude that
\begin{align*}
&2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}
{q_{2}(\cdot)}}}
\leq 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right\|^{(q_{2}^{2})_k}_{L^{{p_{2}(\cdot)}}}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{2^{-j(n-(\mu+\beta))}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}
\right]^{(q^{2}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{2^{-j(n-(\mu+\beta))}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{2}(\cdot)}}
\right]^{(q^{2}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{2^{-j(n-(\mu+\beta))}}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} 2^{-k(\mu+\beta)}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{2}_{2})_k}\end{align*}
\begin{align*}
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{(j-k)(\mu+\beta)}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} 2^{-jn}\|\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}
\right]^{(q^{2}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}2^{(j-k)(\mu+\beta)}
\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}}{\|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}}}
\right]^{(q^{2}_{2})_k}\\
&\leq C 2^{-k_{0}\lambda_{2}}\sum\limits_{k=0}^{k_{0}} \left[ 2^{k\alpha(\cdot)}\sum\limits_{j=k+2}^{\infty}
2^{(k-j)(n\delta_{2}-(\mu+\beta))}\left\|\frac{|f_{j}|}{\eta_{1}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}
\right]^{(q^{2}_{2})_k},
\end{align*}
where
$$
{(q^{2}_{2})_k}= \left\{\begin{array}{ll}
(q_{2})_{-},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} \leq 1, \\
(q_{2})_{+},\qquad \left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=0}^{k-2} T^{A}_{\Omega, \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{{p_{2}(\cdot)}}} >1.
\end{array}\right.
$$
Notice that \(f \in {{MK}_{q_{1}(\cdot),~p_{1}(\cdot)}^{\alpha_{+},~\lambda_{1}}(\mathbb{R}^{n})}\), \((\lambda_{2})/(q_{2})_{+}=(\lambda_{1})/(q_{1})_{-}\)
and \(\alpha_{+}>(\mu+\beta)- n\delta_{2}+(\lambda_{1})/(q_{1})_{-}\), by the same argument as that of \(\eta_{13}\), we have
\begin{align*}
& 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{k_{0}}\left\| \left( \frac{2^{k\alpha(\cdot)}|\sum\limits_{j=k+2}^{\infty} T^{A}_{\Omega , \mu} (f_{j}) \chi_{k}|}{\eta_{1} \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}}}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p_{2}(\cdot)}
{q_{2}(\cdot)}}}\\
&\leq C 2^{-k_{0}\lambda_{2}} \sum\limits_{k=0}^{\infty} \left[ \sum\limits_{j=k+2}^{\infty}2^{(k-j)(n\delta_{2}-(\mu+\beta)+\alpha_{+})}
\left\|\left(\frac{ 2^{j\alpha_{+}}|f\chi_{k}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q^{2}_{1})j}}_{L^\frac{p_{1}(\cdot)}
{q_{1}(\cdot)}(\mathbb{R}^{n})} \right]^{(q^{2}_{2})_k}\\
&\leq C \sum\limits_{k=0}^{\infty}2^{(k-k_{0})\lambda_{2}} \left[ \sum\limits_{j=k+2}^{\infty}\ 2^{(k-j)( n\delta_{2}-(\mu+\beta)-(\lambda_{1})/(q_{1})_{-} +\alpha_{+})}\right.\\
&\left. \times \left( 2^{-j\lambda}\sum\limits^{j}_{n=0} \left\|\left(\frac{ 2^{n\alpha_{+}}|f\chi_{n}|}{\eta_{1}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{p_{1}(\cdot)}{q_{1}(\cdot)}(\mathbb{R}^{n})} \right)^{\frac{1}{(q^{2}_{1})j}} \right]^{(q^{2}_{2})_k}\\
&\leq C,
\end{align*}
where
$$
{(q^{2}_{1})_j}= \left\{\begin{array}{ll}
(q_{1})_{-},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} \leq 1, \\
(q_{1})_{+},\qquad \left\| \frac{2^{j\alpha_{+}}| f_{ \chi_{j}}|}{\eta_{1}}\right\|_{L^{{p_{1}(\cdot)}}} >1.
\end{array}\right.
$$
This implies that
$$
\eta_{23}\leq C \eta_{1}\sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} = \sum\limits_{|\gamma|=m}\|D^{\gamma}A\|_{\dot{\wedge}_{\beta}} \| f\|_{{MK}_{q_{1}(\cdot),p_{1}(\cdot)}^{\alpha(\cdot),\lambda_{1}}(\mathbb{R}^{n})}.
$$
Then, the proof of Theorem 2 is finished.
Acknowledgments
The author wishes to express profound gratitude to the reviewers for their useful comments on the manuscript.Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Competing Interests
The author(s) do not have any competing interests in the manuscript.References
- Coifman, R. R., & Meyer, Y. (1975). On commutators of singular integrals and bilinear singular integrals. Transactions of the American Mathematical Society, 212, 315-331. [Google Scholor]
- Wu, Q., & Yang, D. (2002). On fractional multilinear singular integrals. Mathematische Nachrichten, 239(1), 215-235. [Google Scholor]
- Tao, X., & Wu, Y. (2012). BMO estimate for multilinear fractional integrals. Analysis in Theory and Applications, 28, 224-231.
- Ding, Y., Lu, S. Z., & Yabuta, K. (2006). Multilinear singular and fractional integrals. Acta Mathematica Sinica, 22(2), 347-356.[Google Scholor]
- Li, Q., & Tao, S. (2013). Boundedness of multilinear commutators with rough kernels on Morrey-Herz spaces. Analysis in Theory and Applications 39, ,289-307. [Google Scholor]
- Kováčik, O., & Rákosník, J. (1991). On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Mathematical Journal, 41(4), 592-618.[Google Scholor]
- Cruz-Uribe, D. V., & Fiorenza, A. (2013). Variable Lebesgue spaces: Foundations and harmonic analysis. Springer Nature Switzerland.[Google Scholor]
- Wu, H., & Lan, J. (2012). The boundedness for a class of rough fractional integral operators on variable exponent Lebesgue spaces. Analysis in Theory and Applications, 28(3), 286-293.[Google Scholor]
- Diening, L., Harjulehto, P., Hästö, P., & Ruzicka, M. (2011). Lebesgue and Sobolev spaces with variable exponents. Springer Nature Switzerland. [Google Scholor]
- Wang, H., Wang, J., & Fu, Z. (2017). Morrey meets Herz with variable exponent and applications to commutators of homogeneous fractional integrals with rough kernels. Journal of Function Spaces, 2017, Article ID 1908794, 11 pages. [Google Scholor]
- Izuki, M. (2010). Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Analysis Mathematica, 36(1), 33-50. [Google Scholor]
- Abdalmonem, A., Abdalrhman, A., & Tao, S. (2018). Boundedness of fractional integral marcinkiewicz integral with variable kernel on variable Morrey-Herz Spaces. Open Journal of Mathematical Sciences, 2(1),93-114. [Google Scholor]
- Lijuan, W., & Tao, S. (2016). Parameterized Littlewood--Paley operators and their commutators on Morrey- Herz spaces with variable exponents. Turkish Journal of Mathematics, 40(1), 122-145. [Google Scholor]
- Wu, H. L., & Lan, J. C. (2013). Lipschitz estimates for fractional multilinear singular integral on variable exponent Lebesgue spaces. Abstract and Applied Analysis, 1013, Article ID 632384, 6 pages. [Google Scholor]
- Xu, J. S. (2007). The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent. Czechoslovak Mathematical Journal, 57(1), 13-27. [Google Scholor]
- Lu, Y., & Zhu, Y. (2014). Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents. Acta Mathematica Sinica, 30,1180-1194.[Google Scholor]
- Min, W., Meng, Q., & Sheng, S. (2015). Multilinear fractional integral operators on Morrey spaces with variable exponent on bounded domain. Communications in Mathematical Research, 31, 253-260. [Google Scholor]
- Wang, L., & Tao, S. (2015). Parameterized Littlewood-Paley operators and their commutators on Lebegue spaces with variable exponent. Analysis in Theory and Applications, 31, 13-24. [Google Scholor]
- Jian, T. A. N., & Liu, Z. G. (2015). Some Boundedness of Homogeneous Fractional Integrals onVariable Exponent Function Spaces. ACTA Mathematics Science (Chinese Series), 58, 310-320. [Google Scholor]
- Izuki, M. (2010). Boundedness of commutators on Herz spaces with variable exponent. Rendiconti del Circolo Matematico di Palermo, 59(2), 199-213.[Google Scholor]
- Cohen, J., & Gosselin, J. (1986). A BMO estimate for multilinear singular integrals. Illinois Journal of Mathematics, 30(3), 445-464. [Google Scholor]
- Ho, K. P. (2013). The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Mathematical Inequalities & Applications, 16, 363-373. [Google Scholor]