Long-time solutions for some mixed boundary value problems depicting motions of a class of Maxwell fluids with pressure dependent viscosity
Abstract:Closed-form expressions are established for dimensionless long-tome solutions of some mixed initial-boundary value problems. They correspond to three isothermal unsteady motions of a class of incompressible Maxwell fluids with power-law dependence of viscosity on the pressure. The fluid motion, between infinite horizontal parallel flat plates, is induced by the lower plate that applies time-dependent shear stresses to the fluid. As a check of the obtained results, the similar solutions corresponding to the classical incompressible Maxwell fluids performing same motions are recovered as limiting cases of present solutions. Finally, some characteristics of fluid motion as well as the influence of pressure-viscosity coefficient on the fluid motion are graphically presented and discussed.