Open Journal of Mathematical Sciences
Vol. 7 (2023), Issue 1, pp. 248-268
ISSN: 2523-0212 (Online) 2616-4906 (Print)
DOI: 10.30538/oms2023.0209

Results on the growth of solutions of complex linear differential equations with meromorphic coefficients

Mansouria Saidani\(^{1,*}\), and Benharrat Belaïdi\(^1\)
\(^{1}\) Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria)

Abstract

The purpose of this paper is the study of the growth of solutions of higher order linear differential equations \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)
}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=0\) and \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=F\left( z\right),\) where \(A_{j,i}\left( z\right) \left( \not\equiv 0\right) \left(j=0,…,k-1;i=1,2\right) ,\) \(F\left( z\right) \) are meromorphic functions of finite order and \(P_{j}\left( z\right) ,Q_{j}\left( z\right) \) \((j=0,1,…,k-1;i=1,2)\) are polynomials with degree \(n\geq 1\). Under some others conditions, we extend the previous results due to Hamani and Belaïdi [1].

Keywords:

Order of growth; Hyper-order; Exponent of convergence of zero sequence; Differential equation; Meromorphic function