Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2022.0104
Global existence and decay of solutions for p-biharmonic parabolic equation with logarithmic nonlinearity
Tugrul Cömert\(^{1,*}\) and Erhan Piskin\(^{1}\)
\(^1\) Department of Mathematics, Dicle University, 21280 Diyarbakır, Turkey.
Correspondence should be addressed to Tugrul Cömert at tugrulcomertt@gmail.com
Abstract
Keywords:
1. Introduction
In this paper, we investigate the existence of global and decay of solutions for the p-biharmonic parabolic equation with logarithmic nonlinearity
Studies of logarithmic nonlinearity have a long history in physics as it occurs naturally in different areas of physics such as supersymmetric field theories, inflationary cosmology, nuclear physics, optics and quantum mechanics [1,2]. Peng and Zhou [3] studied the following heat equation with logarithmic nonlinearity
\begin{equation*} u_{t}-\Delta u_{t}=\left\vert u\right\vert ^{p-2}u\ln \left\vert u\right\vert . \end{equation*} They obtained the global existence and blow-up of solutions. Also, they discussed the upper bound of blow-up time under suitable conditions. Nhan and Truong [4] studied the following nonlinear pseudo-parabolic equation \begin{equation*} u_{t}-\Delta u_{t}-div\left( \left\vert \nabla u\right\vert ^{p-2}\nabla u\right) =\left\vert u\right\vert ^{p-2}u\ln \left\vert u\right\vert . \end{equation*} They obtained results as regard the existence or non-existence of global solutions. Also, He et al., [5] proved the decay and the finite time blow-up for weak solutions of the equation. Cao and Liu [6] studied the following nonlinear evolution equation with logarithmic source \begin{equation*} u_{t}-\Delta u_{t}-div\left( \left\vert \nabla u\right\vert ^{p-2}\nabla u\right) -k\Delta u_{t}=\left\vert u\right\vert ^{p-2}u\ln \left\vert u\right\vert . \end{equation*} They established the existence of global weak solutions. Moreover, they considered global boundedness and blowing-up at \(\infty \).Wang and Liu [7] considered the following p-biharmonic parabolic equation with the logarithmic nonlinearity
\begin{equation*} u_{t}+\Delta \left( \left\vert \Delta u\right\vert ^{p-2}\Delta u\right) =\left\vert u\right\vert ^{q-2}u\ln \left\vert u\right\vert \end{equation*} They studied existence of weak solutions by potential well method, blow up at finite time by concative method.Recently some authors studied the hyperbolic and parabolic equation with logarithmic source term (see [8,9,10,11,12,13,14,15,16,17,18,19,20]). This paper is organized as follows: In the §2, we introduce some lemma which will be needed later. In §3, under some conditions, we obtain the unique global weak solution of the problem (1). Meanwhile, we find that the solution is decay polynomially.
It is necessary to note that prence of the logarithmic nonlinearity causes some difficulties in deploying the potantial well method. In order to handle this situation we need the following logarithmic Sobolev inequality which was introduced by ([4,21,22]).
Proposition 1. Let \(u\) be any function in \(H^{1}\left( \mathbb{R} ^{n}\right) \) and \(\mu >0\) be any number. Then
2. Preliminaries
For simplicity, we denote \begin{equation*} \text{ }\left\Vert u\right\Vert _{s}=\left\Vert u\right\Vert _{L^{s}(\Omega )},\text{ }\left\Vert u\right\Vert _{W_{0}^{2,p}\left( \Omega \right) }=\left\Vert u\right\Vert _{2,s}=\left( \left\Vert \Delta u\right\Vert _{s}^{s}+\left\Vert \nabla u\right\Vert _{s}^{s}+\left\Vert u\right\Vert _{s}^{s}\right) ^{\frac{1}{s}}, \end{equation*} for \(1< s< \infty \) (see [23,24], for details). We also use notation \(X_{0}\) to denote \(\left( W_{0}^{1,p}\left( \Omega \right) \cap W^{2,p}\left( \Omega \right) \right) \backslash \left\{ 0\right\} \) and \(W^{-2,p^{\prime }}\left( \Omega \right) \) to denote the dual space of \(W^{2,s}\left( \Omega \right) \), where \( s^{\prime }\) is Hölder conjugate functional of \(s>1.\)Let us introduce the energy functional \(J\) and Nehari functional \(I\) defined on \(X_{0}\) as follow
The local existence of the weak solutions can be obtained via the standard parabolic theory. It is easy to obtain the following equality
Lemma 1. Let \(u\in X_{0}\). Then we possess
- (i) \(\lim_{\lambda \to 0^{+}}j(\lambda )=0\) and \(\lim_{\lambda \to +\infty }j(\lambda )=-\infty ;\)
- (ii) there is a unique \(\lambda ^{\ast }>0\) such that \(j^{\prime }(\lambda ^{\ast })=0;\)
- (iii) \(j(\lambda )\) is increasing on \((0,\lambda ^{\ast }),\) decreasing on \( (\lambda ^{\ast },+\infty )\) and attains the maximum at \(\lambda ^{\ast };\)
- (iv) \(I(\lambda u)>0\) for \(0< \lambda < \lambda ^{\ast },\) \(I(\lambda u)< 0\) for \(\lambda ^{\ast }< \lambda < +\infty \) and \(I(\lambda ^{\ast }u)=0.\)
Proof. For \(u\in X_{0},\) by the definition of \(j,\) we get
Next we denote
\begin{equation*} R:=\left( \frac{p^{2}e}{n\mathcal{L} _{p}}\right) ^{n/p^{2}}. \end{equation*}Lemma 2.
- (i) if \(I(u)>0\) then \(0< \left\Vert u\right\Vert _{p}< R,\)
- (ii) if \(I(u)< 0\) then \(\left\Vert u\right\Vert _{p}>R,\)
- (iii) if \(I(u)=0\) then \(\left\Vert u\right\Vert _{p}\geq R.\)
Proof. By the definition of \(I(u)\), we get \begin{eqnarray*} I(u) &=&\left\Vert \Delta u\right\Vert _{p}^{p}-\int\nolimits_{\Omega }\left\vert u\right\vert ^{q}\ln \left\vert u\right\vert dx \\ &\geq &\left\Vert \Delta u\right\Vert _{p}^{p}-\int\nolimits_{\Omega }\left\vert u\right\vert ^{p}\left( \ln \frac{\left\vert u\right\vert }{ \left\Vert u\right\Vert _{p}}+\ln \left\Vert u\right\Vert _{p}\right) dx \\ &\geq &\left( 1-\frac{\mu }{p}\right) \left\Vert \Delta u\right\Vert _{p}^{p}+\left( \frac{n}{p^{2}}\ln \left( \frac{p\mu e}{n\mathcal{L} _{p}} \right) -\ln \left\Vert u\right\Vert _{p}\right) \left\Vert u\right\Vert _{p}^{p}. \end{eqnarray*} Choosing \(\mu =p,\) we have \begin{equation*} I(u)\geq \left( \frac{n}{p^{2}}\ln \left( \frac{p^{2}e}{n\mathcal{L} _{p}} \right) -\ln \left\Vert u\right\Vert _{p}\right) \left\Vert u\right\Vert _{p}^{p}. \end{equation*} (i) if \(I(u)>0,\) then \begin{equation*} \ln \left\Vert u\right\Vert _{p}< \ln \left( \frac{p^{2}e}{n\mathcal{L} _{p}} \right) ^{\frac{n}{p^{2}}}, \end{equation*} that's mean \begin{equation*} \left\Vert u\right\Vert _{p}< \left( \frac{p^{2}e}{n\mathcal{L} _{p}}\right) ^{\frac{n}{p^{2}}}=R, \end{equation*} and (ii) if \(I(u)< 0,\) we obtain \begin{equation*} \left\Vert u\right\Vert _{p}>\left( \frac{p^{2}e}{n\mathcal{L} _{p}}\right) ^{\frac{n}{p^{2}}}=R, \end{equation*} property (iii) we can argue similarly the proof of (ii).
The proof of lemma is complete.
Lemma 3. [25] For any \(u\in W_{0}^{1,p}(\Omega )\), \(p\geq 1\), \(r\geq 1\) and \(p_{\ast } =\frac{np}{n-p}\), the inequality \begin{equation*} \left\Vert u\right\Vert _{q}\leq C\left\Vert \nabla u\right\Vert _{p}^{\theta }\left\Vert u\right\Vert _{r}^{1-\theta }, \end{equation*} is valid, where \begin{equation*} \theta =\left( \frac{1}{r}-\frac{1}{q}\right) \left( \frac{1}{n}-\frac{1}{p} + \frac{1}{r}\right) ^{-1}, \end{equation*} and for \(p\geq n=1,\) \(r\leq q\leq \infty ;\) for \(n>1\) and \(p< n,\) \(q\in \lbrack r,p_{\ast }]\) if \(r< p_{\ast }\) and \(q\in \lbrack p_{\ast },r]\) if \( r\geq p_{\ast }\) for \(p=n>1,\) \(r\leq q\leq \infty ;\) for \(p>n>1,\) \(r\leq q\leq \infty .\)
Here, the constant \(C\) depends on \(n,p,q\) and \(r.\)
Lemma 4. [26] Let \(f:R^{+}\to R^{+}\) be a nonincreasing function and \(\sigma \) is a nonnegative constant such that \begin{equation*} \int\nolimits_{t}^{+\infty }f^{1+\sigma }(s)ds\leq \frac{1}{\omega } f^{\sigma }(0)f(t),\text{ }\forall t\geq 0. \end{equation*} Hence
- (a) \(f(t)\leq f(0)e^{1-\omega t},\) for all \(t\geq 0,\) whenever \(\sigma =0,\)
- (b) \(f(t)\leq f(0)\left( \frac{1+\sigma }{1+\omega \sigma t}\right) ^{\frac{1 }{\sigma }},\) for all \(t\geq 0,\) whenever \(\sigma >0.\)
3. Main results
Now as in ([4]), we introduce the follows sets: \begin{eqnarray*} \mathcal{W}_{1} &=&\{u\in X_{0}:J(u)< d\},\text{ }\mathcal{W}_{2}=\{u\in X_{0}:J(u)=d\},\text{ }\mathcal{W}=\mathcal{W}_{1}\cup \mathcal{W}_{2}, \\ \mathcal{W}_{1}^{+} &=&\{u\in \mathcal{W}_{1}:I(u)>0\},\text{ }\mathcal{W} _{2}^{+}=\{u\in \mathcal{W}_{2}:I(u)>0\},\text{ }\mathcal{W}^{+}=\mathcal{W }_{1}^{+}\cup \mathcal{W}_{2}^{+}, \\ \mathcal{W}_{1}^{-} &=&\{u\in \mathcal{W}_{1}:I(u)< 0\},\text{ }\mathcal{W} _{2}^{-}=\{u\in \mathcal{W}_{2}:I(u)< 0\},\text{ }\mathcal{W}^{-}=\mathcal{W }_{1}^{-}\cup \mathcal{W}_{2}^{-}. \end{eqnarray*}Definition 1. (Maximal Existence Time). Assume that \(u\) be weak solutions of problem (1). We define the maximal existence time \(T_{\max }\) as follows \begin{equation*} T_{\max }=\sup \{T>0:u(t)\text{ exists on }[0,T]\}. \end{equation*} Then
- (i) If \(T_{\max }< \infty ,\) we say that \(u\) blows up in finite time and \( T_{\max }\) is the blow-up time;
- (ii) If \(T_{\max }=\infty ,\) we say that \(u\) is global.
Definition 2. (Weak solution). We define a function \(u\in L^{\infty }(0,T;X_{0})\) with \( u_{t}\in L^{2}(0,T;H_{0}^{1}(\Omega ))\) to be a weak solution of problem (1) over \([0,T],\) if it satisfies the initial condition \( u(0)=u_{0}\in X_{0},\) and \begin{equation*} \left\langle u_{t},w\right\rangle +\left\langle \left\vert \Delta u\right\vert ^{p-1},\Delta w\right\rangle +\left\langle \nabla u_{t},\nabla w\right\rangle=\int\nolimits_{\Omega }u\left\vert u\right\vert ^{q-2}\ln \left( \left\vert u\right\vert \right) wdx,\text{ } \end{equation*} for all \(w\in X_{0},\) and for a.e. \(t\in \lbrack 0,T].\)
Theorem 1. (Global Existence). Let \(u_{0}\in \) \(\mathcal{W}^{+},\) \(0< J(u_{0})< M\) and \( I(u)>0.\) Then there is a unique global weak solution \(u\) of (1) satisfying \(u(0)=u_{0}.\) We have \(u(t)\in \mathcal{W}^{+}\)holds for all \( 0\leq t< +\infty ,\) and the energy estimate \begin{equation*} \int\nolimits_{0}^{t}\left\Vert u_{s}(s)\right\Vert _{H_{0}^{1}(\Omega )}^{2}ds+J(u(t))\leq J(u_{0}),\text{ }0\leq t\leq +\infty . \end{equation*} Also, the solution decay polynomially provided \(u_{0}\in \mathcal{W} _{1}^{+}. \)
Proof. The Faedo-Galerkin's methods is used. In the space \(W_{0}^{1,p}\left( \Omega \right) \cap W^{2,p}\left( \Omega \right) ,\) we take a bases \( \{w_{j}\}_{j=1}^{\infty }\) and define the finite orthogonal space \begin{equation*} V_{m}=span\{w_{1},w_{2},...,w_{m}\}. \end{equation*} Let \(u_{0m}\) be an element of \(V_{m}\) such that
Finally, we discuss the decay results.
Thanks to \(u(t)\in \mathcal{W}_{1}^{+},\) we deduce from (13) that
\begin{equation*} \left( \frac{1}{p}-\frac{1}{q}\right) \left\Vert \Delta u\right\Vert _{p}^{p}+\frac{1}{q^{2}}\left\Vert u\right\Vert _{q}^{q}\leq J(u(t))\leq J(u_{0}),\text{ }t\in \lbrack 0,T]. \end{equation*} By using (5) and Proposition 1, we put \(p\left( \frac{J(u_{0})}{M} \right) ^{\frac{p}{n}}< \mu < p,\) we know \begin{eqnarray*} I(u(t)) &\geq &\left( 1-\frac{\mu }{p}\right) \left\Vert \Delta u\right\Vert _{p}^{p}+\left( \frac{n}{p^{2}}\ln \left( \frac{p\mu e}{n\mathcal{L} _{p}} \right) -\ln \left\Vert u(t)\right\Vert _{p}\right) \left\Vert u(t)\right\Vert _{p}^{p} \\ &\geq &\left( 1-\frac{\mu }{p}\right) \left\Vert \Delta u\right\Vert _{p}^{p}+\frac{1}{p}\ln \left( \frac{M}{J(u_{0})}\left( \frac{\mu }{p} \right) ^{\frac{n}{p}}\right) \left\Vert u(t)\right\Vert _{p}^{p} \\ &=&C_{1}\left\Vert u(t)\right\Vert _{W^{2,p}\left( \Omega \right) }^{p}. \end{eqnarray*} Integrating the \(I(u(s))\) with respect to \(s\) over \((t,T)\), we obtainAcknowledgments :
The author would like to thank Prof. Charles N. Moore of Washington State University, USA for his valuable suggestions on this article.Author Contributions:
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Conflicts of Interest:
''The authors declares no conflict of interest.''Data Availability:
All data required for this research is included within this paper.Funding Information:
No funding is available for this research.References
- Bialynicki-Birula, I., & Mycielski, J. (1976). Nonlinear wave mechanics. Annals of Physics, 100(1-2) 62-93. [Google Scholor]
- Gorka, P. (2009). Logarithmic Klein-Gordon equation. Acta Physica Polonica B, 40(1), 59-66. [Google Scholor]
- Peng, J., & Zhou, J. (2021). Global existence and blow-up of solutions to a semilinear heat equation with logarithmic nonlinearity. Applicable Analysis, 100(13), 2804-2824. [Google Scholor]
- Nhan, L. C., & Truong, L. X. (2017). Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity. Computers and Mathematics with Applications, 73, 2076-2091. [Google Scholor]
- He, Y., Gao, H., & Wang, H. (2018). Blow-up and decay for a class of pseudo-parabolic p-Laplacian equation with logarithmic nonlinearity. Computers and Mathematics with Applications, 75, 459-469. [Google Scholor]
- Cao, Y., & Liu, C. (2018). Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity. Electronic Journal of Differential Equations, 2016, Article No 116. http://ejde.math.txstate.edu or http://ejde.math.unt.edu.[Google Scholor]
- Wang, J., & Liu, C. (2019). p-biharmonic parobolic equation with logarithmic nonlinearity. Electronic Journal of Differential Equations, 2019, Article No 8. http://ejde.math.txstate.edu or http://ejde.math.unt.edu. [Google Scholor]
- Cömert, T., & Piskin, E. (2021). Blow up at infinity of weak solutions for a higher-order parabolic equation with logarithmic nonlinearity. Journal of Universal Mathematics, 4(2), 118-127. [Google Scholor]
- Cömert, T., & Piskin, E. (2022). Global existence and exponential decay of solutions for higher-order parabolic equation with logarithmic nonlinearity, Miskolc Mathematical Notes, (in Press). [Google Scholor]
- Ding, H., & Zhou, J. (2021). Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Applied Mathematics and Optimization, 83, 1651-1707. [Google Scholor]
- Li, P., & Liu, C. (2018). A class of fourth-order parabolic equation with logarithmic nonlinearity, Journal of Inequalities and Applications, 2018, Article No. 328. https://doi.org/10.1186/s13660-018-1920-7. [Google Scholor]
- Li, J., & Han, Y. (2019). Global existence and finite time blow-up of solutions to a nonlocal p-Laplace equation. Mathematical Modelling and Analysis, 24(2), 195-217. [Google Scholor]
- Piskin, E., & Cömert, T. (2021). Qualitative analysis of solutions for a parabolic type Kirchhoff equation with logarithmic nonlinearity. Open Journal of Discrete Applied Mathematics, 4(2), 1-10. [Google Scholor]
- Piskin, E., & Cömert, T. (2022). Existence and decay of solutions for a parabolic type Kirchhoff equation with logarithmic nonlinearity. Euro-Tbilisi Mathematical Journal, 15(1), 111-128. [Google Scholor]
- Piskin, E., Boulaaras, S., & Irkıl N. (2021). Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity. Mathematical Methods in the Applied Sciences, 44, 5654-4672. [Google Scholor]
- Piskin, E., & Irkıl, N. (2019). Well-posedness results for a sixth-order logarithmic Boussinesq equation. Filomat, 33(13), 3985-4000. [Google Scholor]
- Piskin, E., & Yüksekkaya, H. (2021). Local existence of solutions for a p-Laplacian type equation with delay term and logarithmic nonlinearity. Tbilisi Mathematical Journal, SI(7), 77-93. [Google Scholor]
- Piskin, E., & Yüksekkaya, H. (2021). Blow-up of solutions for a logarithmic quasilinear hyperbolic equation with delay term. Journal of Mathematical Analysis, 12(1), 56-64. [Google Scholor]
- Yüksekkaya, H., Piskin, E., Boulaaras, S.M., Cherif, B.B., & Zubair, S.A. (2021). Existence, nonexistence, and stability of solutions for a delayed Plate equation with the logarithmic source. Advances in Mathematical Physics, 2021, Article ID: 8561626. https://doi.org/10.1155/2021/8561626. [Google Scholor]
- Yang, Y., Li, J., & Yu, T. (2019). Qualitative analysis of solutions for a class of Kirchhoff equation with linear strong damping term, nonlinear weak damping term and power-type logarithmic source term. Applied Numerical Mathematics, 14, 263-285. [Google Scholor]
- Chen, H., Luo, P., & Liu, G. (2015). Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. Journal of Mathematical Analysis and Applications, 422(1), 84-98. [Google Scholor]
- Gross, L. (1975). Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4), 1061-1083. [Google Scholor]
- Adams, R. A., & Fournier, J. J. F. (2003). Sobolev Spaces. Academic Press, New York. [Google Scholor]
- Piskin, E., & Okutmustur, B. (2021). An introduction to Sobolev Spaces. Bentham Science. [Google Scholor]
- Ladyzhenskaya, O. A., Solonnikov, V. A., & Uraltseva, N. N. (1967). Linear and Quasi-Linear Equations of Parabolic Type. Translations Mathematical Monographs, 23, Nauka, Moskow. [Google Scholor]
- Martinez, P. (1999). A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, 4, 419-444. [Google Scholor]