Open Journal of Mathematical Analysis

New inequalities based on harmonic log-convex functions

Imran Abbas Baloch\(^1\), Silvestru Sever Dragomir
Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.; (I.A.B)
Govt. College for Boys, Gulberg Higher Education Department, Punjab, Pakistan.; (I.A.B)
Mathematics, College of Engineering and Science, Victoria University, Melbourne City, Australia.; (S.S.D)
\(^1\)Corresponding Author: iabbasbaloch@gmail.com

Abstract

Harmonic convexity is very important new class of non-convex functions, it gained prominence in the Theory of Inequalities and Applications as well as in the rest of Mathematics’s branches. The harmonic convexity of a function is the basis for many inequalities in mathematics. Furthermore, harmonic convexity provides an analytic tool to estimate several known definite integrals like \(\int_{a}^{b} \frac{e^{x}}{x^{n}}dx\), \(\int_{a}^{b} e^{x^{2}} dx\), \(\int_{a}^{b} \frac{\sin x}{x^{n}}dx\) and \(\int_{a}^{b} \frac{\cos x}{x^{n}}dx\) \(\forall n \in \mathbb{N}\), where \(a,b \in (0,\infty)\). In this article, some un-weighted inequalities of Hermite-Hadamard type for harmonic log-convex functions defined on real intervals are given.

Keywords:

Harmonic convex functions, Hermite-Hadamard type inequalities, integral inequalities, harmonic log-convex functions.

1. Introduction

During the investigation of convexity, many researchers founded new classes of functions which are not convex in general. Some of them are the so called harmonic convex functions [1], harmonic \((\alpha, m)\)-convex functions [2], harmonic \((s,m)\)-convex functions [4, 5] and harmonic \((p,(s,m))\)-convex functions [3]. For a quick glance on importance of these classes and applications, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and references therein.

Definition1. A function \(f:I \subseteq \mathbb{R}\backslash \{0\} \rightarrow \mathbb{R}\) is said to be harmonic convex function on \(I\) if

\begin{equation}\label{IE1} f\left( \frac{xy}{tx+(1-t)y}\right) \leq tf\left( y\right) +\left( 1-t\right) f\left( x\right) \end{equation}
(1)
holds for all \(x,y\in I\) and \(t\in \left[ 0,1\right] \). If the inequality is reversed, then \(f\) is said to be harmonic concave.

In [5, 20], Baloch et al. and Noor et al. also gave the definition of harmonic log-convex functions as follow:

Definition 2. A function \(f:I \subseteq \mathbb{R}\backslash \{0\} \rightarrow (0,\infty)\) is said to be harmonic log-convex function on \(I\) if

\begin{equation}\label{IE2} f\left( \frac{xy}{tx+(1-t)y}\right) \leq [f\left( x\right)]^{1 - t} [f\left( y\right)]^{t} \end{equation}
(2)
% holds for all \(x,y\in I\) and \(t\in \left[ 0,1\right] \). If the inequality is reversed, then \(f\) is said to be harmonic log-concave.

In [20], Noor et al. proved the following result for harmonic log-convex functions:

Theorem 3. Let \(I \subseteq \mathbb{R}\backslash \{0\}\) be an interval. If \(f: I \rightarrow (0,\infty)\) is harmonic convex function, then

\begin{equation}\label{IE3} f \left( \frac{2ab}{a + b} \right) \leq \exp \left[\frac{ab}{b - a} \int_{a}^{b}\log \left(\frac{f(x)}{x^{2}}\right)dx \right] \leq \sqrt{f(a) f(b)} \end{equation}
(3)
for all \(a, b \in I\) and \( a < b\).

Here, motivated by the above result we study the class of harmonic log-convex functions and present some new inequalities for this class of functions.

2. Main Results

The following result holds.

Theorem 4. Let \(f:I \subseteq \mathbb{R} \backslash \{0\} \rightarrow (0,\infty)\) be harmonic log-convex function. Then, for every \(t \in [0,1]\), we have

\begin{eqnarray}\label{MI1} \int_{a}^{b}f(x)dx &\geq& \int_{a}^{b}[f(x)]^{1 - t} \left[\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t}dx \nonumber \\ &\geq& \left\{ \begin{array}{ll} (1 - 2t) a^{2}b^{2}\int_{\frac{ab}{ta + (1 - t)b}}^{\frac{ab}{(1 - t)a + tb}} \frac{[(a + b)tu - ab]^{2(t - 1)}}{[ab - (1 - t)(a + b)u]^{2t}}f(u)du & \mbox{if } t \neq \frac{1}{2}; \\ \frac{2ab}{a + b}\ln(\frac{b}{a}) f\left( \frac{2ab}{a + b} \right) & \mbox{if } t = \frac{1}{2}. \end{array} \right. \end{eqnarray}
(4)

Proof. The cases \(t = 0, \frac{1}{2}, 1\) are obvious. Assume that \(t \in (0,1) \backslash \left\{\frac{1}{2}\right\}.\) By the harmonic log-convexity of \(f\) we have

\begin{eqnarray}\label{MI2} [f(x)]^{1 - t} \left[f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t} &\geq& f\left( \frac{\frac{abx^{2}}{(a + b)x - ab}}{tx + (1 - t)\frac{abx}{(a + b)x - ab}} \right) f\left( \frac{abx}{(a + b)tx - (2t - 1)ab} \right) \end{eqnarray}
(5)
for any \(x \in [a,b]\). This allows that
\begin{equation}\label{MI3} [f(x)]^{1 - t} \left[\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t} \geq \frac{a^{2t}b^{2t}}{[(a + b)x - ab]^{2t}}f\left( \frac{abx}{(a + b)tx - (2t - 1)ab} \right). \end{equation}
(6)
Integrating the inequality (6) over \(x\) on \([a,b]\), we have \begin{equation*} \int_{a}^{b}[f(x)]^{1 - t} \left[\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t}dx \geq \int_{a}^{b}\frac{a^{2t}b^{2t}}{[(a + b)x - ab]^{2t}}f\left( \frac{abx}{(a + b)tx - (2t - 1)ab} \right)dx. \end{equation*} Since \(t \neq \frac{1}{2},\) then \(u = \frac{abx}{(a + b)tx - (2t - 1)ab}\) is the change of variable with \( dx = \frac{(1 - 2t) a^{2}b^{2}}{[(a + b)tu - ab]^{2}}du\). For \(x = a\), we get \(u = \frac{ab}{ta + (1 - t)b}\) and for \(x = b\), we get \(u = \frac{ab}{(1 - t)a + tb}.\) Therefore, $$ \int_{a}^{b}\frac{a^{2t}b^{2t}}{[(a + b)x - ab]^{2t}}f\left( \frac{abx}{(a + b)tx - (2t - 1)ab} \right)dx= (1 - 2t) a^{2}b^{2}\int_{\frac{ab}{ta + (1 - t)b}}^{\frac{ab}{(1 - t)a + tb}} \frac{[(a + b)tu - ab]^{2(t - 1)}}{[ab - (1 - t)(a + b)u]^{2t}}f(u)du, $$ and hence the second inequality (4) is proved. By the Holder integral inequality for \(p = \frac{1}{1 - t}\), \(q = \frac{1}{t}\), we have \begin{eqnarray*} &&\int_{a}^{b}[f(x)]^{1 - t} \left[\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t}dx\\ &&\leq \left(\int_{a}^{b}\left([f(x)]^{1 - t}\right)^{\frac{1}{1 - t}}dx\right)^{1 - t} \left(\int_{a}^{b}\left(\left[\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)\right]^{t}\right)^{\frac{1}{t}}dx\right)^{t}\\ &&=\left(\int_{a}^{b}f(x)dx\right)^{1 - t} \left(\int_{a}^{b}\frac{a^{2}b^{2}}{[(a + b)x - ab]^{2}}f\left(\frac{abx}{(a + b)x - ab}\right)dx\right)^{t}\\ &&=\left(\int_{a}^{b}f(x)dx\right)^{1 - t} \left(\int_{a}^{b}f(x)dx\right)^{t}=\int_{a}^{b}f(x)dx.\end{eqnarray*} This proves the first part of inequality (4).

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. İşcan, İ. (2014). Hermite-Hadamard type inequaities for harmonically convex functions. Hacettepe Journal of Mathematics and Statistic 43(6), 935-942. [Google Scholor]
  2. İşcan, İ. (2016). Hermite-Hadamard type inequalities for harmonically \((\alpha,m)\)-convex functions. Hacettepe Journal of Mathematics and Statistics, 45(2), 381-390.[Google Scholor]
  3. Baloch, I. A., İşcan, İ., & Dragomir, S. S. (2016). Fejer type inequalities for harmonically \((s,m)\)-convex functions. International Journal of Analysis and Applications, 12(2), 188-197. [Google Scholor]
  4. Baloch, I. A., & İşcan, İ. (2016). New Hermite-Hadamard and Simpson type inequalities for harmonically \((s,m)\)-convex functions in Second Sense. International Journal of Analysis, Article ID 672675. [Google Scholor]
  5. Baloch, I. A., & İşcan, İ. (2017). Some Hermite-Hadamard type integral inequalities for harmonically \((p,(s, m))\)-convex functions. Journal of Inequalities & Special Functions, 8(4), 65-84. [Google Scholor]
  6. Dragomir, S. S., Pečarić, J., & Persson, L. E. (1995). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21(3), 335-341. [Google Scholor]
  7. Dragomir, S. S. (2015). Inequalities of Jensen type for HA-convex functions. Fasciculi Mathematici, 55(1), 35-52.[Google Scholor]
  8. Dragomir, S. S. (2006). Bounds for the normalised Jensen functional. Bulletin of the Australian Mathematical Society, 74(3), 471-478. [Google Scholor]
  9. Dragomir, S. S., Pečarić, J., & Persson, L. E. (1995). Properties of some functionals related to Jensen's inequality. Acta Mathematica Hungarica, 69(4), 129-143. [Google Scholor]
  10. Fang, Z. B., & Shi, R. (2014). On the \((p,h)\)-convex function and some integral inequalities. Journal of Inequalities and Applications, 2014(1), 45. [Google Scholor]
  11. Hazy, A. (2011). Bernstein-Doetsch-type results for \(h\)-convex functions. Mathematical Inequalities & Applications, 14(3), 499-508. [Google Scholor]
  12. Jensen, J. L. W. V. (1906). Sur les fonctions convexes et ingalits entre les valeurs moyemes. Acta Mathematica 30, 175-193.
  13. Mercer, A. M. (2003). A variant of Jensen's inequality. Journal of Inequalities in Pure and Applied Mathematics , 4(4), Article ID, 73. [Google Scholor]
  14. Niculescu, C., & Persson, L. E. (2006). Convex functions and their applications. New York: Springer. [Google Scholor]
  15. Olbrys, A. (2015). On separation by \(h\)-convex functions. Tatra Mountains Mathematical Publications, 62(1), 105-111. [Google Scholor]
  16. Peajcariaac, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Academic Press. [Google Scholor]
  17. Varo\v{s}anec, S. (2007). On \(h\)-convexity. Journal of Mathematical Analysis and Applications, 326(1), 303-311. [Google Scholor]
  18. Agarwal, R. P., & Dragomir, S. S. (1998). The property of supermultiplicity for some classical inequalities and applications. Computers & Mathematics with Applications, 35(6), 105-118. [Google Scholor]
  19. Baloch, I. A., De La Sen, M., & İşcan, İ. (2019). Characterizations of Classes of Harmonic Convex Functions and Applications. International Journal of Analysis and Applications, 17(5), 722-733. [Google Scholor]
  20. Noor, M. A. Noor., K. I., & Awan, M. U. (2014). Some characterizations of harmonically log-convex functions. Proceeding of the Jangjeon Mathematical Society, 17(1), 51-61. [Google Scholor]