EASL – Vol 3 – Issue 1 (2020) – PISRT https://old.pisrt.org Mon, 27 Apr 2020 06:10:09 +0000 en-US hourly 1 https://wordpress.org/?v=6.7 Higer-order commutators of parametrized Marcinkewicz integrals on Herz spaces with variable exponent https://old.pisrt.org/psr-press/journals/easl-vol-3-issue-1-2020/higer-order-commutators-of-parametrized-marcinkewicz-integrals-on-herz-spaces-with-variable-exponent/ Tue, 31 Mar 2020 20:31:54 +0000 https://old.pisrt.org/?p=3955
EASL-Vol. 3 (2020), Issue 1, pp. 56 - 70 Open Access Full-Text PDF
Omer Abdalrhman, Afif Abdalmonem, Shuangping Tao
Abstract: Let \(0<\rho<n\) and \(\mu_{\Omega}^{\rho}\) be the Parametrized Marcinkiewicz integrals operator. In this work, the bondedness of \(\mu_{\Omega}^{\rho}\) is discussed on Herz spaces \(\dot{K}_{p(\cdot)}^{\alpha,q(\cdot)}(\mathbb{R}^{n})\), where the two main indices are variable exponent. The boundedness of the commutators generated by BOM function, Lipschitz function and parametrized Marcinkiewicz integrals operator is also discussed.
]]>

Engineering and Applied Science Letter

Higer-order commutators of parametrized Marcinkewicz integrals on Herz spaces with variable exponent

Omer Abdalrhman\(^1\), Afif Abdalmonem, Shuangping Tao
College of Education, Shendi University, Shendi, River Nile State, Sudan.; (O.A)
Faculty of Science, University of Dalanj, Dalanj, South kordofan, Sudan.; (A.A)
College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu, P.R. China.; (S.T)

\(^{1}\)Corresponding Author: humoora@gmail.com

Abstract

Let \(0<\rho<n\) and \(\mu_{\Omega}^{\rho}\) be the Parametrized Marcinkiewicz integrals operator. In this work, the bondedness of \(\mu_{\Omega}^{\rho}\) is discussed on Herz spaces \(\dot{K}_{p(\cdot)}^{\alpha,q(\cdot)}(\mathbb{R}^{n})\), where the two main indices are variable exponent. The boundedness of the commutators generated by BOM function, Lipschitz function and parametrized Marcinkiewicz integrals operator is also discussed.

Keywords:

BMO function, Commutator, Herz space with variable exponent, Lipschitz function, Parametrized Marcinkiewicz integral operator.

1. Introduction

Suppose \(\mathbb{S}^{n-1}\) for \(n\geq 2\) is the unit sphere in \(\mathbb{R}^{n}\) equipped with the normalized Lebesgue measure \(\text{d}\sigma\). Further suppose that \(\Omega\) is a homogeneous function of degree zero on \(\mathbb{R}^{n}\) satisfying \(\Omega\in L^{1}(\mathbb{S}^{n-1})\) and

\begin{equation}\label{1.1} \int_{\mathbb{S}^{n-1}}\Omega(x')\text{d}\sigma(x')=0,\mbox{where} x'=x/|x|(x\neq 0). \end{equation}
(1)

For \(0< \rho< n\), the parametrized Marcinkiewicz integrals is defined as; $$\mu_{\Omega}^{\rho}(h)(x)=\left(\int^{\infty}_{0}|F^{\rho}_{\Omega,t}(h)(x)|^{2} \frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2},$$ where \(F^{\rho}_{\Omega,t}(h)(x)=\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h(y)\text{d}y,t>0.\)

For \(m\in\mathbb{N},b\in \mbox{BMO}(\mathbb{R}^{n}),\) the higher-order commutator of parametrized Marcinkiewicz integral is defined as;

\begin{equation}\label{notag}[b^{m},\mu^{\rho}_{\Omega}](h)(x)=\left(\int^{\infty}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}\left[b(x)-b(y)\right]^{m}h(y)\text{d}y \right|^{2}\frac{dt}{t^{2\rho+1}}\right)^{1/2},t>0. \end{equation}
(2)

It is easy to see that when \(\rho=1,\) and \(\mu^{\rho}(h)=\mu^{1}(h)\), then (2) is the classical Marcinkiewicz integral \(\mu(h)\) introduced by Stein in [1]. It has been proved in [1] that if \(\Omega\in Lip_{\gamma}(\mathbb{S}^{n-1})(0< \gamma\leq1)\) and \(\Omega\) is continuous, then the operator \(\mu(h)\) is of the type \((q,q)\mbox{for}1< q\leq2\) and of the weak type \((1,1)\). Benedek et al., [2] proved that if \(\Omega\in C^{1}(\mathbb{S}^{n-1})\), then \(\mu(h)\) it is of type \((q,q)\) for any \(1< q\leq \infty\). The \(L^{p}\) boundedness of the \(\mu(h)\) has been studied in [1, 3, 4, 5].

In 1960, Hörmander [4] introduced the parametrized Marcinkiewicz integral operators proved that if \(\Omega\in Lip_{\gamma}(\mathbb{S}^{n-1}),0< \gamma\leq1,\) then it is of strong type \((q,q)\) for \(1< q\leq2\). Sakamoto and Yabuta [6] proved the boundedness of the operator \(\mu^{\rho}(h)\) on \(L^{q}(\mathbb{R}^{n})\). Shi and Jiang [7] considered the weighted \(L^{q}-\)boundedness of parametrized Marcinkiewicz integral operator and its higher order commutator. Note that the Littlewood-paley \(g\)-function played very important roles in harmonic analysis and the parameterized Marcinkiewick integral is a special case of the Littlewood-paley \(g\)-function. Many authors studied properties of \(\mu^{\rho}(h)\) on different function spaces, for examples [8, 9, 10, 11, 12, 13, 14].

In the last three decade, the generalized Orlicz-Lebesgue spaces and the corresponding generalized Orlicz-Sobolev spaces have been extensively studied by many researchers. The variable Lebesgue spaces are special cases of generalized orliz spaces which introduced by Nakano in [15] and developed in [16, 17]. In addition, for properties of \(L^{p(\cdot)}\) spaces we refer to [18, 19, 20], and the fundamental paper of Kováčik and Rákosník [21] appeared in 1990. By virtue of this works many function spaces appeared [22, 23, 24, 25]. Recently, in 2015, Lijuan and Tao established the Herz spaces with two variable exponents \(p(\cdot),q(\cdot)\) in the paper [26].

The main purpose of this work is to discuss the boundedness of parameterized Marcinkiewicz integral and it's higher order commutators with rough kernels on Herz spaces with two variable exponents. The boundedness of higher order commutator generated by BOM function and parameterized Marcinkiewicz integral is also obtained.

Let \(\Upsilon\) be a measurable set in \(\mathbb{R}^{n}\) with \(|\Upsilon|> 0 \).

Definition 1. Let \(p(\cdot): \Upsilon \rightarrow {[1,\infty)}\) be a measurable function. The Lebesgue space with variable exponent \(L^{p(\cdot)}(\Upsilon)\) is defined by $$L^{p(\cdot)}(\Upsilon)= \left\{{ h \mbox{is measurable} : \int_{\Omega}\left(\frac{|h(x)|}{\eta}\right)^{p(x)} dx < \infty} \mbox{for some constant } \eta > 0\right\}$$

The space \(L _{loc}^{p(\cdot)} {(\Upsilon)}\) is defined by $$L_{loc}^{p(\cdot)} {(\Upsilon)}= \{ \mbox {h is measurable} : h\in {L^{p(\cdot)} {(K)}}\mbox{for all compact}K\subset{\Upsilon}\}$$ The Lebesgue spaces \(L^{p(\cdot)} {(\Upsilon)}\) is a Banach spaces with the norm defined by
\begin{equation}\label{eq1.1}\|h\|_{L^{p(\cdot)}(\Upsilon)}= \inf\left\{\eta> 0 : \int_{\Omega}\left(\frac{|h(x)|}{\eta}\right)^{p(x)}dx \leq 1\right\},\end{equation}
(3)
We denote $$p_{-}= \text{essinf} \{p(x): x \in \Upsilon\},p_{+}=\text{ess}\sup \{p(x): x \in \Upsilon\},$$ then \(\mathcal{P}(\Upsilon)\) consists of all \(p(\cdot)\) satisfying \(p_{-} > 1\) and \(p_{+} < \infty\). Let \(M\) be the Hardy-Littlewood maximal operator. We denote \(\mathcal{B}(\Upsilon)\) to be the set of all function \(p(\cdot)\in \mathcal{P}(\Upsilon)\) such that \(M\) is bounded on \(L^{p(\cdot)}(\Upsilon)\). Now, let us recall the definition of Herz spaces with variable exponents.

Definition 2.[26] Let \(\alpha \in\mathbb{R}^{n} ,q (\cdot),p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\). The homogeneous Herz space with variable exponent \(\dot{K}_{p(\cdot)}^{\alpha,q(\cdot)}(\mathbb{R}^{n})\) is defined by $$ \dot{K}_{p(\cdot)}^{\alpha, q(\cdot)}(\mathbb{R}^{n})= \{h\in {L_{loc}^{p(\cdot)}}(\mathbb{R}^{n}\backslash\{0\}) : \|h\|_{\dot{K}_{p(\cdot)}^{\alpha, q(\cdot)}(\mathbb{R}^{n})}< \infty \},$$ where \begin{eqnarray*} \|h\|_{\dot{K}_{p_{(\cdot)}}^{\alpha,q(\cdot)}(\mathbb{R}^{n})}&=&\left\| \{ 2^{k \alpha}|h\chi_{k}|\}_{k=0}^{\infty}\right\|_{l^{q(\cdot)}(L^{p(\cdot)})}=\inf\left\{ \eta> 0 : \sum\limits_{k=-\infty}^{\infty} \left\| \left( \frac{2^{k\alpha}|h\chi_{k}|}{\eta}\right)^{q(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q(\cdot)}}}\leq 1\right\}. \end{eqnarray*}

Remark 1.Let \(v\in \mathbb{N},a_{v}\geq 0,1\leq p_{v} < \infty\), then $$\sum\limits_{v=0}^{\infty} a_{v}\leq \left(\sum\limits_{v=0}^{\infty} a_{v} \right)^{p_{\ast}},$$ where $$ p_{\ast}= \left\{\begin{array}{ll} \min\limits_{v\in \mathbb{N} }p_{v},\quad\quad\quad\sum\limits_{v=0}^{\infty} a_{v}\leq 1,\\ \max\limits_{v\in \mathbb{N} }p_{v},\quad\quad\quad\sum\limits_{v=0}^{\infty} a_{v}>1. \end{array}\right.$$

Remark 2.[26]

  1. If \( q_{1} (\cdot),q_{2}(\cdot)\in \mathcal{P} (\mathbb{R}^{n})\) satisfying \( (q_{1})_{+}\leq (q_{2})_{+}\), then \({K}_{p(\cdot)}^{\alpha, q_{1}(\cdot)}(\mathbb{R}^{n}) \subset {K}_{p(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n}),
  2. \dot{K}_{p(\cdot)}^{\alpha, q_{1}(\cdot)}(\mathbb{R}^{n}) \subset \dot{K}_{p(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n}).\)
  3. If \( q_{1} (\cdot),q_{2}(\cdot)\in \mathcal{P} (\mathbb{R}^{n})\) and \( (q_{1})_{+}\leq (q_{2})_{-}\), then \(\frac{q_{2}(\cdot)}{q_{1}(\cdot)}\in \mathcal{P}(\mathbb{R}^{n})\) and \(\frac{q_{2}(\cdot)}{q_{1}(\cdot)}\geq 1 \).

By Remark 1, for any \( h\in \dot{K}_{p(\cdot)}^{\alpha, q(\cdot)}(\mathbb{R}^{n}) \), we have \begin{eqnarray*} \sum\limits_{k=-\infty}^{\infty} \left\| \left( \frac{2^{k\alpha}|h\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q_{2}(\cdot)}}} &&\leq \sum\limits_{k=-\infty}^{\infty} \left\| \left( \frac{2^{k\alpha}|h\chi_{k}|}{\eta}\right)^{q_{1}(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q_{1}(\cdot)}}}^{p_{v}}\leq \left\{ \sum\limits_{k=-\infty}^{\infty} \left\| \left( \frac{2^{k\alpha}|h\chi_{k}|}{\eta}\right)^{q_{1}(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q_{1}(\cdot)}}}^{p_{h}} \right\}^{p_{*}}\leq 1; \end{eqnarray*} where \begin{eqnarray*} &p_{v}&= \left\{\begin{array}{ll} (\frac{q_{2}(\cdot)}{q_{1}(\cdot)})_{-},\quad\quad\quad\frac{2^{k\alpha}|f\chi_{k}|}{\eta} \leq 1,\\ (\frac{q_{2}(\cdot)}{q_{1}(\cdot)})_{+},\quad\quad\quad\frac{2^{k\alpha}|f\chi_{k}|}{\eta}>1, \end{array}\right . \end{eqnarray*} and \begin{eqnarray*} &p_{*}&= \left\{\begin{array}{ll} \min\limits_{v\in \mathbb{N} }p_{v},\quad\quad\quad\sum\limits_{v=0}^{\infty} a_{v}\leq 1,\\ \max\limits_{v\in \mathbb{N} }p_{v},\quad\quad\quad\sum\limits_{v=0}^{\infty} a_{v}>1. \end{array}\right . \end{eqnarray*} This implies that \(\dot{K}_{p(\cdot)}^{\alpha, q_{1}(\cdot)}(\mathbb{R}^{n}) \subset \dot{K}_{p(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\).Similarly, we get \({K}_{p(\cdot)}^{\alpha, q_{1}(\cdot)}(\mathbb{R}^{n}) \subset {K}_{p(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n}).\)

Definition 3. For all \(0< \gamma \leq 1,\) the Lipschitz space \(\dot{\Lambda}_{\gamma}(\mathbb{R}^{n})\) is defined by $$\dot{\Lambda}_{\gamma}(\mathbb{R}^{n})=\left\{h:\|h\|_{\dot{\Lambda}_{\gamma}(\mathbb{R}^{n})}= \sup\limits_{x,y\in \mathbb{R}^{n};x\neq y}\frac{|h(x)-h(y)|}{|x-y|^{\gamma}}< \infty\right\}.$$

Definition 4. The BMO function and BMO norm are defined by \begin{align*} \mathrm{BMO}(\mathbb{R}^{n})&:=\left\{b\in L^{1}_{loc}(\mathbb{R}^{n}):\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}< 0\right\},\\ \|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}&:=\sup\limits_{Q:\text{cube}}|Q|^{-1}\int_{Q}|b(x)-b_{Q}|\text{d}x. \end{align*}

From here, we suppose that \(B_{k}=\{ x\in\mathbb{R}^{n} : |x|\leq 2^{k}\},\) and \( C_{k}= B_{k}\backslash B_{k-1} , \chi_{k}= \chi_{C_{k}} , \) \; \( k \in{\mathbb{Z}}.\)

2. Preliminary Lemmas

Proposition 1. [27] Let a function \(p(\cdot): \mathbb{R}^{n} \rightarrow [ 1 , \infty).\) If \(p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) satisfies

\begin{equation}\label{eq2.1}| p(x) - p(y)|\leq \frac{ -C}{Log( |x - y|)}; | x - y| \leq 1/ 2 ,\end{equation}
(1)
and
\begin{equation}\label{eq2.2}| p(x) - p(y)|\leq \frac{ C}{Log( e +|x|)}; |y|\geq|x|,\end{equation}
(1)
then \(p(\cdot)\in \mathfrak{B}(\mathbb{R}^{n})\).

Lemma 1. [21] (Generalized Hölder Inequality) Let \(p(\cdot),p_{1}(\cdot),p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\), then

  1. for every \(h\in L^{p_{1}(\cdot)}(\mathbb{R}^{n})\text{and}g\in L^{p_{2}(\cdot)}(\mathbb{R}^{n})\), we have \(\int_{\mathbb{R}^{n}}|h(x) g(x)| dx \leq C\|h\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\|g\|_{L^{p'(\cdot)}(\mathbb{R}^{n})},\) where \(C_{p}=1+\frac{1}{p_{-}}-\frac{1}{p_{+}}\);
  2. for every \(h\in L^{p_{1}(\cdot)}(\mathbb{R}^{n}),g\in L^{p_{2}(\cdot)}(\mathbb{R}^{n})\),when \(\frac{1}{p(\cdot)}=\frac{1}{p_{2}(\cdot)}+\frac{1}{p_{1}(\cdot)}\),we have \(\|h(x)g(x)\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C \|g(x)\|_{L^{p_{2}}(\mathbb{R}^{n})}\|h(x)\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})},\) where \(C_{p_{1},p_{2}}=[1+\frac{1}{p_{1-}}-\frac{1}{p_{1+}}]^{\frac{1}{p_{-}}}\).

Lemma 2. [18, [19] Let \(p(\cdot) \in \mathcal{B}(\mathbb{R}^{n})\). If there exists a positive constants \(C,\) \(\delta_{1},\) \(\delta_{2}\) such that \(\delta_{1},\delta_{2}< 1\), then, for all balls \(B\subset\mathbb{R}^{n}\) and all measurable subset \(R\subset B,\) we have $$\frac{\|\chi_{R}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\leq C \frac{|R|}{|B|}, \frac{\|\chi_{R}\|_{L^{p^{\prime}(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{B}\|_{L^{p_{u}^{\prime}(\cdot)}(\mathbb{R}^{n})}}\leq C\left(\frac{|R|}{|B|}\right)^{\delta_{2}},\frac{\|\chi_{R}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}{ \|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\leq C\left(\frac{|R|}{|B|}\right)^{\delta_{1}}.$$

Lemma 3.[28] Let \(p(\cdot) \in \mathcal{B}(\mathbb{R}^{n}),\) then there exists a constant \(C > 0\) such that for any balls B in \(\mathbb{R}^{n}\), we have $$ \frac{1}{|B|}\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \|\chi_{B}\|_{L^{p'(\cdot)}(\mathbb{R}^{n})}\leq C. $$

Lemma 4. [29] Let \(p(\cdot) \in \mathcal{B}(\mathbb{R}^{n}),\) and \(b\in \mathrm{BMO}(\mathbb{R}^{n})\). If \(i,j\in\mathbb{Z}\) with \(i< j\), then we have

  1. \(C^{-1}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})} \leq\sup\limits_{B}\frac{1}{\|\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}}\|(b-b_{B})\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})} \leq C\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})};\)
  2. \(\|(b-b_{B_{i}})\chi_{B_{j}}\|_{L^{q(\cdot)}(\mathbb{R}^{n})}\leq C( j-i)\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}\|\chi_{B_{j}}\|_{L^{q(\cdot)}(\mathbb{R}^{n})}.\)

Lemma 5.[26] Let \(p(\cdot),q(\cdot) \in\mathcal{P}(\mathbb{R}^{n}).\) If \(h\in L^{p(\cdot)q(\cdot)}\), then $$ \min ( \|h\|_{L^{p(\cdot)q(\cdot)}}^{q_{+}}, \|h\|_{L^{p(\cdot)q(\cdot)}}^{q_{-}} )\leq\||h|^{q(\cdot)}\|_{L^{p(\cdot)}}\leq\max ( \|h\|_{L^{p(\cdot)q(\cdot)}}^{q_{+}}, \|h\|_{L^{p(\cdot)q(\cdot)}}^{q_{-}}). $$

Lemma 6.[30] Let \(a>0,0< d \leq s,1\leq s\leq\infty\) and \(\frac{-sn+(n-1)d}{s}< v< \infty,\) then $$\left(\int_{|y|\leq a|x|}|y|^{v}|\Omega(x-y)|^{d}\mbox{d}y\right)^{1/d}\leq C |x|^{(v+n)/d}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}.$$

Lemma 7.[31] Let the variable exponent \(\tilde{q}(\cdot)\) is defined by \(\frac{1}{p(x)}=\frac{1}{\tilde{q}(x)}+\frac{1}{q}(x\in\mathbb{R}^{n})\), then we have $$\|hg\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\leq C \|g\|_{L^{q}(\mathbb{R}^{n})} \|h\|_{L^{\tilde{q}(\cdot)}(\mathbb{R}^{n})}.$$

Lemma 8. Let \(p(\cdot)\in\mathcal{B}(\mathbb{R}^{n}),\Omega\in L^{s}(\mathbf{\mathbb{S}}^{n-1})\) and \(0<\rho0\) independent of \(h\), then \(\mu_{\Omega}^{\rho}\) is bounded from \(L^{p(\cdot)}\) to it self.

Lemma 9. Let \(b\in\mathrm{BMO}(\mathbb{R}^{n})\) and \(m\in\mathbb{N}\). Further let that \(p(\cdot)\in\mathcal{B}(\mathbb{R}^{n}),\Omega\in L^{s}(\mathbf{\mathbb{S}}^{n-1})\) and \(0< \rho< n\). If there exists a constant \(C>0\) independent of \(h\), then \([b^{m},\mu_{\Omega}^{\rho}]\) is bounded from \(L^{p(\cdot)}\) to itself.

Lemma 10. Let \(b\in\dot{\Lambda}_{\gamma}(\mathbb{R}^{n}),0< \gamma\leq1,m\in\mathbb{N}\) and \(0< \rho< n.\) If \(q_{1}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) satisfies (4) and (5) in Proposition 1 with \(q^{+}_{1}< n/\gamma,1/q_{1}(x)-1/q_{2}(x)=\gamma/n,\Omega\in L^{s}(\mathbb{S}^{n-1})(s>q^{+}_{2})\) with \(1\leq r'< q^{-}_{2}\). Then the commutator \([b^{m},\mu^{\rho}_{\Omega}]\) is bounded from \(L^{q_{1}(\cdot)}(\mathbb{R}^{n})\) to \(L^{q_{2}(\cdot)}(\mathbb{R}^{n}).\)

Lemma 11. [32] Let \(p(\cdot)\in \mathcal{P}(\Omega)\) abd \(h:\Omega\times \Omega\rightarrow \mathbb{R}\) is a measurable function (with respect to product measure) such that, \(y\in \Omega,h(\cdot,y)\in L^{p(\cdot)}(\Omega)\), then we have $$\left\|\int_{\Omega}h(\cdot,y)dy\right\|_{L^{p(\cdot)}(\Omega)}\leq C \int_{\Omega}\left\|h(\cdot,y)\right\|_{L^{p(\cdot)}(\Omega)}dy.$$

3. Main Results

Theorem 1. Let \(0< \rho< n,0< v\leq1.\) Suppose that \(p_{1}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}),\Omega\in L^{s}(\mathbb{S}^{n-1}),s>(p_{1}')_{+}\) and \(q_{1}(\cdot),q_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) with \((q_{2})_{-}\geq(q_{1})_{+}\). If \(-n\delta_{1}-v-n/s< \alpha< n\delta_{2}-v-n/s\) with \(\delta_{1},\delta_{2}\) as defined in Lemma 2, then the operator \(\mu^{\rho}_{\Omega}\) is bounded from \( \dot{K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\) to \(\dot{K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\) and from \(\left({K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\right)\) to \(\left({K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\right)\).

Proof. Let \(h(x)\in \dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})\). Rewrite \(h(x)=\sum_{j=-\infty}^{\infty}h(x)\chi_{j}=\sum_{j=-\infty}^{\infty}h_{j}(x).\) From Definition 2, we have \begin{equation*} \|\mu^{\rho}_{\Omega}(h)\|_{\dot{K}^{\alpha,q_{2}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}=\inf\left\{\eta>0 : \sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha }|\mu^{\rho}_{\Omega}(h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}} \leq1\right\}. \end{equation*} Since
\( \left\|\left(\frac{2^{k\alpha}|\mu^{\rho}_{\Omega}(h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}} \leq\left\|\left( \frac{2^{k\alpha}|\sum^{\infty}_{j=-\infty}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\sum^{3}_{i=1}\eta_{1i}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\)\\ \(\leq\left\|\left( \frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{11}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}+\left\|\left( \frac{2^{k\alpha}|\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{12}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}} +\left\|\left( \frac{2^{k\alpha}|\sum^{\infty}_{j=k+2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{13}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}, \)
where \begin{eqnarray*} \quad\quad\quad\quad\quad&\eta_{11}&=\left\|\left\{2^{k\alpha }|\sum^{k-2}_{j=-\infty}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}| \right\}^{\infty}_{k=-\infty}\right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})},\\ &\eta_{12}&=\left\|\left\{2^{k\alpha }|\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|\right\}^{\infty}_{k=-\infty} \right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})},\\ &\eta_{13}&=\left\|\left\{2^{k\alpha }|\sum^{\infty}_{j=k+2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|\right\}^{\infty}_{k=-\infty} \right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})}, \end{eqnarray*} and $$\eta=\eta_{11}+\eta_{12}+\eta_{13}=\sum^{3}_{i=1}\eta_{1i}.$$ Thus, $$\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha }|\mu^{\rho}_{\Omega}(h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C.$$ Meanwhile, $$\|\mu^{\rho}_{\Omega}(h)\|_{\dot{K}^{\alpha,q_{2}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}\leq C\eta= C \sum^{3}_{i=1}\eta_{1i}.$$ To show Theorem 1, we only need to estimate \(\eta_{11},\eta_{12}\text{and}\eta_{13}\leq C \|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}\). To do this, denote \(\eta_{10}=\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\)
Step 1.For \(\eta_{12}\). From Lemma 5, we get

\begin{eqnarray}\label{4.1} \sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}} &\leq&\sum^{\infty}_{k=-\infty}\left\|\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{10}}\right\|^{(q^{1}_{2})_{k}}_{L^{p_{1}(\cdot)}}\nonumber\\ &\leq&\sum^{\infty}_{k=-\infty}\left(\left\|\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \right)^{(q^{1}_{2})_{k}}, \end{eqnarray}
(6)
where $${(q^{1}_{2})_{k}}= \left\{\begin{array}{ll} (q_{2})_{-},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1, \\ (q_{2})_{+},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}>1. \end{array}\right.$$ So, by using the Lemma 6, Remark 2 and \(h(x)\in \dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})\), we have \(\left\|\frac{2^{k\alpha}|h\chi_{k}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}}\leq1\) and \(\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |h\chi_{k}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^\frac{{p_{1}(\cdot)}}{{q_{1}(\cdot)}}}\leq1\). Hence
\begin{eqnarray}\label{4.2} &&\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{k+2}_{j=k-2}\mu^{\rho}_{\Omega}(h_{j})(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}} \leq C\sum^{\infty}_{k=-\infty}\left(\sum^{k+2}_{j=k-2}\left\|\frac{2^{k\alpha } |h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}}\right)^{(q^{1}_{2})_{k}}\notag \\ &&\leq C \sum^{\infty}_{k=-\infty}\left\|\frac{2^{k\alpha } |h\chi_{k}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}}^{(q^{1}_{2})_{k}}\leq C \sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |h\chi_{k}|}{\eta_{10}}\right)^{q_{1}(\cdot)} \right\|^{\frac{(q^{1}_{2})_{k}}{(q_{1})_{+}}}_{L^{{\frac{p_{1}(\cdot)}{q_{1}(\cdot)}}}}\leq C \left\{\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |h\chi_{k}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{1}(\cdot)}}}}\right\}^{q_{*}}\leq C.\notag\\&& \end{eqnarray}
(7)
Which, together with \((p_{1})_{+}\leq(p_{2})_{-}\leq(q^{1}_{2})_{k}\) and \(q_{*}= \min\limits_{k\in N}\frac{(q^{1}_{2})_{k}}{(q_{1})_{+}}\) gives;
\begin{equation}\label{4.3}\eta_{12}\leq C\eta_{10}\leq C\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\end{equation}
(8)
Step 2. Now, let us deal with \(\eta_{11}\). Since \begin{eqnarray*} &\qquad|\mu_{\Omega}^{\rho}(h_{j})(x)|& := \left(\int^{\infty}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\mathrm{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&\leq \left(\int^{|x|}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&\quad+\left(\int_{|x|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&:=\eta_{11}'+\eta_{11}''. \end{eqnarray*} Now we estimate \(\eta_{11}'\text{and}\eta_{11}''\). For \(\eta_{11}'\), note that \(x\in A_{k},y\in A_{j}\) and \(j\leq k-2.\) Since \(|x-y|\sim|x|\) so by virtue of the Mean Value Theorem, we have
\begin{equation}\label{4.4}\left|\frac{1}{|x-y|^{2\rho}}-\frac{1}{|x|^{2\rho}}\right|\leq C \frac{|y|}{|x-y|^{2\rho+1}}.\end{equation}
(9)
Substituting the inequality (9) into \(\eta_{11}'\) and by virtue of Minkowski's inequality, we deduced that
\begin{eqnarray}\label{4.5} \eta_{11}'&\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} |h_{j}(y)|\left(\int^{|x|}_{|x-y|}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\text{d}y\leq C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} |h_{j}(y)|\left|\frac{1}{|x-y|^{2\rho}}-\frac{1}{|x|^{2\rho}}\right|^{1/2}\text{d}y\notag\\ &\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} |h_{j}(y)|\frac{|y|^{1/2}}{|x-y|^{\rho+1/2}}\text{d}y\leq C\frac{2^{j/2}}{|x|^{n+1/2}}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\notag\\ &\leq& C2^{j/2}2^{-k(n+1/2)}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\leq C2^{(j-k)/2}2^{-nk}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y. \end{eqnarray}
(10)
Similarly, we obtain
\begin{eqnarray}\label{4.6} \eta_{11}''&\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} |h_{j}(y)|\left(\int^{\infty}_{|x|}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\text{d}y\leq C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} |h_{j}(y)|\left(\frac{1}{|x|^{2\rho}}\right)^{1/2}\text{d}y\notag\\ &\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n}}|h_{j}(y)|\text{d}y\leq C2^{-nk}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y. \end{eqnarray}
(11)
Combining the inequality (11) with Lemma 1, we get
\begin{eqnarray}\label{4.7} |\mu_{\Omega}^{\rho}(h_{j})(x)| &\leq& C 2^{-nk}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\leq C 2^{-nk}\|\left(\Omega(x-\cdot)\right).\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}}\|h_{j}\|_{L^{p_{1}(\cdot)}}. \end{eqnarray}
(12)
Now, consider \(\tilde{p}_{1}'(\cdot)>1\) and \(1/p_{1}'(x)=1/\tilde{p}'_{1}(x)+1/s\). Since \(s>(p_{1}')_{+}\), so by virtue of Lemma 1 and Lemma 8, we get
\begin{eqnarray}\label{4.8} &&\notag\|\left(\Omega(x-\cdot)\right).\chi_{B_{j}}\|_{L^{p_{1}'(\cdot)}} \leq \|\Omega(x-\cdot)\|_{L^{s}}\|\chi_{B_{j}}\|_{L^{\tilde{p}'(\cdot)}} \leq 2^{-jv}\left(\int_{A_{j}}|y|^{sv}|\Omega(x-y)|^{s}\text{d}y\right)^{1/s} \|\chi_{B_{j}}\|_{L^{\tilde{p}_{1}'(\cdot)}}\\ &&\notag \leq 2^{-jv}2^{k(v+n/s)}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}\|\chi_{B_{j}}\|_{L^{\tilde{p}_{1}'(\cdot)}}\leq 2^{-jv}2^{k(v+n/s)}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} \|\chi_{B_{j}}\|_{L^{{p}_{1}'(\cdot)}}/|B_{j}|^{1/s}\\ &&\leq 2^{(k-j)(v+n/s)}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} \|\chi_{B_{j}}\|_{L^{{p}_{1}'(\cdot)}}. \end{eqnarray}
(13)
By using (12), (13), Lemmas 1, 2, 3, 5 and \(\left\|\frac{2^{j\alpha } |h\chi_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)q_{1}}}\leq1\), we get
\begin{eqnarray}\label{4.9} &&\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C \sum^{\infty}_{k=-\infty}\left(\left\|\frac{2^{k\alpha } |\sum^{\infty}_{j=}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\right)^{(q^{2}_{2})_{k}}\notag\\ &&\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}2^{-kn}2^{(k-j)(v+n/s)}\left\|\frac{h_{j}}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}\right)^{(q^{2}_{2})_{k}}\notag\\ &&\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}2^{(k-j)(v+n/s)}\left\|\frac{h\chi_{j}}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{B_{k}} \|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}} \right)^{(q^{2}_{2})_{k}}\notag\\ &&\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}2^{(k-j)(v+n/s)}2^{-j\alpha}\left\|\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{B_{k}} \|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}}\right)^{(q^{2}_{2})_{k}}\notag\\ &&\leq C \sum^{\infty}_{k=-\infty}\left\{ \sum^{k-2}_{j=-\infty}2^{(k-j)(\alpha+v+n/s-n\delta_{2})}\left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}} \right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q_{1})+}}_{L^{p_{1}(\cdot)q_{1}(\cdot)}(\mathbb{R}^{n})} \right\}^{(q^{2}_{2})_{k}}, \end{eqnarray}
(14)
where $${(q^{2}_{2})_{k}}= \left\{\begin{array}{ll} (q_{2})_{-},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1, \\ (q_{2})_{+},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}>1. \end{array}\right.$$ Which, together with \((q_{1})_{+}< 1\) and \((p_{1})_{+}\leq(p_{2})_{-}\leq(q^{2}_{2})_{k}\) gives;\\ \( \sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C \left\{\sum^{\infty}_{j=-\infty} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)} \right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}}\sum^{\infty}_{k=j+2}2^{(k-j)(\alpha+v+n/s-n\delta_{2})} \right\}^{q_{*}}\)
\begin{eqnarray}\label{4.10} \leq C,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \end{eqnarray}
(15)
where \(q_{*}= \min\limits_{k\in\mathbb{N}}\frac{(q^{1}_{2})_{k}}{(q_{1})_{+}}.\) Since \(\alpha< n\delta_{2}-(v+n/s)\), so if \((q_{1})_{+}\geq1\) and \((q^{2}_{2})_{k}\geq(q_{2})_{-}\geq(q_{1})_{+}\geq1\) then by using Remark 2% correct remark number and applying the generalized Hölder's inequality, we get
\begin{align}\label{4.11} \quad\quad&\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left\{\sum^{k-2}_{j=-\infty} 2^{(k-j)(\alpha+v+n/s-n\delta_{2})(q_{1})_{+}/2} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}} \right\}^{\frac{(q^{2}_{2})_{k}}{(q_{1})+}}\notag\\ &\quad\times \left(\sum^{k-2}_{j=-\infty} 2^{(k-j)(\alpha+v+n/s-n\delta_{2})((q_{1})_{+})^{\prime}/2} \right)^{\frac{(q^{2}_{2})_{k}}{((q_{1})+)^{\prime}}}\notag\\ &\leq C \left\{\sum^{\infty}_{j=-\infty} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}} \sum^{\infty}_{k=j+2}2^{(k-j)(\alpha+v+n/s-n\delta_{2})(q_{1})_{+}/2} \right\}^{q_{*}}\notag\\ &\leq C,\end{align}
(16)
where \(q_{*}= \min\limits_{k\in\mathbb{N}}\frac{(q^{2}_{2})_{k}}{(q_{1})_{+}}.\) Hence we have
\begin{equation}\label{4.12} \eta_{11}\leq C\eta_{10}\leq C\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\end{equation}
(17)
Step 3. Finally, we estimate \(\eta_{13}\). For each \(x\in A_{j}\) and \(j\geq k+2\), we have \begin{align*} |\mu_{\Omega}^{\rho}(h_{j})(x)|&:= \left(\int^{\infty}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &\leq \left(\int^{|y|}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &\quad+\left(\int_{|y|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &:=\eta_{13}'+\eta_{13}''.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \end{align*} The estimates of \(\eta_{13}'\) and \(\eta_{13}''\) can be obtained similarly as that of \(\eta_{11}'\) and \(\eta_{11}''\) in Step 2 and we get
\begin{eqnarray} \eta_{13}'& \leq& C2^{(j-k)/2}2^{-jn}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y, \label{4.13}\end{eqnarray}
(18)
and
\begin{eqnarray}\label{4.14} \eta_{13}''& \leq& C2^{-jn}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y. \end{eqnarray}
(19)
Thus, we have
\begin{eqnarray}\label{4.15} |\mu_{\Omega}^{\rho}(h_{j})(x)| \leq C 2^{-jn}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\leq C 2^{-jn}\|\left(\Omega(x-\cdot)\right).\chi_{B_{j}}\|_{L^{p^{\prime}(\cdot)}}\|h_{j}\|_{L^{p(\cdot)}}. \end{eqnarray}
(20)
Substituting (13) into (20), together with Lemmas 1, 2, 3, 5 and \(\left\|\frac{2^{j\alpha } |h\chi_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}}\leq1\), we get
\begin{align}\label{4.16} &\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha } |\sum^{\infty}_{j=k+2}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C \sum^{\infty}_{k=-\infty}\left\|\frac{2^{k\alpha } |\sum^{\infty}_{j=k+2}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}}^{(q^{3}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}2^{-jn}2^{(k-j)(v+n/s)}\right.\left.\times\left\|\frac{h_{j}}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}\right)^{(q^{3}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}2^{-jn}2^{(k-j)(v+n/s)}\left\|\frac{h\chi_{j}}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}|B_{j}| \frac{\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}}{ \|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}}\right)^{(q^{3}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}2^{(k-j)(v+n/s)}\left\|\frac{h\chi_{j}}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\frac{\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}(\mathbb{R}^{n})}}{ \|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}}\right)^{(q^{3}_{2})_{k}}\notag\\ \quad\quad&\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}2^{(k-j)(v+n/s)}2^{-j\alpha}\left\|\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}} \right\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \frac{\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}}{\|\chi_{j_{k}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}} \right)^{(q^{3}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left\{ \sum^{\infty}_{j=k+2}2^{(k-j)(\alpha+v+n/s+n\delta_{12})}\left\|\left( \frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)} \right\|^{\frac{1}{(q_{1})+}}_{L^{p_{1}(\cdot)q_{1}(\cdot)}(\mathbb{R}^{n})} \right\}^{(q^{3}_{2})_{k}}, \end{align}
(21)
where $${(q^{3}_{2})_{k}}= \left\{\begin{array}{ll} (q_{2})_{-}, \left\|\left(\frac{2^{k\alpha } |\sum^{\infty}_{j=k+2}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1, \\ (q_{2})_{+}, \left\|\left(\frac{2^{k\alpha } |\sum^{\infty}_{j=k+2}\mu_{\Omega}^{\rho}(h_{j})\chi_{k}|}{\eta_{10}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}>1. \end{array}\right.$$ From above and by an argument similar to that of Step 2,we conclude
\begin{equation}\label{4.17}\eta_{13}\leq C\eta_{10}\leq C\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\end{equation}
(22)
The proof is completed.

Theorem 2. Suppose \(b\in \mathrm{BMO}(\mathbb{R}^{n}),m\in\mathbb{N},0< \rho< n,0< v\leq1.\) Further suppose that \(p_{1}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}),\Omega\in L^{s}(\mathbb{S}^{n-1}),s>(p_{1}')_{+}\) and \(q_{1}(\cdot),q_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) with \((q_{2})_{-}\geq(q_{1})_{+}\). If \(-n\delta_{1}-v-n/s< \alpha< n\delta_{2}-v-n/s\) with \(\delta_{1},\delta_{2}\) as defined in Lemma 2. Then the operator \([b^{m},\mu_{\Omega}^{\rho}]\) is bounded from \( \dot{K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\) to \(\dot{K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\) and \(\left({K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\right)\) to \( \left({K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\right)\).

Proof. Let \(h(x)\in \dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n}),b\in \mathrm{BMO}(\mathbb{R}^{n})\). We may write \(h(x)=\sum_{j=-\infty}^{\infty}h(x)\chi_{j}=\sum_{j=-\infty}^{\infty}h_{j}(x).\) By definition of \(\dot{K}^{\alpha,q(\cdot)}_{p(\cdot)}(\mathbb{R}^{n})\), we have $$\|[b^{m},\mu_{\Omega}^{\rho}](h)\|_{\dot{K}^{\alpha,q_{2}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})} =\inf\left\{\eta>0 : \sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha }|[b^{m},\mu_{\Omega}^{\rho}](h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1\right\}.$$ Since \begin{eqnarray*}\left\|\left(\frac{2^{k\alpha}|[b^{m},\mu_{\Omega}^{\rho}](h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq\left\|\left(\frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\sum^{3}_{i=1}\eta_{2i}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\end{eqnarray*} \begin{eqnarray*}&\leq&\left\|\left(\frac{2^{k\alpha}|\sum^{\infty}_{j=-\infty} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{21}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}+\left\|\left(\frac{2^{k\alpha}|\sum^{k+2}_{j=k-2} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{22}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\\&&+\left\|\left(\frac{2^{k\alpha}|\sum^{\infty}_{j=k+2} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{23}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}. \end{eqnarray*} Let \begin{eqnarray*} &&\eta_{21}=\left\|\left\{2^{k\alpha }|\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|\right\}^{\infty}_{k=-\infty} \right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})},\\ &&\eta_{22}=\left\|\left\{2^{k\alpha }|\sum^{k+2}_{j=k-2}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|\right\}^{\infty}_{k=-\infty} \right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})},\\ &&\eta_{23}=\left\|\left\{2^{k\alpha }|\sum^{\infty}_{j=k+2}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|\right\}^{\infty}_{k=-\infty} \right\|_{\ell^{q_{2}(\cdot)}(L^{p_{1}(\cdot)})}, \end{eqnarray*} where we put $$\eta=\eta_{21}+\eta_{22}+\eta_{23}=\sum^{3}_{i=1}\eta_{2i}.$$ Hence, $$\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha }|[b^{m},\mu_{\Omega}^{\rho}](h)\chi_{k}|}{\eta}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C.$$ So, it follows that $$\|[b^{m},\mu_{\Omega}^{\rho}](h)\|_{\dot{K}^{\alpha,q_{2}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}\leq C\eta= C \sum^{3}_{i=1}\eta_{1i}.$$ Hence, \(\eta_{21},\eta_{22}\text{and}\eta_{23}\leq C \|b\|_{\ast}\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})} \). Denoting that \(\eta_{10}= C\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\)\\ {\textbf Step 1.} We estimate \(\eta_{22}\). The proof of Theorem 2 is the same to that of Theorem 1 and we use the similar notation as in the proof \(\eta_{12}\) of Theorem 1. By Lemma 5 and \(\left(L^{p(\cdot)}(\mathbb{R}^{n}),L^{p(\cdot)}(\mathbb{R}^{n})\right)\)-boundedness of the operators \([b^{m},\mu_{\Omega}^{\rho}]\) , we directly arrive at $$\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha}|\sum^{k+2}_{j=k-2} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}\|b\|_{\ast}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C,$$ which, implies that

\begin{equation}\label{4.18}\eta_{21}\leq C\eta_{10}\|b\|_{\ast}\leq C\|b\|_{\ast}\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\end{equation}
(23)
Step 2. Next we estimate \(\eta_{21}\). Since \begin{eqnarray*} &|[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)|&:= \left(\int^{\infty}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&\leq \left(\int^{|x|}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&\quad+\left(\int_{|x|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&:=\mathfrak{\eta'}_{22}+\mathfrak{\eta''}_{22}. \end{eqnarray*} Observe that \(|x-y|\approx|x|\) for each \(x\in A_{k},y\in A_{j}\) and \(j \leq k-2.\) From (9) and applying the Minkowski's and the generalized H{\"o}lder's inequality, we get
\begin{eqnarray}\label{4.19} \mathfrak{\eta'}_{22}&\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} [b(x)-b(y)]^{m}|h_{j}(y)|\left(\int^{|x|}_{|x-y|}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\text{d}y\notag\\ &\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} [b(x)-b(y)]^{m}|h_{j}(y)|\left|\frac{1}{|x-y|^{2\rho}}-\frac{1}{|x|^{2\rho}}\right|^{1/2}\text{d}y\notag\\ &\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} [b(x)-b(y)]^{m}|h_{j}(y)|\frac{|y|^{1/2}}{|x-y|^{\rho+1/2}}\text{d}y\notag\\ &\leq& C\frac{2^{j/2}}{|x|^{n+1/2}}\left\{[b(x)-b_{B_{j}}]^{m}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\right.\left.+\int_{A_{j}}\left|\Omega(x-y)\right|[b_{B_{j}}-b(y)]^{m}|h_{j}(y)|\text{d}y\right\}\notag\\ &\leq& C2^{j/2}2^{-k(n+1/2)}\left\{[b(x)-b_{B_{j}}]^{m}\|\left(\Omega(x-\cdot)\right) .\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}}\|h_{j}\|_{L^{p_{1}(\cdot)}}\right.\notag\\ &&\quad\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}(h_{j}).\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}} \|h_{j}\|_{L^{p_{1}(\cdot)}}\right\}. \end{eqnarray}
(24)
Similarly, we consider \(\mathfrak{\eta''}_{22}\)
\begin{eqnarray}\label{4.20} \mathfrak{\eta''}_{22}&\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} [b(x)-b_{B_{j}}]^{m}|h_{j}(y)|\left(\int^{\infty}_{|x|}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\text{d}y\notag\\ &\leq& C\int_{\mathbb{R}^{n}}\frac{\left|\Omega(x-y)\right|}{|x-y|^{n-\rho}} [b(x)-b_{B_{j}}]^{m}|h_{j}(y)|\left(\frac{1}{|x|^{2\rho}}\right)^{1/2}\text{d}y\notag\\ &\leq& C2^{-nk}\left\{[b(x)-b_{B_{j}}]^{m}\int_{A_{j}}\left|\Omega(x-y)\right||h_{j}(y)|\text{d}y\right.\left.+\int_{A_{j}}\left|\Omega(x-y)\right|[b_{B_{j}}-b(y)]^{m}|h_{j}(y)|\text{d}y\right\}\notag\\ &\leq& C 2^{-nk}\left\{[b(x)-b_{B_{j}}]^{m} \|\left(\Omega(x-\cdot)\right)\cdot\chi_{{j}}(\cdot)\|_{L^{p_{1}^{\prime}(\cdot)}} \|h_{j}\|_{L^{p_{1}(\cdot)}}\right.\notag\\ &&\quad\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}(h_{j})\cdot\chi_{{j}}(\cdot)\|_{L^{p_{1}^{\prime}(\cdot)}} \|h_{j}\|_{L^{p_{1}(\cdot)}}\right\}\;. \end{eqnarray}
(25)
Therefore,
\begin{eqnarray}\label{4.21} |[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)|&\leq& C2^{-nk}\left\{[b(x)-b_{B_{j}}]^{m} \|\left(\Omega(x-\cdot)\right)\cdot\chi_{{j}}(\cdot)\|_{L^{p_{1}^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right.\notag\\ &&\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}\cdot\chi_{{j}}(\cdot)\|_{L^{p_{1}^{\prime}(\cdot)}} \|h_{j}\|_{L^{p_{1}(\cdot)}}\right\}.\end{eqnarray}
(26)
By (13) and Lemmas 6 and 7, we get
\begin{eqnarray}\label{4.22} &&\notag\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m} \cdot\chi_{{j}}(\cdot)\|_{L^{p_{1}^{\prime}(\cdot)}}\leq\|\Omega(x-\cdot)\cdot\chi_{{j}}(\cdot)\|_{L^{s}}\|(b_{B_{j}}-b(\cdot))^{m} \cdot\chi_{{j}}(\cdot)\|_{L^{\widetilde{p}_{1}^{\prime}(\cdot)}}\\ &&\leq 2^{-jv}2^{k(v+n/s)}\|b\|^{m}_{\ast}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} \|\chi_{B_{j}}\|_{L^{\tilde{p}_{1}'(\cdot)}}\leq 2^{(k-j)(v+n/s)}\|b\|^{m}_{\ast}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} \|\chi_{B_{j}}\|_{L^{{p}_{1}'(\cdot)}}. \end{eqnarray}
(27)
From this, we deduced
\begin{eqnarray}\label{4.23} \|[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)\cdot\chi_{B_{k}} \|_{L^{p_{1}(\cdot)}}&\leq& C \|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}2^{-nk}2^{(k-j)(v+n/s)}\|h_{j}\|_{L^{p_{1}(\cdot)}} \|(b(\cdot)-b_{B_{j}})^{m}\cdot\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}}\notag\\ &&\quad+ C \|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}2^{-nk}2^{(k-j)(v+n/s)} \|b\|^{m}_{\ast} \|h_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{{p}_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}. \end{eqnarray}
(28)
Applying Lemmas 1, 3, 4 and 5, we have \begin{align*} &\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}\|b\|^{m}_{\ast}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C \sum^{\infty}_{k=-\infty}\left\|\frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}\|b\|^{m}_{\ast}} \right\|^{(q^{2}_{2})_{k}}_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})}\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}2^{-kn}2^{(k-j)(v+n/s)}\right.\left.\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \frac{1}{\|b\|^{m}_{\ast}} \|(b(\cdot)-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}} \right)^{(q^{2}_{2})_{k}} \end{align*} \begin{align*} \\ &\quad+ C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}(k-j)^{m}2^{-kn}2^{(k-j)(v+n/s)}\right.\left.\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}}\right)^{(q^{2}_{2})_{k}}\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}(k-j)^{m}2^{-kn}2^{(k-j)(v+n/s)}\right.\left.\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}(\mathbb{R}^{n})} \|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}}\right)^{(q^{2}_{2})_{k}}\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{k-2}_{j=-\infty}(k-j)^{m}2^{(k-j)(v+n/s)}2^{-j\alpha} \left\|\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \frac{\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}}}{ \|\chi_{B_{k}}\|_{L^{p^{\prime}_{1}(\cdot)}}}\right)^{(q^{2}_{2})_{k}}. \end{align*} Now, by Lemma 2, we have
\begin{align}\label{4.24} &\notag\sum^{\infty}_{k=-\infty}\left\|\left( \frac{2^{k\alpha}|\sum^{\infty}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10} \|b\|_{\ast}}\right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\\ &\leq C \sum^{\infty}_{k=-\infty}\left\{ \sum^{k-2}_{j=-\infty}(k-j)^{m}2^{(k-j)(\alpha+v+n/s-n\delta_{2})}\left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}} \right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q_{1})+}}_{L^{p_{1}(\cdot)q_{1}(\cdot)}(\mathbb{R}^{n})} \right\}^{(q^{2}_{2})_{k}}, \end{align}
(29)
where $${(q^{2}_{2})_{k}}= \left\{\begin{array}{ll} (q_{2})_{-},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1, \\ (q_{2})_{+},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}>1. \end{array}\right.$$ So, together with \((q_{1})_{+}< 1\), \((p_{1})_{+}\leq(p_{2})_{-}\leq(q^{2}_{2})_{k}\), along with Remark 1, gives
\begin{align}\label{4.25} \quad\quad\quad\quad&\notag\sum^{\infty}_{k=-\infty}\left\|\left( \frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10} \|b\|_{\ast}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\\ &\notag\leq C \left\{\sum^{\infty}_{j=-\infty} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)} \right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}}\sum^{\infty}_{k=j+2}(k-j)^{m}2^{(k-j)(\alpha+v+n/s-n\delta_{2})} \right\}^{q_{*}}\\ &\leq C, \end{align}
(30)
where \(q_{*}= \min\limits_{k\in N}\frac{(q^{2}_{2})_{k}}{(q_{1})_{+}}.\) If \((q_{1})_{+} \leq 1\), then by Hölder's inequality and Remark 1, we have
\begin{align}\label{4.36} &\notag\sum^{\infty}_{k=-\infty}\left\|\left( \frac{2^{k\alpha}|\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10} \|b\|_{\ast}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\\ &\notag\leq C \sum^{\infty}_{k=-\infty}\left\{\sum^{k-2}_{j=-\infty} 2^{(k-j)(\alpha+v+n/s-n\delta_{2})(q_{1})_{+}/2} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}} \right\}^{\frac{(q^{2}_{2})_{k}}{(q_{1})+}}\\ &\notag\times \left(\sum^{k-2}_{j=-\infty}(k-j)^{m}2^{(k-j)(\alpha+v+n/s-n\delta_{2})((q_{1})_{+})^{\prime}/2} \right)^{\frac{(q^{2}_{2})_{k}}{((q_{1})+)^{\prime}}}\\ &\leq C \left\{\sum^{\infty}_{j=-\infty} \left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right)^{q_{1}(\cdot)}\right\|_{L^{p_{1}(\cdot)q_{1}(\cdot)}} \sum^{\infty}_{k=j+2}2^{(k-j)(\alpha+v+n/s-n\delta_{2})(q_{1})_{+}/2} \right\}^{q_{*}}\leq C,\end{align}
(31)
where \(q_{*}= \min\limits_{k\in N}\frac{(q^{2}_{2})_{k}}{(q_{1})_{+}}.\) This implies that
\begin{equation}\label{4.27}\eta_{21}\leq C\eta_{10}\|b\|_{\ast}\leq C\|b\|_{\ast}\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}.\end{equation}
(32)
Finally we estimate \(\eta_{23}\). For any \(x\in A_{j},j\geq k+2\), by the same argument as in \(\eta_{21}\), we obtain \begin{eqnarray*} |[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)| &&:= \left(\int^{\infty}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ \quad&&\leq \left(\int^{|y|}_{0}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&\quad+\left(\int_{|y|}^{\infty}\left|\int_{|x-y|\leq t}\frac{\Omega(x-y)}{|x-y|^{n-\rho}}[b(x)-b(y)]^{m}h_{j}(y)\text{d}y \right|^{2}\frac{\text{d}t}{t^{2\rho+1}}\right)^{1/2}\\ &&:=\mathfrak{\eta'}_{23}+\mathfrak{\eta''}_{23}. \end{eqnarray*} Noticing that \(j \geq k+2\). To estimate \(\eta_{23}'\) and \(\eta_{23}''\) we will use same method as that of \(\eta_{21}'\) and \(\eta_{21}''\) in Step 2. Since
\begin{eqnarray}\label{4.28} \mathfrak{\eta'}_{23} &\leq& C 2^{(k-j)/2}2^{-jn}\left\{[b(x)-b_{B_{j}}]^{m} \|\left(\Omega(x-\cdot)\right)\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right.\notag\\ &&\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}(h_{j})\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right\}\end{eqnarray}
(33)
and
\begin{eqnarray}\label{4.29} \mathfrak{\eta''}_{23} &\leq& C 2^{-jn}\left\{[b(x)-b_{B_{j}}]^{m} \|\left(\Omega(x-\cdot)\right)\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right.\notag\\ &&\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}(h_{j})\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right\}.\end{eqnarray}
(34)
Thus,
\begin{eqnarray}\label{4.30} |[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)|&\leq& C2^{-jn}\left\{[b(x)-b_{B_{j}}]^{m}\|\left(\Omega(x-\cdot)\right)\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right.\notag\\ &&\left.+\|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} \|h_{j}\|_{L^{p(\cdot)}}\right\}. \end{eqnarray}
(35)
From (13), by using Lemma 7 and Lemma 2, we get
\begin{eqnarray}\label{4.31} \|\Omega(x-\cdot)(b_{B_{j}}-b(\cdot))^{m}\cdot\chi_{{j}}(\cdot)\|_{L^{p^{\prime}(\cdot)}} &\leq&\|\Omega(x-\cdot)\|_{L^{s}}\|(b_{B_{j}}-b(\cdot))^{m} \cdot\chi_{{j}}(\cdot)\|_{L^{\widetilde{p}^{\prime}(\cdot)}}\notag\\ &\leq& 2^{-jv}2^{k(v+n/s)}\|b\|^{m}_{\ast}\|\Omega\|_{L^{s}(\mathbb{S}^{n-1})} \|\chi_{B_{j}}\|_{L^{\tilde{p}'(\cdot)}}. \end{eqnarray}
(36)
Hence, we plug the inequality (36) into (35) and obtain
\begin{eqnarray}\label{4.32} \|[b^{m},\mu_{\Omega}^{\rho}](h_{j})(x)\chi_{B_{k}} \|_{L^{p_{1}(\cdot)}}&\leq& C \|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}2^{-jn}2^{(k-j)(v+n/s)}\|h_{j}\|_{L^{p_{1}(\cdot)}} \|(b(\cdot)-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}}\notag\\ &&+ C \|\Omega\|_{L^{s}(\mathbb{S}^{n-1})}2^{-jn}2^{(k-j)(v+n/s)} \|b\|^{m}_{\ast}\|h_{j}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{{p}_{1}'(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}. \end{eqnarray}
(37)
By Lemma 5 and the above inequality, we have \begin{align*} &\sum^{\infty}_{k=-\infty}\left\|\left(\frac{2^{k\alpha}|\sum^{\infty}_{j=k+2} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}\|b\|^{m}_{\ast}}\right)^{q_{2}(\cdot)} \right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq C \sum^{\infty}_{k=-\infty}\left\|\frac{2^{k\alpha}|\sum^{\infty}_{j=k+2} [b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}\|b\|^{m}_{\ast}} \right\|^{(q^{2}_{2})_{k}}_{L^{p_{1}(\cdot)}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}2^{-jn}2^{(k-j)(v+n/s)}\right.\left.\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \frac{1}{\|b\|^{m}_{\ast}} \|(b(\cdot)-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{p_{1}^{\prime}(\cdot)}}\right)^{(q^{2}_{2})_{k}}\end{align*}
\begin{align}\label{4.33} &\quad+ C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}(j-k)^{m}2^{-jn}2^{(k-j)(v+n/s)}\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}}\right)^{(q^{2}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}(j-k)^{m}2^{-jn}2^{(k-j)(v+n/s)}\left\|\frac{| h_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}\|\chi_{B_{j}}\|_{L^{p^{\prime}_{1}(\cdot)}}\right)^{(q^{2}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left(2^{k\alpha } \sum^{\infty}_{j=k+2}(j-k)^{m}2^{(k-j)(v+n/s)}2^{-j\alpha} \left\|\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}}\right\|_{L^{p_{1}(\cdot)}} \frac{\|\chi_{B_{k}}\|_{L^{p_{1}(\cdot)}}}{ \|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}}}\right)^{(q^{2}_{2})_{k}}\notag\\ &\leq C \sum^{\infty}_{k=-\infty}\left\{ \sum^{\infty}_{j=k+2}(j-k)^{m}2^{(k-j)(\alpha+v+n/s+n\delta_{12})}\left\|\left(\frac{|2^{j\alpha}h\chi_{j}|}{\eta_{10}} \right)^{q_{1}(\cdot)}\right\|^{\frac{1}{(q_{1})+}}_{L^{p_{1}(\cdot)q_{1}(\cdot)}} \right\}^{(q^{3}_{2})_{k}} \end{align}
(38)
where $${(q^{3}_{2})_{k}}= \left\{\begin{array}{ll} (q_{2})_{-},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}\leq1, \\ (q_{2})_{+},\quad\quad\quad\left\|\left(\frac{2^{k\alpha } |\sum^{k-2}_{j=-\infty}[b^{m},\mu_{\Omega}^{\rho}](h_{j})\chi_{k}|}{\eta_{10}} \right)^{q_{2}(\cdot)}\right\|_{L^{{\frac{p_{1}(\cdot)}{q_{2}(\cdot)}}}}>1. \end{array}\right.$$ Hence, by the similar argument to Theorem 1, we arrive at \(\eta_{23}\leq C\eta_{10}\|b\|_{\ast}\leq C\|b\|_{\ast}\|h\|_{\dot{K}^{\alpha,q_{1}(\cdot)}_{p_{1}(\cdot)}(\mathbb{R}^{n})}\;.\) This completes the proof.

Theorem 3. Let \(b\in\dot{\Lambda}_{\gamma}(\mathbb{R}^{n}),0< \gamma\leq1,m\in\mathbb{N},0< \rho< n,0< v\leq1.\) Suppose that \(q^{+}_{1}< n/m\gamma,1/q_{1}(x)-1/q_{2}(x)=m\gamma/n,\Omega\in L^{s}(\mathbb{S}^{n-1})(s>q^{+}_{2})\) with \(1\leq r'< q^{-}_{2},\) \(p_{1}(\cdot)\in\mathcal{B}(\mathbb{R}^{n}),\Omega\in L^{s}(\mathbb{S}^{n-1}),s>(p_{1}')_{+}\) and \(q_{1}(\cdot),q_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\) with \((q_{2})_{-}\geq(q_{1})_{+}\). If \(-n\delta_{1}-v-n/s< \alpha< n\delta_{2}-v-n/s\) with \(\delta_{1},\delta_{2}\) as defined in Lemma 2, then the operator \([b^{m},\mu_{\Omega}^{\rho}]\) is bounded from \( \dot{K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\) to \(\dot{K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n}\) and from \(\left({K}_{p_{1}(\cdot)}^{\alpha,q_{1}(\cdot)}(\mathbb{R}^{n})\right)\) to \(\left({K}_{p_{1}(\cdot)}^{\alpha, q_{2}(\cdot)}(\mathbb{R}^{n})\right)\).

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Stein, E. M. (1958). On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Transactions of the American Mathematical Society, 88(2), 430-466.[Google Scholor]
  2. Benedek, A., Calderön, A. P., & Panzone, R. (1962). Convolution operators on Banach space valued functions. Proceedings of the National Academy of Sciences of the United States of America, 48(3), 356.[Google Scholor]
  3. Ding Y., On Marcinkiewicz integral, in Proceeding of the Conference Singular Integrals and Related Topics, III (Osaka 2001), 28-38.
  4. Hörmander, L. (1960). Estimates for translation invariant operators in \(L^p\)-spaces. Acta Mathematica, 104(1-2), 93-140.[Google Scholor]
  5. Walsh, T. (1972). On the function of Marcinkiewicz. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, III. Studia Mathematica, 44, 203-217.[Google Scholor]
  6. Sakamoto, M., & Yabuta, K. (1999). Boundedness of Marcinkiewicz functions. Studia Mathematica, 2(135), 103-142.[Google Scholor]
  7. Shi, X., & Jiang, Y. (2009). Weighted boundedness of parametric Marcinkiewicz integral and higher order commutator. Analysis in Theory and Applications, 25(1), 25-39.[Google Scholor]
  8. Aliev, S. S., & Guliev, V. S. (2012). Boundedness of the parametric Marcinkiewicz integral operator and its commutators on generalized Morrey spaces. Georgian Mathematical Journal, 19(2), 195-208.[Google Scholor]
  9. Al-Salman, A. (2011). On the \(L^2\) boundedness of parametric Marcinkiewicz integral operator. Journal of Mathematical Analysis and Applications, 375(2), 745-752.[Google Scholor]
  10. Ding, Y., Lu, S., & Yabuta, K. (2002). A problem on rough parametric Marcinkiewicz functions. Journal of the Australian Mathematical Society, 72(1), 13-22.[Google Scholor]
  11. Ding, Y., Xue, Q., & Yabuta, K. (2012). A remark to the \(L^{2}\) boundedness of parametric Marcinkiewicz integral. Journal of Mathematical Analysis and Applications, 387(2), 691-697.[Google Scholor]
  12. Fang, Q. Q., & Shi, X. L. (2011). Estimates for parametric Marcinkiewicz integrals in BMO and Campanato spaces. Applied Mathematics-A Journal of Chinese Universities, 26(2), 230.[Google Scholor]
  13. Huoxiong, W., & Pu, Z. (2003). On parametric Marcinkiewicz integrals related to block spaces. Applied Mathematics-A Journal of Chinese Universities, 18(3), 258-266.[Google Scholor]
  14. Seymur S. A., & Vagif S. G. (2012). Parametric Marcinkiewicz Integral and its commutators on generalized Morrey spaces. Georgian Mathematical Journal, 19, 195-208.[Google Scholor]
  15. Nakano, H. (1950). Modulared semi-ordered linear spaces. Maruzen Company.[Google Scholor]
  16. Musielak, J., & Orlicz, W. (1959). On modular spaces. Studia Mathematica, 18(1), 49-65.[Google Scholor]
  17. Musielak, J. (1983). Orlicz spaces and modular spaces. Lecture notes in Mathematics, 1034, 1-216.[Google Scholor]
  18. Diening L. (2004). Maximal function on generalized Lebesgue spaces \(L^{p(x)}\). Mathematical Inequalities & Applications, 7, 245-253.[Google Scholor]
  19. Diening, L., & Ruzicka, M. (2003). Calder\(\acute{o}\)n-Zygmund operators on generalized Lebesgue spaces \(L^{p(\cdot)}\) and problems related to fluid dynamics. Journal für die reine und angewandte Mathematik, 563, 197-220.
  20. Fan, X., Shen, J., & Zhao, D. (2001). Sobolev embedding theorems for spaces \(W^{k,p(x)}(w)\), Journal of Mathematical Analysis and Applications, 262(2), 749-760.[Google Scholor]
  21. Kováčik, O., & Rákosník, J. (1991). On spaces \(L^{p(\cdot)}\) and \(W ^{k,p(\cdot)}\) , Czechoslovak Mathematical Journal, 41, 592-618.
  22. Fan, X. (2010). Variable exponent Morrey and Campanato spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(11), 4148-4161.[Google Scholor]
  23. Dong, B., & Xu, J. (2012). New Herz type Besov and Triebel-Lizorkin spaces with variable exponents. Journal of Function Spaces and Applications, 2012.[Google Scholor]
  24. Fu, J., & Xu, J. (2011). Characterizations of Morrey type Besov and Triebel–Lizorkin spaces with variable exponents. Journal of Mathematical Analysis and Applications, 381(1), 280-298.[Google Scholor]
  25. Gurka, P., Harjulehto, P., & Nekvinda, A. (2007). Bessel potential spaces with variable exponent. Mathematical Inequalities & Applications, 10(3), 661.[Google Scholor]
  26. Lijuan, W., & TAO, S. (2016). Parameterized Littlewood--Paley operators and their commutators on Herz spaces with variable exponents. Turkish Journal of Mathematics, 40(1), 122-145.[Google Scholor]
  27. Capone, C., David Cruz-Uribe, S. F. O., & Fiorenza, A. (2007). The fractional maximal operator and fractional integrals on variable \(L^p\) spaces. Revista Matemática Iberoamericana, 23(3), 743-770.[Google Scholor]
  28. Izuki, M. (2010). Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Analysis Mathematica, 36(1), 33-50.[Google Scholor]
  29. Izuki, M. (2010). Boundedness of commutators on Herz spaces with variable exponent. Rendiconti del Circolo Matematico di Palermo, 59(2), 199-213.[Google Scholor]
  30. Muckenhoupt, B., & Wheeden, R. L. (1971). Weighted norm inequalities for singular and fractional integrals. Transactions of the American Mathematical Society, 161, 249-258.[Google Scholor]
  31. Nakai, E., & Sawano, Y. (2012). Hardy spaces with variable exponents and generalized Campanato spaces. Journal of Functional Analysis, 262(9), 3665-3748.[Google Scholor]
  32. Cruz-Uribe, D. V., & Fiorenza, A. (2013). Variable Lebesgue spaces: Foundations and harmonic analysis. Springer Science & Business Media.[Google Scholor]
]]>
New Hadamard and Fejér-Hadamard fractional inequalities for exponentially \(m\)-convex function https://old.pisrt.org/psr-press/journals/easl-vol-3-issue-1-2020/new-hadamard-and-fejer-hadamard-fractional-inequalities-for-exponentially-m-convex-function/ Tue, 31 Mar 2020 12:09:12 +0000 https://old.pisrt.org/?p=3953
EASL-Vol. 3 (2020), Issue 1, pp. 45 - 55 Open Access Full-Text PDF
Sajid Mehmood, Ghulam Farid, Khuram Ali Khan, Muhammad Yussouf
Abstract: In this article, we present new fractional Hadamard and Fejér-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function via a monotone function. To establish these inequalities we will use exponentially \(m\)-convex functions. The presented results in particular contain a number of fractional Hadamard and Fejér-Hadamard inequalities for functions deducible from exponentially \(m\)-convex functions.
]]>

Engineering and Applied Science Letter

New Hadamard and Fejér-Hadamard fractional inequalities for exponentially \(m\)-convex function

Sajid Mehmood, Ghulam Farid\(^1\), Khuram Ali Khan, Muhammad Yussouf
Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan.; (S.M & G.F)
Department of Mathematics, University of Sargodha, Sargodha, Pakistan.; (K.A.K & M.Y)

\(^{1}\)Corresponding Author: ghlmfarid@cuiatk.edu.pk

Abstract

In this article, we present new fractional Hadamard and Fejér-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function via a monotone function. To establish these inequalities we will use exponentially \(m\)-convex functions. The presented results in particular contain a number of fractional Hadamard and Fejér-Hadamard inequalities for functions deducible from exponentially \(m\)-convex functions.

Keywords:

Convex functions, exponentially \(m\)-convex functions, Hadamard inequality, Fejér-Hadamard inequality, generalized fractional integral operators, Mittag-Leffler function.

1. Introduction

A real valued function \(\eta: I\rightarrow\mathbb{R}\) is said to be convex on \(I\), if the following inequality holds:
\begin{equation}\label{34} \eta(\tau \varsigma_{1}+(1-\tau)\varsigma_{2})\leq \tau\eta(\varsigma_{1})+(1-\tau)\eta(\varsigma_{2}),\,\,\,\,\forall \varsigma_{1},\varsigma_{2} \in I,\,\,\, \,\,\, \tau\in[0,1]. \end{equation}
(1)
The function \(\eta\) is said to be concave if reversed of inequality (1) holds.
A convex function is also equally defined by the well known Hadamard inequality stated as follows: \begin{equation*} \eta\left(\frac{\varsigma_{1}+\varsigma_{2}}{2}\right)\leq \frac{1}{\varsigma_{2}-\varsigma_{1}}\int^{\varsigma_{2}}_{\varsigma_{1}}\eta(\tau)d\tau\leq \frac{\eta(\varsigma_{1})+\eta(\varsigma_{2})}{2}, \end{equation*} where \(\eta:[\varsigma_{1},\varsigma_{2}]\rightarrow \mathbb{R}\) is a convex function.
In [1], Fejér gave the generalization of Hadamard inequality stated as follows:
\begin{equation}\label{r} \eta\left(\frac{\varsigma_{1}+\varsigma_{2}}{2}\right)\int_{\varsigma_{1}}^{\varsigma_{2}}\kappa(\tau)d\tau\leq \int_{\varsigma_{1}}^{\varsigma_{2}}\eta(\tau)\kappa(\tau)d\tau\leq \frac{\eta(\varsigma_{1})+\eta(\varsigma_{2})}{2}\int_{\varsigma_{1}}^{\varsigma_{2}}\kappa(\tau)d\tau, \end{equation}
(2)
where \(\eta:[\varsigma_{1},\varsigma_{2}]\rightarrow \mathbb{R}\) is convex function and \(\kappa:[\varsigma_{1},\varsigma_{2}]\rightarrow \mathbb{R}\) is a positive, integrable and symmetric to \(\frac{\varsigma_{1}+\varsigma_{2}}{2}\).
The inequality (2) is well known as the Fejér-Hadamard inequality. The Hadamard and the Fejér-Hadamard inequalities have been analyzed by many researchers and produced frequently their generalizations, refinements and extensions (see, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).
In [19], Rashid et al., introduced the concept of exponentially \(m\)-convex functions defined as follows:

Definition 1. A real-valued function \(\eta: I\rightarrow\mathbb{R}\) is said to be exponentially \(m\)-convex, if the following inequality holds:

\begin{equation}\label{34**} e^{ \eta(\tau \varsigma_{1}+m(1-\tau)\varsigma_{2})}\leq \tau e^{\eta(\varsigma_{1})}+m(1-\tau)e^{\eta(\varsigma_{2})},\,\,\,\,\forall \varsigma_{1},\varsigma_{2} \in I,\,\,m\in(0,1],\,\,\,\,\,\, \tau\in[0,1]. \end{equation}
(3)
If we take \(m=1\) in (3), then exponentially convex function defined by Antczak in [20] is obtained, see also [6]. We recall that a real-valued function \(\eta: I\rightarrow\mathbb{R}\) is said to be exponentially convex, if the following inequality holds:
\begin{equation}\label{34*} e^{ \eta(\tau \varsigma_{1}+(1-\tau)\varsigma_{2})}\leq \tau e^{\eta(\varsigma_{1})}+(1-\tau)e^{\eta(\varsigma_{2})},\,\,\,\,\forall \varsigma_{1},\varsigma_{2} \in I,\,\,\,\,\,\,\, \tau\in[0,1]. \end{equation}
(4)
Next we give the definition of generalized fractional integral operators containing Mittag-Leffler function in their kernels as follows:

Definition 2.[21] Let \(\omega,\vartheta,\theta,l,\rho,c\in \mathbb{C}\), \(\Re(\vartheta),\Re(\theta),\Re(l)>0\), \(\Re(c)>\Re(\rho)>0\) with \(p\geq0\), \(r>0\) and \(0< q\leq r+\Re(\vartheta)\). Let \(\eta\in L_{1}[\varsigma_{1},\varsigma_{2}]\) and \(u\in[\varsigma_{1},\varsigma_{2}].\) Then the generalized fractional integral operators \(\Upsilon_{\vartheta,\theta,l,\omega,\varsigma_{1}^{+}}^{\rho,r,q,c}\eta \) and \(\Upsilon_{\vartheta,\theta,l,\omega,\varsigma_{2}^{-}}^{\rho,r,q,c}\eta\) are defined by:

\begin{equation}\label{a} \left(\Upsilon_{\vartheta,\theta,l,\omega,\varsigma_{1}^{+}}^{\rho,r,q,c}\eta \right)(u;p)=\int_{\varsigma_{1}}^{u}(u-\tau)^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega(u-\tau)^{\vartheta};p)\eta(\tau)d\tau, \end{equation}
(5)
\begin{equation}\label{ba} \left(\Upsilon_{\vartheta,\theta,l,\omega,\varsigma_{2}^{-}}^{\rho,r,q,c}\eta \right)(u;p)=\int_{u}^{\varsigma_{2}}(\tau-u)^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega(\tau-u)^{\vartheta};p)\eta(\tau)d\tau, \end{equation}
(6)
where \(E_{\vartheta,\theta,l}^{\rho,r,q,c}(\tau;p)\) is the generalized Mittag-Leffler function defined as follows: \begin{equation*} E_{\vartheta,\theta,l}^{\rho,r,q,c}(\tau;p)= \sum_{n=0}^{\infty}\frac{\beta_{p}(\rho+nq,c-\rho)}{\beta(\rho,c-\rho)} \frac{(c)_{nq}}{\Gamma(\vartheta n +\theta)} \frac{\tau^{n}}{(l)_{n r}}. \end{equation*}

In [22], Farid defined the following unified integral operators:

Definition 3. Let \(\eta, \kappa: [\varsigma_{1},\varsigma_{2}]\rightarrow \mathbb{R}\), \(0< \varsigma_{1}< \varsigma_{2}\) be the functions such that \(\eta\) be a positive and integrable and \(\kappa\) be a differentiable and strictly increasing. Also, let \(\frac{\gamma}{u}\) be an increasing function on \([\varsigma_{1},\infty)\) and \(\theta,l,\rho,c\in \mathbb{C}\), \(p,\vartheta,r\geq0\) and \(0< q\leq r+\vartheta\). Then for \(u\in[\varsigma_{1},\varsigma_{2}]\) the integral operators \(_{\kappa}\Upsilon_{\vartheta, \theta,l, \varsigma_{1}^{+}}^{\gamma, \rho,r,q,c}\eta\) and \(_{\kappa}\Upsilon_{\vartheta, \theta,l, \varsigma_{2}^{-}}^{\gamma, \rho,r,q,c}\eta\) are defined by:

\begin{align}\label{sd} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \varsigma_{1}^{+}}^{\gamma, \rho,r,q,c}\eta\right)(u;p)=\int_{\varsigma_{1}}^{u}\frac{\gamma(\kappa(u)-\kappa(\tau))}{\kappa(u)-\kappa(\tau)} E_{\vartheta, \theta, l}^{\rho,r,q,c} (\omega(\kappa(u)-\kappa(\tau))^{\vartheta};p)\eta(\tau)d(\kappa(\tau)), \end{align}
(7)
\begin{align}\label{sb} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \varsigma_{2}^{-}}^{\gamma, \rho,r,q,c}\eta\right)(u;p)=\int_{u}^{\varsigma_{2}}\frac{\gamma(\kappa(\tau)-\kappa(u))}{\kappa(\tau)-\kappa(u)} E_{\vartheta, \theta, l}^{\rho,r,q,c} (\omega(\kappa(\tau)-\kappa(u))^{\vartheta};p)\eta(\tau)d(\kappa(\tau)). \end{align}
(8)
If we take \(\gamma(u)=u^\theta\) in (7) and (8), then we get the following generalized fractional integral operators containing Mittag-Leffler function:

Definition 4. Let \(\eta, \kappa: [\varsigma_{1},\varsigma_{2}]\rightarrow \mathbb{R}\), \(0< \varsigma_{1}< \varsigma_{2}\) be the functions such that \(\eta\) be a positive and integrable and \(\kappa\) be a differentiable and strictly increasing. Also, let \(\vartheta, \theta,l,\omega,\rho,c\in \mathbb{C}\), \(p,\vartheta,r\geq0\) and \(0< q\leq r+\vartheta\). Then for \(u\in[\varsigma_{1},\varsigma_{2}]\) the integral operators \(_{\kappa}\Upsilon_{\vartheta, \theta,l,\omega, \varsigma_{1}^{+}}^{\rho,r,q,c}\eta\) and \(_{\kappa}\Upsilon_{\vartheta, \theta,l,\omega, \varsigma_{2}^{-}}^{ \rho,r,q,c}\eta\) are defined by:

\begin{equation}\label{1} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{1}^{+}}^{ \rho,r,q,c}\eta\right)(u;p)=\int_{\varsigma_{1}}^{u}(\kappa(u)-\kappa(\tau))^{\theta-1} E_{\vartheta, \theta, l}^{\rho,r,q,c} (\omega(\kappa(u)-\kappa(\tau))^{\vartheta};p)\eta(\tau)d(\kappa(\tau)), \end{equation}
(9)
\begin{equation}\label{7} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l,\omega, \varsigma_{2}^{-}}^{ \rho,r,q,c}\eta\right)(u;p)=\int_{u}^{\varsigma_{2}}(\kappa(\tau)-\kappa(u))^{\theta-1} E_{\vartheta, \theta, l}^{\rho,r,q,c} (\omega(\kappa(\tau)-\kappa(u))^{\vartheta};p)\eta(\tau)d(\kappa(\tau)). \end{equation}
(10)

Remark 1. (9) and (10) are the generalization of the following fractional integral operators:

  1. By taking \(\kappa(u)=u\), the fractional integral operators (5) and (6), can be achieved.
  2. By taking \(\kappa(u)=u\) and \(p=0\), the fractional integral operators defined by Salim-Faraj in [23], can be achieved.
  3. By taking \(\kappa(u)=u\) and \(l=r=1\), the fractional integral operators defined by Rahman et al., in [24], can be achieved.
  4. By taking \(\kappa(u)=u\), \(p=0\) and \(l=r=1\), the fractional integral operators defined by Srivastava-Tomovski in [25], can be achieved.
  5. By taking \(\kappa(u)=u\), \(p=0\) and \(l=r=q=1\), the fractional integral operators defined by Prabhakar in [26], can be achieved.
  6. By taking \(\kappa(u)=u\) and \(\omega=p=0\), the Riemann-Liouville fractional integral operators can be achieved.

From generalized fractional integral operator (9), we have \begin{align*} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{1}^{+}}^{ \rho,r,q,c}1\right)(u;p)&=\int_{\varsigma_{1}}^{u}(\kappa(u)-\kappa(\tau))^{\theta-1} E_{\vartheta, \theta, l}^{\rho,r,q,c} (\omega(\kappa(u)-\kappa(\tau))^{\vartheta};p)d(\kappa(\tau))\nonumber\\&=\int_{\varsigma_{1}}^{u}(\kappa(u)-\kappa(\tau))^{\theta-1} \sum_{n=0}^{\infty}\frac{\beta_{p}(\rho+nq,c-\rho)}{\beta(\rho,c-\rho)} \frac{(c)_{nq}}{\Gamma(\vartheta n +\theta)} \frac{\omega^{n}(\kappa(u)-\kappa(\tau))^{\vartheta n}}{(l)_{n r}}d(\kappa(\tau))\nonumber\\&=\sum_{n=0}^{\infty}\frac{\beta_{p}(\rho+nq,c-\rho)}{\beta(\rho,c-\rho)} \frac{(c)_{nq}}{\Gamma(\vartheta n +\theta)} \frac{\omega^{n}}{(l)_{n r}}\int_{\varsigma_{1}}^{u}(\kappa(u)-\kappa(\tau))^{\vartheta n+\theta-1}d(\kappa(\tau))\\&=(\kappa(u)-\kappa(\varsigma_{1}))^{\theta}\sum_{n=0}^{\infty}\frac{\beta_{p}(\rho+nq,c-\rho)}{\beta(\rho,c-\rho)} \frac{(c)_{nq}}{\Gamma(\vartheta n +\theta)} \frac{\omega^{n}}{(l)_{n r}}\frac{(\kappa(u)-\kappa(\varsigma_{1}))^{\vartheta n}}{\vartheta n+\theta}\\&=(\kappa(u)-\kappa(\varsigma_{1}))^{\theta}\sum_{n=0}^{\infty}\frac{\beta_{p}(\rho+nq,c-\rho)}{\beta(\rho,c-\rho)} \frac{(c)_{nq}}{\Gamma(\vartheta n +\theta+1)} \frac{\omega^{n}(\kappa(u)-\kappa(\varsigma_{1}))^{\vartheta n}}{(l)_{n r}}\\&=(\kappa(u)-\kappa(\varsigma_{1}))^{\theta}E_{\vartheta, \theta+1, l}^{\rho,r,q,c} (\omega(\kappa(u)-\kappa(\varsigma_{1}))^{\vartheta};p). \end{align*} Hence \begin{equation*} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{1}^{+}}^{ \rho,r,q,c}1\right)(u;p)=(\kappa(u)-\kappa(\varsigma_{1}))^{\theta}E_{\vartheta, \theta+1, l}^{\rho,r,q,c} (\omega(\kappa(u)-\kappa(\varsigma_{1}))^{\vartheta};p) \end{equation*} and similarly, from generalized fractional integral operator (10), we get \begin{equation*} \left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{2}^{-}}^{ \rho,r,q,c}1\right)(u;p)=(\kappa(\varsigma_{2})-\kappa(u))^{\theta}E_{\vartheta, \theta+1, l}^{\rho,r,q,c} (\omega(\kappa(\varsigma_{2})-\kappa(u))^{\vartheta};p). \end{equation*} We will use the following notations in the article:
\begin{equation}\label{1*} _{\kappa}\zeta_{\omega, \varsigma_{1}^{+}}^{\theta}(u;p)=\left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{1}^{+}}^{ \rho,r,q,c}1\right)(u;p), \end{equation}
(11)
\begin{equation}\label{7*} _{\kappa}\zeta_{\omega, \varsigma_{2}^{-}}^{ \theta}(u;p)=\left(_{\kappa}\Upsilon_{\vartheta, \theta,l, \omega, \varsigma_{2}^{-}}^{ \rho,r,q,c}1\right)(u;p). \end{equation}
(12)
In [27], Mehmood et al., proved the following Hadamard and Fejér-Hadamard inequalities for exponentially \(m\)-convex functions via generalized fractional integral operators (5) and (6).

Theorem 1. Let \(\eta: [\varsigma_{1},m\varsigma_{2}]\subset \mathbb{R}\to\mathbb{R}\) be a function such that \(\eta\in L_{1}[\varsigma_{1},m\varsigma_{2}]\) with \(\varsigma_{1}< m\varsigma_{2}\). If \(\eta\) is exponentially \(m\)-convex function, then the following inequalities hold: \begin{align*} &e^{\eta\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2}\right)} \zeta_{\theta,\bar{\omega},\varsigma_{1}^{+}}(m\varsigma_{2};p)\nonumber \leq\frac{\left(\Upsilon_{\vartheta,\theta,l,\bar{\omega},\varsigma_{1}^{+}}^{\rho,r,q,c}e^\eta\right)(m\varsigma_{2};p)+ m^{\theta+1}\left(\Upsilon_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}^{\rho,r,q,c}e^\eta\right)\left(\frac{\varsigma_{1}}{m};p \right)}{2}\\\nonumber &\leq\frac{m^{\theta+1}}{2(m\varsigma_{2}-\varsigma_{1})}\left[\left(e^{\eta(\varsigma_{1})}-m^2e^{\eta(\frac{\varsigma_{1}}{m^2})}\right)\zeta_{\theta+1,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}\left(\frac{\varsigma_{1}}{m};p \right)\right.\left.+(m\varsigma_{2}-\varsigma_{1})\left(e^{\eta(\varsigma_{2})}+me^{\eta(\frac{\varsigma_{1}}{m^2})}\right)\zeta_{\theta,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}\left(\frac{\varsigma_{1}}{m};p \right)\right]\nonumber, \end{align*} where \(\bar{\omega}=\frac{\omega}{(m\varsigma_{2}-\varsigma_{1})^{\vartheta}}\).

Theorem 2. Let \(\eta: [\varsigma_{1},m\varsigma_{2}]\subset \mathbb{R}\to\mathbb{R}\) be a function such that \(\eta\in L_{1}[\varsigma_{1},m\varsigma_{2}]\) with \(\varsigma_{1}< m\varsigma_{2}\). If \(\eta\) is exponentially \(m\)-convex function, then the following inequalities hold: \begin{align*} &e^{\eta\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2}\right)}\zeta_{\theta,\bar{\omega}2^\vartheta,\left(\frac{\varsigma_{1}+m\varsigma_{2}}{2}\right) ^{+}}(m\varsigma_{2};p)\leq \frac{\left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2}\right) ^{+}}e^\eta\right)(m\varsigma_{2};p)+m^{\theta+1} \left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2m}\right) ^{-}}e^\eta\right)\left(\frac{\varsigma_{1}}{m};p \right)}{2}\\\nonumber &\leq \frac{m^{\theta+1}}{2(m\varsigma_{2}-\varsigma_{1})}\left[\left(e^{\eta(\varsigma_{1})}-m^2e^{\eta(\frac{\varsigma_{1}}{m^2})}\right)\zeta_{\theta+1,\bar{\omega}(2m)^\vartheta,\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2m}\right) ^{-}}\left(\frac{\varsigma_{1}}{m};p \right)\right.+(m\varsigma_{2}-\varsigma_{1})\left(e^{\eta(\varsigma_{2})}+me^{\eta(\frac{\varsigma_{1}}{m^2})}\right) \end{align*} \begin{align*} &\;\;\;\times\left.\zeta_{\theta,\bar{\omega}(2m)^\vartheta,\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2m}\right) ^{-}}\left(\frac{\varsigma_{1}}{m};p \right)\right], \end{align*} where \(\bar{\omega}=\frac{\omega}{(m\varsigma_{2}-\varsigma_{1})^{\vartheta}}.\)

Theorem 3. Let \(\eta :[\varsigma_{1},m\varsigma_{2}]\subset\mathbb{R}\to\mathbb{R}\) be a function such that \(\eta\in L_{1}[\varsigma_{1},m\varsigma_{2}]\) with \( \varsigma_{1}< m\varsigma_{2}\). Also, let \(\kappa : [\varsigma_{1},m\varsigma_{2}]\to\mathbb{R}\) be a function which is non-negative and integrable. If \(\eta\) is exponentially \(m\)-convex function and \(\eta(v)=\eta(\varsigma_{1}+m\varsigma_{2}-mv)\), then the following inequalities hold: \begin{align*} &e^{\eta\left( \frac{\varsigma_{1}+m\varsigma_{2}}{2}\right)} \left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^\kappa\right)\left( \frac{\varsigma_{1}}{m};p\right) \leq \frac{(1+m)\left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^\eta e^\kappa\right)\left( \frac{\varsigma_{1}}{m};p\right)}{2}\\\nonumber &\leq \frac{m}{2(m\varsigma_{2}-\varsigma_{1})}\left[\left(e^{\eta(\varsigma_{1})}-m^2e^{\eta(\frac{\varsigma_{1}}{m^2})}\right)\left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta+1,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^\kappa\right)\left(\frac{\varsigma_{1}}{m};p \right)\right.+(m\varsigma_{2}-\varsigma_{1})\left(e^{\eta(\varsigma_{2})}+me^{\eta(\frac{\varsigma_{1}}{m^2})}\right)\\ &\;\;\;\left.\times\left(\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^\kappa\right)\left(\frac{\varsigma_{1}}{m};p \right)\right], \end{align*} where \(\bar{\omega}=\frac{\omega}{(m\varsigma_{2}-\varsigma_{1})^{\vartheta}}\).

In this article, we establish the Hadamard and the Fejér-Hadamard inequalities for exponentially \(m\)-convex functions by the generalized fractional integral operators (9) and (10) containing Mittag-Leffler function via a monotone function. These inequalities lead to produce results for generalized fractional integral operators given in Remark 1. In Section 2, we prove the Hadamard inequalities for generalized fractional integral operators (9) and (10) via exponentially \(m\)-convex functions. In Section 3, we prove the Fejér-Hadamard inequalities for these generalized fractional integral operators via exponentially \(m\)-convex functions. In whole paper, we will consider real parameters of the Mittag-Leffler function.

2. Hadamard inequalities for exponentially \(m\)-convex functions

Here we will give two versions of the generalized fractional Hadamard inequality.

Theorem 4. Let \(\eta,\kappa: [\varsigma_{1},m\varsigma_{2}]\subset\mathbb{R}\to\mathbb{R}\), \(0< \varsigma_{1}< m\varsigma_{2}\) be the real valued-functions. If \(\eta\) be a integrable and exponentially \(m\)-convex and \(\kappa\) be a differentiable and strictly increasing. Then for integral operators (9) and (10), the following inequalities hold:

\begin{align}\label{yty} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}} _{\kappa}\zeta^{\theta}_{\bar{\omega},\varsigma_{1}^{+}}(\kappa^{-1}(m\kappa(\varsigma_{2}));p)\\\nonumber &\leq\left(_{\kappa}\Upsilon_{\vartheta,\theta,l,\bar{\omega},\varsigma_{1}^{+}}^{\rho,r,q,c}e^{\eta\circ\kappa}\right)(\kappa^{-1}(m\kappa(\varsigma_{2}));p)r+ m^{\theta+1}\left(_{\kappa}\Upsilon_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}^{\rho,r,q,c}e^{\eta\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p \right)\\\nonumber &\leq\frac{m^{\theta+1}}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))}\left[\left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) _{\kappa}\zeta^{\theta+1}_{\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p \right)\right.\nonumber\\&\;\;\;\left.+\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))_{\kappa}\zeta^{\theta}_{\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p \right)\right] \end{align}
(13)
where \(\bar{\omega}=\frac{\omega}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Proof. Since \(\eta\) is exponentially \(m\)-convex function on \([\varsigma_{1},m\varsigma_{2}]\), for \(\tau\in[0,1]\), we have

\begin{equation}\label{b} 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\leq {e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}}+m{e^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}}. \end{equation}
(14)
Also, from exponentially \(m\)-convexity, we have
\begin{align}\label{c} e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}+me^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}\leq \tau\left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)+m\left(e^{\eta(\kappa(\varsigma_{2}))} +me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right). \end{align}
(15)
Multiplying both sides of (14) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)\) and integrating over \([0,1]\), we have
\begin{align}\label{ad} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau \\ &\leq\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}}d\tau &+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}}d\tau. \end{align}
(16)
Putting \(\kappa(u)=\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2})\) and \(\kappa(v)=(1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2})\) in (16), we get \begin{align*} &2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{\varsigma_{1}}^{\kappa^{-1}(m\kappa(\varsigma_{2}))}(m\kappa(\varsigma_{2})-\kappa(u))^{\theta-1} E_{\vartheta,\theta,l}^{\rho,r,q, c}(\bar{\omega} (m\kappa(\varsigma_{2})-\kappa(u))^{\vartheta}; p)d(\kappa(u))\\& \leq \int_{\varsigma_{1}}^{\kappa^{-1}(m\kappa(\varsigma_{2}))}(m\kappa(\varsigma_{2})-\kappa(u))^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q, c}(\bar{\omega} (m\kappa(\varsigma_{2})-\kappa(u))^{\vartheta}; p){e^{\eta(\kappa(u))}}d(\kappa(u))\nonumber \\& \;\;\; +m^{\theta+1}\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\varsigma_{2}}\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q, c}\left(m^{\vartheta}\bar{\omega}\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\vartheta};p\right){e^{\eta(\kappa(v))}}d(\kappa(v))\nonumber. \end{align*} By using (9), (10) and (11), the first inequality of (13) is obtained. Now multiplying both sides of (15) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)\) and integrating over \([0,1]\), we have
\begin{align}\label{ab} &\notag \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}d\tau+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}d\tau\\&\leq \left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\int_{0}^{1}\tau^{\theta}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau +m\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau. \end{align}
(17)
Putting \(\kappa(u)=\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2})\) and \(\kappa(v)=(1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2})\) in (17), then by using (9), (10) and (12), the second inequality of (13) is obtained.

Corollary 1. Under the assumptions of Theorem 4 if we take \(m=1\), then we get following inequalities for exponentially convex function:

\begin{align}\label{yty*} 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)}} _{\kappa}\zeta^{\theta}_{\bar{\omega},\varsigma_{1}^{+}}(\varsigma_{2};p)&\leq\left(_{\kappa}\Upsilon_{\vartheta,\theta,l,\bar{\omega},\varsigma_{1}^{+}}^{\rho,r,q,c}e^{\eta\circ\kappa}\right)(\varsigma_{2};p)+ \left(_{\kappa}\Upsilon_{\vartheta,\theta,l,\bar{\omega},\varsigma_{2}^{-}}^{\rho,r,q,c}e^{\eta\circ\kappa}\right)\left(\varsigma_{1};p \right)\notag\\ &\leq\left(e^{\eta(\kappa(\varsigma_{2}))}+e^{\eta\left({\kappa(\varsigma_{1})}\right)}\right)_{\kappa}\zeta^{\theta}_{\bar{\omega},\varsigma_{2}^{-}}\left(\varsigma_{1};p \right) \end{align}
(18)
where \(\bar{\omega}=\frac{\omega}{(\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Remark 2.

  1. If we take \(\kappa(u)=u\) in (13), then Theorem 1 is obtained.
  2. If we take \(\kappa(u)=u\) and \(m=1\) in (13), then [15,Corollary 2.2] is obtained.
  3. If we take \(\kappa(u)=u\) in (18), then [15,Corollary 2.2] is obtained.

In the following we give another version of the Hadamard inequality for generalized fractional integral operators.

Theorem 5. Let \(\eta,\kappa: [\varsigma_{1},m\varsigma_{2}]\subset\mathbb{R}\to\mathbb{R}\), \(0< \varsigma_{1}< m\varsigma_{2}\) be the real-valued functions. If \(\eta\) be a integrable and exponentially \(m\)-convex and \(\kappa\) be a differentiable and strictly increasing. Then for integral operators (9) and (10), the following inequalities hold: \begin{align*} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}_{\kappa}\zeta^{\theta}_{\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)\right) ^{+}}(\kappa^{-1}(m\kappa(\varsigma_{2}));p)\leq \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)\right) ^{+}}e^{\eta\circ\kappa}\right)(\kappa^{-1}(m\kappa(\varsigma_{2}));p)\\&\nonumber\;\;\;+m^{\theta+1} \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right) ^{-}}e^{\eta\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p \right) \end{align*}

\begin{align}\label{lmo} \nonumber &\leq\! \frac{m^{\theta+1}}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))}\left[\!\left(e^{\eta(\kappa(\varsigma_{1}))}\!-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\!\right)}\right)_{\kappa}\!\!\!\!\zeta^{\theta+1}_{\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\!\left(\!\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right)^{-}}\!\!\left(\!\kappa^{-1}\left(\!\frac{\kappa(\varsigma_{1})}{m}\!\right);p\! \right)\right.\\&\;\;\;\left.+\!\left(\!e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\!\right)}\right)\!\!(m\kappa(\varsigma_{2})\!-\!\kappa(\varsigma_{1}))_{\kappa}\zeta^{\theta}_{\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right)^{-}}\left(\!\kappa^{-1}\!\left(\!\frac{\kappa(\varsigma_{1})}{m}\!\right);p \!\!\right)\right], \end{align}
(19)
where \(\bar{\omega}=\frac{\omega}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Proof. Since \(\eta\) is exponentially \(m\)-convex function on \([\varsigma_{1},m\varsigma_{2}]\), for \(\tau\in[0,1]\), we have

\begin{align}\label{d} 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}} \leq {e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)}}+m {e^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}. \end{align}
(20)
Also, from exponentially \(m\)-convexity, we have
\begin{align}\label{e} e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)} +me^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)} \leq \frac{\tau}{2}\left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) +m\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right). \end{align}
(21)
Multiplying both sides of (20) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)\) and integrating over \([0,1]\), we have
\begin{align}\label{w} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau \\&\leq \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)}}d\tau+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}d\tau. \end{align}
(22)
Putting \(\kappa(u)=\frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\) and \(\kappa(v)=\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\) in (22), we get \begin{align*} &2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\!\!\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}^{\kappa^{-1}(m\kappa(\varsigma_{2}))}\!\!(m\kappa(\varsigma_{2})-\kappa(u))^{\theta-1} E_{\vartheta,\theta,l}^{\rho,r,q, c}(2^\vartheta\bar{\omega} (m\kappa(\varsigma_{2})-\kappa(u))^{\vartheta}; p)d(\kappa(u))\\& \leq \int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}^{\kappa^{-1}(m\kappa(\varsigma_{2}))}(m\kappa(\varsigma_{2})-\kappa(u))^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q, c}(2^\vartheta\bar{\omega} (m\kappa(\varsigma_{2})-\kappa(u))^{\vartheta}; p){e^{\eta(\kappa(u))}}d(\kappa(u))\nonumber \\&\;\;\; +m^{\theta+1}\!\!\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\kappa^{-1}\!\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)}\!\!\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1}\!\!\!\!E_{\vartheta,\theta,l}^{\rho,r,q, c}\!\!\left(\!(2m)^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\!\right)\!\!{e^{\eta(\kappa(v))}}d(\kappa(v))\nonumber. \end{align*} By using (9), (10) and (11), the first inequality of (19) is obtained.
Now multiplying both sides of (21) with \( \tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)\) and integrating over \([0,1]\), we have
\begin{align}\label{x} &\notag \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)}d\tau+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}d\tau\\&\leq\frac{1}{2} \left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\int_{0}^{1}\tau^{\theta}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau+m\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)d\tau. \end{align}
(23)
Putting \(\kappa(u)=\frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\) and \(\kappa(v)=\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\) in (\ref{x}), then by using (9), (10) and (12), the second inequality of (19) is obtained.

Corollary 2. Under the assumptions of Theorem \ref{gh} if we take \(m=1\), then we get following inequalities for exponentially convex function: \begin{align*} &\nonumber 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)}}_{\kappa}\zeta^{\theta}_{\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right) ^{+}}(\varsigma_{2};p)\leq\!\! \left(\!\!_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right) ^{+}}e^{\eta\circ\kappa}\!\right)\!\!(\varsigma_{2};p)\!\end{align*}

\begin{align}\label{lmo*} &\;\;\;+\!\! \left(\!\!_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\!\right) ^{-}}e^{\eta\circ\kappa}\right)\!\!(\varsigma_{1};p)\leq \left(e^{\eta(\kappa(\varsigma_{2}))}+e^{\eta\left({\kappa(\varsigma_{1})}\right)}\right)_{\kappa}\zeta^{\theta}_{\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right)^{-}}\left(\varsigma_{1};p \right), \end{align}
(24)
where \(\bar{\omega}=\frac{\omega}{(\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Remark 3.

  1. If we take \(\kappa(u)=u\) in (19), then Theorem 2 is obtained.
  2. If we take \(\kappa(u)=u\) and \(m=1\) in (19), then [15,Corollary 2.2] is obtained.
  3. If we take \(\kappa(u)=u\) in (24), then [15,Corollary 2.2] is obtained.

3. Fejér-Hadamard Inequalities for exponentially \(m\)-convex functions

Here we give two versions of the Fejér-Hadamard inequality.

Theorem 6. Let \(\eta,\kappa :[\varsigma_{1},m\varsigma_{2}]\subset\mathbb{R}\to\mathbb{R}\), \(0< \varsigma_{1}< m\varsigma_{2}\) be the real-valued functions. If \(\eta\) be a integrable, exponentially \(m\)-convex and \(\eta(\kappa(v))=\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))\) and \(\kappa\) be a differentiable and strictly increasing. Also, let \(\gamma : [\varsigma_{1},m\varsigma_{2}]\to\mathbb{R}\) be a function which is non-negative and integrable. Then for integral operators (9) and (10), the following inequalities hold:

\begin{align}\label{yy} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}} \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right) \\&\nonumber\leq {(1+m)\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^{\eta\circ\kappa}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)}\\\nonumber &\leq \frac{m}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))}\left[\left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta+1,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)\right.\\ &\left.\;\;\;+\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)(m\kappa(\varsigma_{2}) -\kappa(\varsigma_{1}))\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}m^\vartheta,\varsigma_{2}^{-}}e^{\gamma\circ\kappa}\right) \left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)\right], \end{align}
(25)
where \(\bar{\omega}=\frac{\omega}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Proof. Multiplying both sides of (14) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}\) and integrating over \([0,1]\), we have

\begin{align}\label{z} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))} d\tau\\\nonumber & \leq \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}}e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))} d\tau\\ &\;\;\;+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}}e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}d\tau. \end{align}
(26)
Putting \(\kappa(v)=(1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2})\) in (26), we get \begin{align*} &2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\!\!\!\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\varsigma_{2}}\!\!\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1} \!\!\!\!E_{\vartheta,\theta,l}^{\rho,r,q, c}\left(\!\!m^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\right)\!\!{e^{\gamma(\kappa(v))}}d(\kappa(v))\\&\leq\!\!\!\int_{\kappa^{-1}\!\left(\!\frac{\kappa(\varsigma_{1})}{m}\!\right)}^{\varsigma_{2}}\!\!\!\!\left(\kappa(v)\!-\!\frac{\kappa(\varsigma_{1})}{m}\!\right)^{\theta-1}\!\!\!\!\!E_{\vartheta,\theta,l}^{\rho,r,q, c}\!\!\left(\!\!m^{\vartheta}\bar{\omega}(\kappa(v)\!-\!\!\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\!\!\right)\!\! {{e^{\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))}}}{\!e^{\gamma(\kappa(v))}}\!d(\kappa(v))\\&\nonumber\;\;\;+m\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\varsigma_{2}}\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1} E_{\vartheta,\theta,l}^{\rho,r,q, c}\left(m^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\right){e^{\eta(\kappa(v))}}{e^{\gamma(\kappa(v))}}d(\kappa(v)). \end{align*} By using (10) and given condition \(\eta(\kappa(v))=\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))\), the first inequality of (25) is obtained. Now multiplying both sides of (15) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}\) and integrating over \([0,1]\), we have \begin{align*} &\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{{\eta(\tau\kappa(\varsigma_{1})+m(1-\tau)\kappa(\varsigma_{2}))}}e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))} d\tau\\ \nonumber&\;\;\;+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{{\eta((1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}}e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}d\tau.\\&\leq \left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\int_{0}^{1}\tau^{\theta}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}d\tau\\\nonumber &\;\;\;+m\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\gamma( (1-\tau)\frac{\kappa(\varsigma_{1})}{m}+\tau\kappa(\varsigma_{2}))}d\tau. \end{align*} From above the second inequality of (25) is achieved.

Corollary 3. Under the assumptions of Theorem 6 if we take \(m=1\), then we get following inequalities for exponentially convex function:

\begin{align}\label{yy**} 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)}} \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega},\varsigma_{2}^{-}}e^{\gamma\circ\kappa}\right)\left(\varsigma_{1};p\right) &\leq {2\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega},\varsigma_{2}^{-}}e^{\eta\circ\kappa}e^{\gamma\circ\kappa}\right)\left(\varsigma_{1};p\right)}\nonumber\\ &\leq\! \left(\!e^{\eta(\kappa(\varsigma_{2}))}+e^{\eta\left({\kappa(\varsigma_{1})}\!\right)}\right)\! \left(\!_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega},\varsigma_{2}^{-}}e^{\gamma\circ\kappa}\!\right)\!\left(\varsigma_{1};p\right), \end{align}
(27)
where \(\bar{\omega}=\frac{\omega}{(\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Remark 4.

  1. If we take \(\kappa(u)=u\) in (25), then Theorem 3 is obtained.
  2. If we take \(\kappa(u)=u\) and \(m=1\) in (25), then [15,Corollary 2.8] is obtained.
  3. If we take \(\kappa(u)=u\) in (27), then [15,Corollary 2.8] is obtained.

In the following we give another generalized fractional version of the Fejér-Hadamard inequality.

Theorem 7. Let \(\eta,\kappa :[\varsigma_{1},m\varsigma_{2}]\subset\mathbb{R}\to\mathbb{R}\), \(0< \varsigma_{1}< m\varsigma_{2}\) be the real-valued functions. If \(\eta\) be a integrable, exponentially \(m\)-convex and \(\eta(\kappa(v))=\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))\) and \(\kappa\) be a differentiable and strictly increasing. Also, let \(\gamma : [\varsigma_{1},m\varsigma_{2}]\to\mathbb{R}\) be a function which is non-negative and integrable. Then for integral operators (9) and (10), the following inequalities hold:

\begin{align}\label{yy*} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}} \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right) ^{-}}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right) \\&\nonumber\leq {(1+m)\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right) ^{-}}e^{\eta\circ\kappa}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)}\\\nonumber &\leq \frac{m}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))}\left[\left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\right.\left. \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right) ^{-}}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)\right.\\&\;\;\;\left.+\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1})) \right.\left.\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}(2m)^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right) ^{-}}e^{\gamma\circ\kappa}\right)\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right);p\right)\right], \end{align}
(28)
where \(\bar{\omega}=\frac{\omega}{(m\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

Proof. Multiplying both sides of (20) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}\) and integrating over \([0,1]\), we have \begin{align*} &\notag 2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}} d\tau\\\nonumber & \leq \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p){e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)}} {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}} d\tau \end{align*}

\begin{align}\label{z*} &\;\;\;+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}} {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}d\tau. \end{align}
(29)
Putting \(\kappa(v)=\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\) in (29), we get \begin{align*} &2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2}\right)}}\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right)}\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1} E_{\vartheta,\theta,l}^{\rho,r,q, c}\left((2m)^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\right){e^{\gamma(\kappa(v))}}d(\kappa(v))\\&\leq\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right)}\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1} E_{\vartheta,\theta,l}^{\rho,r,q, c}\left((2m)^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\right)\\&\;\;\;\times {{e^{\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))}}}{e^{\gamma(\kappa(v))}}d(\kappa(v))\!\!+\!m\!\!\int_{\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})}{m}\right)}^{\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})}{2m}\right)\right)}\!\!\left(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m}\right)^{\theta-1} \\&\;\;\;\times E_{\vartheta,\theta,l}^{\rho,r,q, c}\left((2m)^{\vartheta}\bar{\omega}(\kappa(v)-\frac{\kappa(\varsigma_{1})}{m})^{\vartheta};p\right){e^{\eta(\kappa(v))}}{e^{\gamma(\kappa(v))}}d(\kappa(v)). \end{align*} By using (10) and given condition \(\eta(\kappa(v))=\eta(\kappa(\varsigma_{1})+m\kappa(\varsigma_{2})-m\kappa(v))\), the first inequality of (28) is obtained. Now multiplying both sides of (21) with \(\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}\) and integrating over \([0,1]\), we have \begin{align*} &\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\eta\left( \frac{\tau}{2}\kappa(\varsigma_{1})+m\frac{(2-\tau)}{2}\kappa(\varsigma_{2})\right)} {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}} d\tau\\ \nonumber&\;\;\;+m\int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p)e^{\eta\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)} {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}d\tau.\\&\leq \left(e^{\eta(\kappa(\varsigma_{1}))}-m^2e^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right)\int_{0}^{1}\tau^{\theta}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}d\tau\\\nonumber &\;\;\;+m\left(e^{\eta(\kappa(\varsigma_{2}))}+me^{\eta\left(\frac{\kappa(\varsigma_{1})}{m^2}\right)}\right) \int_{0}^{1}\tau^{\theta-1}E_{\vartheta,\theta,l}^{\rho,r,q,c}(\omega \tau^{\vartheta};p) {e^{\gamma\left(\frac{\tau}{2}\kappa(\varsigma_{2})+\frac{(2-\tau)}{2}\frac{\kappa(\varsigma_{1})}{m}\right)}}d\tau. \end{align*} From above the second inequality of (28) is achieved.

Corollary 4. Under the assumptions of Theorem 7 if we take \(m=1\), then we get following inequalities for exponentially convex function:

\begin{align}\label{yy***} &2{e^{\eta\left( \frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)}} \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right) ^{-}}e^{\gamma\circ\kappa}\right)\left(\varsigma_{1};p\right)\leq {2\left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right) ^{-}}e^{\eta\circ\kappa}e^{\gamma\circ\kappa}\right)\left(\varsigma_{1};p\right)}\nonumber\\ &\leq \left(e^{\eta(\kappa(\varsigma_{2}))}+e^{\eta\left({\kappa(\varsigma_{1})}\right)}\right) \left(_{\kappa}\Upsilon^{\rho,r,q,c}_{\vartheta,\theta,l,\bar{\omega}2^\vartheta,\left(\kappa^{-1}\left(\frac{\kappa(\varsigma_{1})+\kappa(\varsigma_{2})}{2}\right)\right) ^{-}}e^{\gamma\circ\kappa}\right)\left(\varsigma_{1};p\right), \end{align}
(30)
where \(\bar{\omega}=\frac{\omega}{(\kappa(\varsigma_{2})-\kappa(\varsigma_{1}))^{\vartheta}}\).

4. Concluding remarks

Here we have proved two generalized fractional versions of the Hadamard inequality as well as two generalized fractional versions of the Fejér-Hadamard inequality. For proving these fractional inequalities we have utilized exponentially \(m\)-convex functions and generalized integral operators containing Mittag-Leffler functions in their kernels. The presented results hold for exponentially convexity and well known fractional integral operators given in Remark 1. Reader can obtain desired fractional Hadamard and fractional Fejér-Hadamard inequalities from this paper.

Acknowledgments

The research work of the Ghulam Farid is supported by Higher Education Commission of Pakistan under NRPU 2016, Project No. 5421.

Autho Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interests

The authors declare no conflict of interest.

References

  1. Fejér, L. (1906). Überdie Fourierreihen II. Math Naturwiss Anz Ungar Akad Wiss, 24, 369-390.
  2. Abbas, G., & Farid, G. (2017). Hadamard and Fejér--Hadamard type inequalities for harmonically convex functions via generalized fractional integrals. The Journal of Analysis, 25(1), 107-119.[Google Scholor]
  3. Awan, M. U., Noor, M. A., & Noor, K. I. (2018). Hermite-Hadamard inequalities for exponentially convex functions. Applied Mathematics & Information Sciences, 12(2), 405-409.[Google Scholor]
  4. Chen, F. (2014). On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Chinese Journal of Mathematics, Volume 2014, Article ID 248710, 8 pages.[Google Scholor]
  5. Chen, H., & Katugampola, U. N. (2017). Hermite--Hadamard and Hermite--Hadamard--Fejér type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications, 446(2), 1274-1291.[Google Scholor]
  6. Dragomir, S. S., & Gomm, I. (2015). Some Hermite-Hadamard type inequalities for functions whose exponentials are convex. Studia Universitatis Babeş-Bolyai Mathematica, 60(4), 527-534.[Google Scholor]
  7. Farid, G. (2016). Hadamard and Fejér-Hadamard inequalities for generalized fractional integrals involving special functions. Konuralp Journal of Mathematics, 4(1), 108-113.[Google Scholor]
  8. Farid, G. (2018). A treatment of the Hadamard inequality due to m-convexity via generalized fractional integrals. Journal of Fractional Calculus and Applications, 9(1), 8-14.[Google Scholor]
  9. Farid, G., & Abbas, G. (2018). Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function. Studia Universitatis Babeş-Bolyai Mathematica, 63(1), 23-35.[Google Scholor]
  10. Farid, G., Rehman, A. U., & Tariq, B. (2017). On Hadamard--type inequalities for m-convex functions via Riemann--Liouville fractional integrals. Studia Universitatis Babeş-Bolyai Mathematica, 62(2), 141-150.[Google Scholor]
  11. Farid, G., Rehman, A. U., & Mehmood, S. (2018). Hadamard and Fejer-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function. Journal of Mathematics and Computer Science, 8(5), 630-643.[Google Scholor]
  12. Farid, G., Khan, K. A., Latif, N., Rehman, A. U., & Mehmood, S. (2018). General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function. Journal of Inequalities and Applications, 2018(1), 1-12.[Google Scholor]
  13. İşcan, İ. (2015). Hermite Hadamard Fejér type inequalities for convex functions via fractional integrals. Studia Universitatis Babeş-Bolyai Mathematica, 60(3), 355-366.[Google Scholor]
  14. Kang, S. M., Farid, G., Nazeer, W., & Mehmood, S. (2019). \((h,m)\)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function. Journal of Inequalities and Applications, 2019, 78 pp.[Google Scholor]
  15. Kang, S. M., Farid, G., Nazeer, W., & Tariq, B. (2018). Hadamard and Fejér--Hadamard inequalities for extended generalized fractional integrals involving special functions. Journal of Inequalities and Applications, 2018(1), 119 pp.[Google Scholor]
  16. Mehreen, N., & Anwar, M. (2019). Hermite--Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications. Journal of Inequalities and Applications, 2019(1), 92 pp.[Google Scholor]
  17. Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N. (2013). Hermite--Hadamard's inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57(9-10), 2403-2407.[Google Scholor]
  18. Sarikaya, M. Z., & Yildirim, H. (2016). On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Mathematical Notes, 17(2), 1049-1059.[Google Scholor]
  19. Rashid, S., Noor, M. A., & Noor, K. I. (2019). Fractional exponentially m-convex functions and inequalities. International Journal of Analysis and Applications, 17(3), 464-478.[Google Scholor]
  20. Antczak, T. (2001). (p, r)-invex sets and functions. Journal of Mathematical Analysis and Applications, 263(2), 355-379.[Google Scholor]
  21. Andrić, M., Farid, G., & Pečarić, J. (2018). A further extension of Mittag-Leffler function. Fractional Calculus and Applied Analysis, 21(5), 1377-1395.[Google Scholor]
  22. Farid, G. (2020). A unified integral operator and further its consequences. Open Journal of Mathematical Analysis, 4(1) (2020), 1-7.[Google Scholor]
  23. Salim, T. O., & Faraj, A. W. (2012). A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Journal of Fractional Calculus and Applications, 3(5), 1-13.[Google Scholor]
  24. Rahman, G., Baleanu, D., Qurashi, M. A., Purohit, S. D., Mubeen, S., & Arshad, M. (2017). The extended Mittag-Leffler function via fractional calculus. Journal of Nonlinear Sciences and Applications, 10(8), 4244-4253.[Google Scholor]
  25. Srivastava, H. M., & Tomovski, Ž. (2009). Fractional calculus with an integral operator containing a generalized Mittag--Leffler function in the kernel. Applied Mathematics and Computation, 211(1), 198-210.[Google Scholor]
  26. Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Mathematical Journal, 19, 7-15.[Google Scholor]
  27. Mehmood, S., & Farid, G. (2020). Fractional Hadamard and Fejér-Hadamard Inequalities for exponentially \(m\)-convex function. Studia Universitatis Babeş-Bolyai Mathematica, To Appear. [Google Scholor]
]]>
Risk evaluation in information systems using continuous and discrete distribution laws https://old.pisrt.org/psr-press/journals/easl-vol-3-issue-1-2020/risk-evaluation-in-information-systems-using-continuous-and-discrete-distribution-laws/ Wed, 18 Mar 2020 16:36:59 +0000 https://old.pisrt.org/?p=3844
EASL-Vol. 3 (2020), Issue 1, pp. 35 - 44 Open Access Full-Text PDF
Ajit Singh, Amrita Prakash
Abstract: The paper construct continuous and discrete distribution laws, used to assess risks in information systems. Generalized expressions for continuous distribution laws with maximum entropy are obtained. It is shown that, in the general case, the entropy also depends on the type of moments used to determine the numerical characteristics of the distribution law. Also, probabilistic model have been developed to analyze the sequence of independent trials with three outcomes. Expressions for their basic numerical characteristics are obtained, as well as for calculating the probabilities of occurrence of the corresponding events.
]]>

Engineering and Applied Science Letter

Risk evaluation in information systems using continuous and discrete distribution laws

Ajit Singh\(^1\), Amrita Prakash
Department of Computer Science, Patna Women’s College Bihar, India.; (A.S & A.P)

\(^{1}\)Corresponding Author: ajit_singh24@yahoo.com

Abstract

The paper construct continuous and discrete distribution laws, used to assess risks in information systems. Generalized expressions for continuous distribution laws with maximum entropy are obtained. It is shown that, in the general case, the entropy also depends on the type of moments used to determine the numerical characteristics of the distribution law. Also, probabilistic model have been developed to analyze the sequence of independent trials with three outcomes. Expressions for their basic numerical characteristics are obtained, as well as for calculating the probabilities of occurrence of the corresponding events.

Keywords:

Information system, distribution, risk, random variable.

1. Introduction

At the present stage of the development of society, which is characterized by the intensive introduction of information systems in virtually areas of activity, issues related to the assessment of the risks that occur during their operation are of particular importance. When analyzing and assessing risks, issues related to the definition of distribution laws are of the greatest importance. The given work is devoted to the construction of distribution laws.

In the modeling of information systems, risk is a random variable and is described by a probability distribution on a given set [1, 2, 3]. In contrast to experiments conducted in physics, where the possibility of their multiple conduct, the conditions of the functioning of information systems are characterized by a constant impact of negative external influences and are constantly changing [4], and consequently the repetition of the experiment under the same conditions is practically impracticable. The laws of probability distribution of risk events, as a rule, do not correspond to the law of the normal Gaussian distribution [5, 6].

2. Construction of continuous distribution laws with the maximum entropy

Entropy coefficient is often used [7, 8] with the classification of distribution laws of random continuous value (RV) with number characteristics.
\begin{align}\label{equ1} \delta_e = \frac{1}{2 \sigma} exp(H). \end{align}
(1)
In the formula (1), \(\sigma = \sqrt{\mu_2}\) is standard deviation, and \(\mu_2\) is the second central power moment for this distribution law; value \(H\) is the entropy, which is defined as:
\begin{align}\label{equ2} H = -\int_{- \infty}^{\infty} p(x) ln(p(x)) dx \end{align}
(2)
where \(p(x)\) is the density of probability distribution (PDD) SV. Entropy coefficient has the maximum value for Gaussian law is \( \delta_e =2.066\); for uniform law is \(\delta_e =1.73\) and for Koshi distribution is \(\delta_e = 0\) etc.
The entropy value does not depend on shift parameter, to simple computation let's consider, that it is equal to zero. Firstly we need to find distribution law from unilateral laws of distribution of unlimited RV, for which entropy value (2) reaches the maximum with the following limitations imposed on probability density \(p(x)\):
\begin{align}\label{equ3} p(x) \ge 0, \int_{0 }^{\infty} p(x) dx = 1, ~ \int_{0}^{\infty} x^\nu p(x) dx = \frac{\beta^\nu}{\nu}, \end{align}
(3)
where \(\beta\) is scale parameter and \(\nu\) is value of maximum existing primary direct moment. Here and next we'll consider positive power moment as a direct moment in accordance with (3) and negative power moment as a reverse moment. To find the extremum we'll use the method of indefinite Lagrange multipliers [9]. We need to maximize
\begin{align}\label{equ4} \int_{0}^{\infty} \bigg[ -p(x) ln (p(x)) + \lambda_1 p(x) + \lambda_2 x^\nu p(x) \bigg] dx \end{align}
(4)
by inserting Lagrange multipliers \(\lambda_1\) and \(\lambda_2\) and considering the limitations (3). Equating the result of variation integrand expression in (4) when \(p(x) = 0\), we'll take the equation relatively to \(p(x)\) :
\begin{align}\label{equ5} -ln (p(x)) - 1 + \lambda_1 + \lambda_2 x^\nu = 0 \end{align}
(5)
So, the density \(p(x)\) which satisfy (3) and maximizes H can be found from the equation (5):
\begin{align}\label{equ6} p(x) = exp (\lambda_1 -1 + \lambda_2 x^\nu). \end{align}
(6)
By substituting (6) in (3) and integrating, we have
\begin{align}\label{equ7} exp(\lambda_1) \frac{\Gamma (1/\nu)}{\nu(-\lambda_2)^{1/\nu}} = 1;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, exp(\lambda_1) \frac{\Gamma (1/\nu)}{\nu(-\lambda_2)^{1+ 1/\nu}} = \frac{\beta^\nu}{\nu}. \end{align}
(7)
From (7), we find that \(\lambda_2 = \dfrac{-1}{\beta^\nu}\) and ~\(exp(\lambda_1 - 1) = \dfrac{v}{\beta \Gamma (\tfrac{1}{\nu})}\). Consequently
\begin{align}\label{equ8} p(x) = \frac{\nu}{\beta \Gamma (1/\nu)} exp \biggl( \frac{-x^\nu}{\beta^\nu} \biggr) \end{align}
(8)
where \(\bar{A} (z) \) is gamma function. From (8), it follows that if only the first beginning direct moment \(\nu = 1\) exists than exponential law has the maximum entropy; if there are two moments \((\nu = 2 )\) then unilateral Gaussian law and if all direct moments exist \((\nu \rightarrow \infty )\) than unilateral uniform law. Indeed, the limiting moment (8) with \((\nu \rightarrow \infty )\) is a unilateral uniform law \(p(x) = \beta^-1,~ 0 < x < \beta\). So, if all direct moments exist then uniform law has the maximum entropy from unilateral distribution laws of RV. Analogically, for bilateral symmetry laws of distribution of RV, it can be shown that if the first \(\nu\) of absolute central direct moments then the probability density has the maximum entropy:
\begin{align}\label{equ9} p(x) = \frac{0.5 \nu}{\beta \Gamma (1/\nu)} exp\biggl( \frac{-|x|^\nu}{\beta} \biggr), ~ -\infty < x < \infty. \end{align}
(9)

From (9), it follows that if only first absolute central moment exists \(( \nu = 1) \) then Laplace distribution has the biggest entropy; if there are two moments \(( \nu = 2)\) then Gaussian law and if all direct moments exist \((\nu \rightarrow \infty )\) then uniform law. Indeed, the limiting case for (9) is a uniform law \(p(x) = 0.5 \beta^-1,~ -\beta < x < \beta \). So, if all direct moments exist then uniform law has the biggest entropy from bilateral symmetry distribution laws of RV. Considered private cases of bilateral laws with the maximum entropy coincide with already known laws (Laplace and Gaussian) which have maximum entropy that confirms the correctness of received results.

From analysis of the received expressions (8) and (9), it follows that for increasing the amount of information about evaluating parameters of distribution laws with big length (with long "tails") with the help of a method of moments is necessary to use direct moments of lesser order, including fractional order. If the parameters of distribution laws with lesser length are used then it is necessary to use direct moment of higher order.

Let's find from unilateral distribution laws of unlimited RV distribution law with which entropy value H reaches maximum with the following limitations imposed on probability density \(p(x)\):
\begin{align}\label{equ10} p(0) = &0, \,\,\,\,\,~ p(x) \ge 0,\,\,\,\,\,\, \int_{0}^{\infty} p(x) dx = 1,\,\,\,\,\,\, ~ \int_{0}^{\infty} x^{-\nu} p(x) dx = \beta^\mu/\nu \end{align}
(10)
where \(\nu \) is value of maximum existing beginning reverse moment. Considering the entropy is defined by an expression:
\begin{align} \label{equ11} H = - \int_{0}^{\infty} y^{-2} p(1/y) ln (y^{-2} p(1/y)) dy = - \int_{0}^{\infty} p(x) ln(x^2 p(x))dx. \end{align}
(11)
where \(y^{-2} p(\frac{1}{y})\) is a probability density RV \(\eta\) which is reverse to \(\xi\) and has the probability density \(p(x)\). As a result of using the method of indefinite Lagrange numerators, we'll receive following expression for distribution law with the maximum entropy:
\begin{align}\label{equ12} p(x) = \frac{\nu exp(x)}{\beta \Gamma (1/\nu)} exp\biggl( \frac{-exp(\nu x)}{\beta^\nu} \biggr). \end{align}
(12)
The limiting case for (12) with \(\nu \rightarrow \infty\) (all reverse moments exist) is a unilateral distribution law of limitations down from RV \(p(x) = \frac{1}{\beta} x^2, \frac{1}{\beta} < x < \infty\).
Let's define the bilateral distribution laws of RV for which entropy value \(H\) reaches the maximum with the following limitations imposed on probability density \(p(x)\)
\begin{align}\label{equ13} p(x) \ge 0, \,\,\,\,\, \int_{-\infty}^{\infty} p(x) dx = 1,\,\,\,\,\,\,\int_{-\infty}^{\infty} exp(\nu x) p(x) dx = \beta^\nu/\nu, \end{align}
(13)
where \(\nu\) is the value of maximum existing primary direct exponential moment. Considering the entropy \(H\) is defined by the expression;
\begin{align}\label{equ14} H = - \int_{-\infty}^{\infty} p(x) ln (exp (-x)p(x)) dx. \end{align}
(14)
By using the method of indefinite Lagrange numerators we'll receive the following expression for distribution law with the maximum entropy;
\begin{align}\label{equ15} p(x) = \frac{\nu exp(x)}{\beta \Gamma (1/\nu)} exp \biggl( \frac{- exp (\nu x)}{ \beta^\nu} \biggr), ~ -\infty < x < \infty. \end{align}
(15)
The limiting case for (15) when \(\nu \rightarrow \infty\) (all direct exponential moments exist) is a distribution law of bordered above RV \(p(x) = \frac{exp(x)}{\beta}, -\infty < x < ln(\beta)\). Now let's find such distribution law from bilateral distribution laws of unlimited RV for which the value of entropy H reaches maximum with the following limitations imposed on probability density \(p(x)\):
\begin{align}\label{equ16} p(x) \ge 0, ~\,\,\,\,\,\, \int_{-\infty}^{\infty} p(x) dx = 1 \,\,\,\,\,\,\,\, \int_{-\infty}^{\infty} exp(- \nu x) p(x) dx = \frac{\beta^\nu}{\nu}, \end{align}
(16)
where \(\nu\) is the value of maximum existing primary reverse exponential moment. Considering an entropy \(H\) is defined by the expression:
\begin{align}\label{equ17} H = - \int_{-\infty}^{\infty} p(x) ln (exp (x)p(x)) dx. \end{align}
(17)
As a result of using the method of indefinite Lagrange numerators, we'll receive the following expression for distribution law with the maximum entropy:
\begin{align}\label{equ18} p(x) = \frac{\nu~ exp(-x)}{\beta \Gamma (1/\nu)} exp \biggl( \frac{- exp (-\nu x)}{ \beta^\nu} \biggr), ~ -\infty < x < \infty. \end{align}
(18)
The limiting case for (18) when \(\nu \rightarrow \infty\) (all direct exponential moments exist) is a distribution law of bordered above RV \(p(x) = \frac{exp(-x)}{\beta}, -ln(\beta) < x< \infty \).
From the analysis of expressions (15) and (18), it follows that exponential transformation of RV leads to transformation of form parameter \(\nu\) in scale parameter and \(\beta\) parameter in shift parameter.
Finally let's define such distribution law from unilateral distribution laws of unlimited RV for which the value of entropy H reaches maximum with the following limitations imposed on probability density \(p(x)\):
\begin{align}\label{equ19} p (0) =& 0,\,\,\,\, ~ p(x) \ge 0, \,\,\,\,\, \int_{0}^{\infty} p(x) dx = 1, \,\,\,\,\,\,\int_{0}^{\infty} |ln(x)|^\nu p(x)dx =\frac{\beta^\nu}{\nu}, \end{align}
(19)
where \(\nu\) is the value of maximum existing primary direct logarithmic moment. Considering an entropy \(H\) is defined by the expression:
\begin{align}\label{equ20} H = - \int_{0}^{\infty} p(x) ln (xp(x)) dx. \end{align}
(20)
As a result of using the method of indefinite Lagrange numerators, we'll receive the following expression for distribution law with the maximum entropy:
\begin{align}\label{equ21} p(x) = \frac{\nu }{2 \beta \Gamma (1/\nu)x} exp \biggl( \frac{- |ln (x)|^\nu}{ \beta^\nu} \biggr), ~ 0 < x < \infty. \end{align}
(21)
From (21), it follows that if only two absolute logarithmic moments exist (\(\nu = 2\) ) then logarithmic normal law has the biggest entropy. If \(\nu \rightarrow \infty\) (all absolute primary moments exist) then (21) is transforming in Shannon law for limitations from above and down of RV \(p(x) = 0.5/\beta x,~ exp(-\beta) < x < exp(\beta)\). It is necessary to notice that with logarithmic transformation of RV scale parameter transforms in form parameter and shift parameter transforms in scale parameter.
In general case, if RV \(\eta\) connected with RV \(\eta \square\) by a ratio \(y =f(x)\) and known PDD \(p(y)\) of continuous RV \(\xi\) , then PDD \(p(x)\) can be found by a method of functional transformation with the help of expression:
\begin{align}\label{equ22} p(x) = p(y) . \left|\frac{dy}{dx}\right|. \end{align}
(22)
Considering (22), the entropy \begin{align*} H = - \int_{\Omega} p(y) ln (p(y)) dy \end{align*} takes the form
\begin{align}\label{equ23} H = - \int_{\Omega} p(x) ln (q(x). p(x)) dx \end{align}
(23)
where \(q(x) = \left|\dfrac{dy}{dx}\right|^{-1}\) and \(\Omega\) is the areas of existence RV \(\eta\) and \(\xi\) respectively.

3. Distributions arising in the analysis of the sequence of independent tests with three outputs

Next, consider the development of a probabilistic model of a sequence of independent trials with three outcomes which becomes particularly important in the formation of estimates of the information security of information processing systems [10].
During the test, it is taken into account that its result is either event A or the opposite event C. The probability of event A in any test is independent of the outcomes of all other tests (the tests are independent) and equal to the probability (this is ensured by the same set of conditions for each test). This scheme of tests was first considered by J. Bernoulli and bears his name [11, 12, 13, 14]. The probability \(P_A(k)\) of the fact that event \(A\) in \(N\) tests will come precisely \(k\) times (\(k = 1,2 , \dots , N\)) is defined by Bernoulli's formula [13, 14, 15]:
\begin{align}\label{equ24} P_A(k ) = \frac{N!}{(N -k)! k!} p^k (1 - p)^{N- k}, \end{align}
(24)
which represents binomial distribution. For \(N = 1\), it transforms to Bernoulli's distribution.
\begin{align}\label{equ25} P_A(k ) = p^k (1- p)^{1- k}. \end{align}
(25)
The limiting case of binomial distribution when \(p \rightarrow 0\) and \(N \rightarrow \infty\) and product \(Np\) aims to some positive constant value \(\lambda\) (i.e., \(Np \rightarrow \infty \)) is Poisson's distribution [13, 14, 15].
\begin{align}\label{equ26} P(k) = \frac{\lambda^k}{k!} exp (-\lambda), ~ 0 \le k < \infty. \end{align}
(26)
If sequence of tests with Bernoulli's scheme continues to appear m "failures" then the number of successes \(k\) obeys to negative binomial distribution
\begin{align}\label{equ27} P(k) = \frac{\Gamma (m + k)}{\Gamma (m) k!} p^k (1 - p)^m, ~ 0 \le k < \infty \end{align}
(27)
where \(\Gamma(m)\) is the gamma function. Main purpose of this work is to invent sequence probability model of independent tests with three outputs and with it's help receive formulas analogue to (24), (26) and (27) for defining the probabilities of coming coinciding events. Let it be produced \(N\) of independent tests. Every test can end with three outputs: either event \(A\) with the probability \(p_1\) will come, or event \(B\) with the probability \(p_2\) will come, or event \(C\) with the probability \((1 - p_1 - p_2)\) will come. Let's match random discrete value to random output of every test which takes three values: -1 if event A happened; 0 if event \(C\) happened and 1 if event \(B\) happened. Positive or negative output of every test we'll consider as a "success" and zero output - "failure". In this the probability of coming events A, C and B in every test can be found by an expression
\begin{align}\label{equ28} P(k) = \begin{cases} p_1, & k = -1; \\ 1- p_1 - p_2, & k = 0; \\ p_2, & k = 1; \end{cases} \end{align}
(28)
where \( 0 < p_1 < 1, 0 < p_2 < 1, p_1 + p_2 < 1\). This distribution of probabilities, analogically to Bernoulli's distribution (25), can be called bilateral Bernoulli's distribution. Let's find characteristic function for distribution (28), using ratio [15]
\begin{align}\label{equ29} \theta(j \vartheta) = \sum_{k = -1}^{1} exp(j \vartheta k) P(k). \end{align}
(29)
Using (28), we'll get
\begin{align}\label{equ30} \theta (j \vartheta) = p_1 exp(-j \vartheta) + (1- p_1 - p_2) + exp(j \vartheta). \end{align}
(30)
Since ongoing tests are independent so characteristic function \(\theta_N (j, \vartheta)\) of distribution laws \(P(k)\) in \(N\) tests will be equal to expression:
\begin{align}\label{equ31} \theta_N (j \vartheta) = \theta(j \vartheta)^N = [p_1 exp(-j \vartheta) + (1- p_1 - p_2) + exp(j \vartheta)]^N. \end{align}
(31)
In this probability distribution \(P(k)\) in \(N\) tests can be found by the formula:
\begin{align}\label{equ32} P(k) = \frac{1}{2 \pi} \int_{- \pi}^{\pi} \Omega (j \vartheta)^N exp (- j \vartheta k ) d \vartheta , ~ -(N -1) , \dots , N \end{align}
(32)
Let's find obvious expression for probability distribution \(P(k)\) in \(N\) tests by substituting (31) in (32) and integrating
\begin{align}\label{equ33} P(k) = (1 - p_1 -p_2) ^N\times \biggl( \sqrt{\frac{p_2}{p_1}} \biggr)^k \sum_{i = |k|}^{N} \frac{N!}{(N - i)!} \times B (i, k ) \biggl( \frac{\sqrt{p_1 p_2}}{1 - p_1 - p_2} \biggr)^i \end{align}
(33)
where \(B(i, k ) = \frac{0.5 (1+ (-1)^{ + |k|})}{ \Gamma (0.5(i - k) + 1 ) \eta (0.5 (i + k) + 1) }\). Expression (10) can be simplified for five private cases:
  1. If \( p_1 = p_2 = p < 0.5\), then
    \begin{align}\label{equ34} P(k) = (1 - 2p) ^N \times \sum_{i = |k|}^{N} \frac{N!}{(N - i)!} \times \biggl(\frac{p}{1 - 2p} \biggr)^i \times \frac{0.5[1+ (-1)^{i + |k|}]}{\Gamma [0.5 (i + k) + 1] \Gamma [0.5 (i -k) + 1]} \end{align}
    (34)
    \item If \(p_1 = (1 - p)^2, p_2 = p^2\), then
    \begin{align}\label{equ35} P(k) = \frac{(2N)!}{(N - k)! (N+ k)!} \times p^(N + k) (1 - p)^{(N - k)}, ~ k = -N, ~ -(N - 1), \dots , N \end{align}
    (35)
    Probability distribution (35), just like distribution (24), is a binomial distribution with not-zero shift parameter.
  2. Let's view limiting case for distribution (33), when probability of coming value \(C\) is aims to zero, i.e., \((p_1 + p_2) \rightarrow 1\). In this case every test will end in two outputs: either coming of event \(A\) with the probability \((1 p)\), or event \(B\) with the probability \(p\). Those outputs can be matched discrete random value, which takes two values: -1, if event \(A\) happened and 1, if event \(B\) happened. In this probability distribution (33), the result can be transformed to distribution:
    \begin{align}\label{equ36} P(k) = (0.5 N! [1 + (-1)^{N + |k|}]) \times (\Gamma [0.5 (N + k ) + 1] \Gamma [0.5 (N - k ) + 1 ]^-1) \times \biggl( \frac{p}{1 - p} \biggr)^{0.5k} (p (1 - p))^{0.5N} \end{align}
    (36)
  3. Let's view the second limiting case for distribution (33), when probability of coming event \(A\) aims to zero, i.e. \(p_1 \rightarrow 0\). In this case every test will end in two outputs: either coming of event \(C\) with a probability \((i - p)\), or event \(B\) with a probability \(p\). Those outputs can be matched random discrete value, which takes two values: 0, if event \(C\) happened and 1, if event \(B\) happened. This probability distribution (33) as a result of limiting transition transforms is the binomial distribution (24) and that's why received probability distribution (33) can be called generalized Bernoulli's formula, or bilateral binomial distribution.
  4. Let's view the third limiting case for distribution (33), when \(p_1 \rightarrow 0, ~ p_2 \rightarrow 0, ~ N \rightarrow \infty\), and products \(Np_1, ~ Np_2\) aim to some positive constant values \(\lambda_1\), \(\lambda_2\) (i.e. \(Np_1 \rightarrow \lambda_1, ~ Np_2 \rightarrow \lambda_2 \) ). This probability distribution (33) in result of limiting transition transforms is the probability distribution either
    \begin{align}\label{equ37} P(k) = exp ( -\lambda_1 - \lambda_2) \biggl( \sqrt{\frac{\lambda_2}{\lambda_1}} \biggr)^k \times \sum_{i = |k|}^{\infty} \frac{0.5[1+ (-1)^{i + |k|}] \sqrt{\lambda_1 \lambda_2}^i}{\Gamma [0.5 (i + k) + 1] \Gamma [0.5 (i -k) + 1]} \end{align}
    (37)
    or
    \begin{align}\label{equ38} P(k) = exp ( -\lambda_1 - \lambda_2) \times \biggl( \sqrt{\frac{\lambda_2}{\lambda_1}}\biggr)^k I_{|k|} (2 \sqrt{\lambda_1 \lambda_2}), ~ -\infty < k < \infty \end{align}
    (38)
    where \(I_\nu(z)\) is the modified Bessel's function.
If parameter \(\lambda_1 \rightarrow 0\), and parameter \(\lambda_2 \rightarrow \lambda\), then distribution (37) or (38) transforms in Poisson's distribution (26). That's why probability distribution (37) or (38) can be called bilateral Poisson's distribution. Characteristic function for it is;
\begin{align}\label{equ39} \theta(j \vartheta) = exp [- (\lambda_1 + \lambda_2) + \lambda_1 exp ( -j \vartheta) + \lambda_2 exp (j \vartheta) ]. \end{align}
(39)
The first, second, third and fourth order for distribution (33) can be found from the expressions \begin{eqnarray} m_ 1 &=& N (p_2 -p_1); \\ \notag \end{eqnarray}
\begin{eqnarray} M_2 &=& N [ p_2 + P_1 - (p_2 -p_1)^2]\label{equ40}\\ \end{eqnarray}
(40)
\begin{eqnarray} M_3 &=& (p_2 - p_1) \times [N -N (p_2 - p_1)^2 - 3M_2]\label{equ41}\\ \end{eqnarray}
(41)
\begin{eqnarray} M_4 &=& M_2 [1 + 6 (p_2 -p_1)^2] + 3(1 - \frac{1}{N})M^2_2 + 3N (p_2 - p_1)^2 [ (p_2 -p_1)^2 - 1].\label{equ42} \end{eqnarray}
(42)
To compute these moments, we need asymmetry coefficient \(K_a\) and excess coefficient \(K_e\), which are given as;
\begin{align}\label{equ43} K_a = \frac{M_3}{M_2^{1.5}}; \,\,\,\,\,\,\, k_e = \frac{M_4}{M_2^2} - 3. \end{align}
(43)
Expressions (40), (41) and (42) for moments are significantly simplified for private distribution cases (33). So, for distribution (33), we have:
\begin{align}\label{equ44} m_1 = 0, \,\,\,\,\,\,\, M_2 = 2N p,\,\,\,\,\,\,\, M_3 = 0,\,\,\,\,\,\,\, M_4 = M_2 + 3 ( 1- \frac{1}{N}) M^2_2. \end{align}
(44)
In this case
\begin{align}\label{equ45} K_a = 0; ~ k_e = \frac{0.5 - 3p}{pN} \end{align}
(45)
For distribution (45), we have: \begin{eqnarray} m_1 &= & N (2p -1); \\ \notag M_2 &= &2N p( 1- p); \\ \notag \end{eqnarray}
\begin{eqnarray} M_3 &=& 2N p( 1- p) (1 - 2p);\label{equ46} \end{eqnarray}
(46)
\begin{eqnarray} M_4 &=& 2N p (1 -p ) \times [1 + 6p(1- p )(N - 1)].\label{equ47} \end{eqnarray}
(47)
where
\begin{align}\label{equ48} K_e = \frac{1 -2p}{\sqrt{2Np (1 - p)}}, \,\,\,\,\,\,\,\,\,\, K_e =& \frac{1 - 6p(1 - p)}{2N p (1 -p)}. \end{align}
(48)
For distribution (36), we have
\begin{eqnarray} m_1 &= &N (2p -1), \notag\\ M_2 &= & 4N p (1 - p), \notag\\ M_3 &= & 8N p (1 - p ) ( 1- 2p),\label{equ49} \end{eqnarray}
(49)
\begin{eqnarray} M_4 &= &3M^2_2 + 4M_2 [ 1 + 6p (1 - p)].\label{equ50} \end{eqnarray}
(50)
where
\begin{align}\label{equ51} K_e = \frac{1 -2p}{\sqrt{Np (1 - p)}}, \,\,\,\,\,\,\,\,\,\, K_e = \frac{1 + 6p(1 - p)}{N p (1 -p)}. \end{align}
(51)
For expression (37) or (38), we have
\begin{align}\label{equ52} m_1 = \lambda_2 - \lambda_1,\,\,\,\,\,\,\,\,\,\,\,\, M_2 = \lambda_1 + \lambda_2,\,\,\,\,\,\,\,\,\,\,\,\, M_3 = \lambda_2 - \lambda,\,\,\,\,\,\,\,\,\,\,\,\, M_4 = \lambda_1 + \lambda_2 + 3M^2_2. \end{align}
(52)
where
\begin{align}\label{equ53} K_a = \frac{\lambda_2 - \lambda_1}{(\lambda_1 + \lambda_2)^{1.5}},\,\,\,\,\,\,\,\,\,\,\,\, K_e = \frac{1}{\lambda_1 + \lambda_2}. \end{align}
(53)
Probability \(P_B(k)\) of fact, that event \(B\) in \(N\) tests will come \(k\) times can be found from formula (33), or from it's private cases (34), (35), (36), (37) or (38). In this we suppose that \(P_B(k) = P(k), k = 1, 2, \dots , N\).
Probability \(P_A(k)\) of fact, that event \(A\) in \(N\) tests will come \(k\) times can be also found from formula (33), or it's private cases (34), (35), (36), (37) or (38). In this we suppose that \(P_A(k) = P(k), k = -1, -2, \dots , -N\).
Probability \(P_C\) of coming event \(C\) in \(N\) tests can be found using formula (33), or it's private cases (35), (36), (37) or (38). In that we suppose, that \(P_C = P(0)\). Probability \(P_C\) matches to probability of fact, that in \(N\) cases events \(A\) and \(B\) won't come.
Let's view the example. Two symmetric coins are being thrown for ten rimes. In every throw three outputs are possible: two "eagles" with probability 0.25; two "tails of coin" with probability 0.25 and "eagle and tail of coin" with probability 0.5. It's necessary to find: 1) probability of fact, that precisely five times two "eagles" drop; 2) probability \(P_{tt}\) of fact, that precisely three times two "tails of coin" drop; 3) probability \(P_{et}\) of fact, that precisely five times two "eagles" and three "tales of coin" drop. In the match with example's condition we have \begin{align*} p_1 = p_2 = p = 0.25,\,\,\,\,\,\,\,\,\,\,\,\, N = 10; ~ p_{ee} = P_A (-5),\,\,\,\,\,\,\,\,\,\,\,\, P_{tt} = P_B (3),\,\,\,\,\,\,\,\,\,\,\,\, P_{et } = P_A (-5) P_B (3). \end{align*} i.e., \(p_1 = p_2\), then we use expression (9) as a counting formula. With it's help we find, that either
\begin{align}\label{equ54} P_{ee} \approx 0.015,\,\,\,\,\,\,\,\,\,\,\,\, P_{tt} \approx 0.075,\,\,\,\,\,\,\,\,\,\,\,\, p_{et} \approx 1.093 \times 10^{-3}, \end{align}
(54)
or
\begin{align}\label{equ55} P(k) = ( 1- p_1 - p_2)^m \biggl( \sqrt{\frac{p_2}{p_1}} \biggr)^k \times \biggl( \sqrt{p_1 p_2} \biggr)^{|k|} \frac{\Gamma (m + |k|)}{\Gamma (m)} F(k), ~ -\infty < k < \infty, \end{align}
(55)
where \(F(k) = F_1 (0.5 ( m + |k|)),~ 0.5 ( m+ |k| + 1), ~ 1+ |k|, ~ 4 p_1 p_2 \) is the Hypergeometric Gaussian function. Characteristic function of distribution (54) or (55) has the form
\begin{align}\label{equ56} \theta ( j \vartheta) = [ (1 - p_1 - p_2) \times ( 1- p_1 exp( -j \vartheta) - p_2 ( j \vartheta)) ^ {-1} ]^m. \end{align}
(56)
Primary moment of the first order and central moments of the second, the third and the fourth orders for expressions (54) or (55) are defined by expressions \begin{eqnarray} m_1 &=& \frac{m( p_2 - p_1)}{1 - p_1 - p_2},\notag \end{eqnarray}
\begin{eqnarray} M_2 &= &\frac{m ( p_2 + p_1 - 4 p_1 p_2)}{(1 - p_1 - p_2)^2},\label{equ57},\\ \end{eqnarray}
(57)
\begin{eqnarray} M_3 &=& \frac{m (p_2 -p_1)}{(1 -p_1 - p_2)^3} \times ( 1 + p_2 + p_1 -8 p_1 p_2),\label{equ58} \end{eqnarray}
(58)
\begin{eqnarray} M_4 &=& m \biggl[ \frac{6 (p_2 - p_1)^4}{(1 - p_1 -p_2)^4} + \biggl( \frac{4 (p_2 - p_1)^2}{(1 - p_1 -p_2)^3} + \frac{(p_1 + p_2)}{(1 - p_1 - p_2)^2} \biggr) \times (2 p_1 + 2 p_2 + 1) \biggr] + 3M_2^2.\label{equ59} \end{eqnarray}
(59)
Let's view limiting case for distribution (31) or (32), when probability \(p_1 \rightarrow 0\), and probability \(p_2 = p\). In the probability distribution (31) or (32) as a result of limiting transaction transforms in negative binomial distribution (4). That's why received probability distribution (31) or (32) can be called bilateral negative binomial distribution.
Choosing from bilateral binomial, Poisson's and negative binomial distributions, we can use following properties of those distributions: Binomial - \(K_a M_2 < 1\), Poisson's - \(K_e M_2 = 1 \), Negative binomial - \(K_e M_2 > 1\).
So, there was developed probability model for sequence of independent tests with three outputs, were received expressions for it's general number characteristics, and also for calculating the probabilities of coming matched events precisely k times. It was shown, that limiting cases of received bilateral distributions are binomial, negative binomial and Poisson's distributions.

4. Conclusion

The following results are obtained in this paper
  • Generalized expressions for one-way and two-way continuous distribution laws with maximum entropy depending on the number of existing power, exponential or logarithmic moments. With their help, one can more reasonably choose the a priori distribution under the conditions of a priori uncertainty in the analysis of the risks of information systems. From the analysis of expression (23) and its particular cases (2), (11), (14), (17), (20) at the appropriate values \(q(x)\) it follows that in the general case the entropy depends also on the type of moments used to determine the numerical characteristics of the distribution law.
  • Probabilistic model for a sequence of independent trials with three outcomes, which acquire special significance in the formation of information security assessments of information systems. Expressions for its basic numerical characteristics are obtained. It is shown that the limiting cases of the obtained two-way distributions are the binomial, negative binomial and Poisson distributions.

Acknowledgments

The authors would like to express their gratitude to University of Lagos for providing the enabling environment to conduct this research work.

References

  1. Burkov, V. N., Novikov, D. A., & Shchepkin, A. V. (2015). Control mechanisms for ecological-economic systems. Springer International Publishing.[Google Scholor]
  2. Kornilov, S.N., & Kornilova, M.M. (2017). Information processing technique for analyzing the operation of freight stations of Russian Railways. Modern Problems of the Transport Complex of Russia , 4(1), 49-52.[Google Scholor]
  3. Broderick, J. S. (2006). ISMS, security standards and security regulations. Information Security Technical Report, 11(1), 26-31.[Google Scholor]
  4. Otten, K., & Debons, A. (1970). Towards a metascience of information: Informatology. Journal of the American Society for Information Science, 21(1), 89-94.[Google Scholor]
  5. Kulba, V., Bakhtadze, N., Zaikin, O., Shelkov, A., & Chernov, I. (2017). Scenario analysis of management processes in the prevention and the elimination of consequences of man-made disasters. Procedia Computer Science, 112, 2066-2075.[Google Scholor]
  6. Schulz, V. L., Kul'ba, V. V., Shelkov, A. B., & Chernov, I. V. (2013). Methods of scenario analysis of threats to the effective functioning of systems of organizational management. Trends and Management, 1(1), 6-30.[Google Scholor]
  7. Gromov, N., & Kazakov, V. (2012). Review of AdS/CFT integrability, chapter III. 7: Hirota dynamics for quantum integrability. Letters in Mathematical Physics, 99(1-3), 321-347.[Google Scholor]
  8. Moustafa, N., & Slay, J. (2016). The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Information Security Journal: A Global Perspective, 25(1-3), 18-31.[Google Scholor]
  9. Jones, M. R., & Karsten, H. (2008). Giddens's structuration theory and information systems research. MIS quarterly, 32(1), 127-157.[Google Scholor]
  10. Gromov, Y. Y., Karpov, I. G., Minin, Y. V., & Ivanova, O. G. (2016). Generalized probabilistic description of homogeneous flows of events for solving informational security problems. Journal of Theoretical & Applied Information Technology, 87(2), 250-254.[Google Scholor]
  11. Chung, K. L., & Zhong, K. (2001). A course in probability theory. Academic press.[Google Scholor]
  12. Levin, B. R. (1989). Theoretical bases of statistical radio engineering. Moscow: Radio and telecommunication.[Google Scholor]
  13. Prokhorov, Y. V. (1999). Probability and Mathematical Statistics (Encyclopedia). Moscow: Bolshaya Rossiyskaya encyclopaedia Publisher. [Google Scholor]
  14. Kai, T., & Tomita, K. (1980). Statistical mechanics of deterministic chaos: The case of one-dimensional discrete process. Progress of Theoretical Physics, 64(5), 1532-1550.[Google Scholor]
  15. Gardiner, C. W. (1985). Handbook of stochastic methods (Vol. 3, pp. 2-20). Berlin: springer. [Google Scholor]
]]>
Effect of salinity on the structural strengths of conventional concrete https://old.pisrt.org/psr-press/journals/easl-vol-3-issue-1-2020/effect-of-salinity-on-the-structural-strengths-of-conventional-concrete/ Sun, 01 Mar 2020 16:59:51 +0000 https://old.pisrt.org/?p=3805
EASL-Vol. 3 (2020), Issue 1, pp. 21 - 34 Open Access Full-Text PDF
E. E. Ikponmwosa, S. O. Ehikhuenmen, G. M. Sobamowo, E. Ambrose
Abstract: This research focuses on the effect salinity on the structural strengths of conventional concrete. The unreinforced beam, cylinder and cube specimens produced were cured up to 120 days in different curing medium and tested at varying predetermined curing age. The physio-chemical properties of Unilag tap and lagoon water, physical properties, workability, compressive, split tensile and flexural strengths were determined. Two curing media (salt water I & salt water II) having five times (5\(\times\)) and ten times (10\(\times\)) the chloride content of lagoon water were simulated. The results revealed that the structural strengths of concrete samples cured in lagoon water recorded lower strengths when compared to samples cured in salt water I but higher in strength development than samples cured in salt water II. The percentage decrease in structural strengths increased from lagoon water to salt water II which recorded the highest value of 29.35%, 17.67% and 33.65% at 28-day for compressive, tensile and flexural strengths respectively. The mathematical models developed using Modified Regression Approach to predict the structural strengths were in good agreement with the experimental data. This research reveals that the salt water solution simulation in the laboratory does not fully replicate the aggressiveness of actual marine water (environment).
]]>

Engineering and Applied Science Letter

Effect of salinity on the structural strengths of conventional concrete

E. E. Ikponmwosa, S. O. Ehikhuenmen\(^1\), G. M. Sobamowo, E. Ambrose
Department of Civil and Environmental Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria.; (E.E.I & S.O.E & E.A)
Department of Mechanical Engineering, University of Lagos, Akoka, Yaba, Lagos State, Nigeria.; (G.M.S)

\(^{1}\)Corresponding Author: sehikhuenmen@unilag.edu.ng

Abstract

This research focuses on the effect salinity on the structural strengths of conventional concrete. The unreinforced beam, cylinder and cube specimens produced were cured up to 120 days in different curing medium and tested at varying predetermined curing age. The physio-chemical properties of Unilag tap and lagoon water, physical properties, workability, compressive, split tensile and flexural strengths were determined. Two curing media (salt water I & salt water II) having five times (5\(\times\)) and ten times (10\(\times\)) the chloride content of lagoon water were simulated. The results revealed that the structural strengths of concrete samples cured in lagoon water recorded lower strengths when compared to samples cured in salt water I but higher in strength development than samples cured in salt water II. The percentage decrease in structural strengths increased from lagoon water to salt water II which recorded the highest value of 29.35%, 17.67% and 33.65% at 28-day for compressive, tensile and flexural strengths respectively. The mathematical models developed using Modified Regression Approach to predict the structural strengths were in good agreement with the experimental data. This research reveals that the salt water solution simulation in the laboratory does not fully replicate the aggressiveness of actual marine water (environment).

Keywords:

Conventional concrete, curing media, curing age, salinity, modified regression approach, structural strength.
]]>
Dynamic analysis of non-homogenous varying thickness rectangular plates resting on Pasternak and Winkler foundations https://old.pisrt.org/psr-press/journals/easl-vol-3-issue-1-2020/dynamic-analysis-of-non-homogenous-varying-thickness-rectangular-plates-resting-on-pasternak-and-winkler-foundations/ Sat, 22 Feb 2020 11:12:11 +0000 https://old.pisrt.org/?p=3780
EASL-Vol. 3 (2020), Issue 1, pp. 1 - 20 Open Access Full-Text PDF
S. A. Salawu, M. G. Sobamowo, O. M. Sadiq
Abstract: Modern day technological advancement has resulted in manufacturing industries intensify the use and application of thin plates in their productions thereby, resulting in increased research awareness in the study of dynamic behavior of thin plates. This research analyzes the free vibration dynamic behavior of thin rectangular plates resting on elastic Winkler and Pasternak foundations using two-dimensional differential transformation method. The reliability of the obtained analytical solutions are validated with results presented in cited literature and confirmed very precise. However, the analytical solutions obtained are used to investigate the influence of elastic foundations, homogeneity and thickness variation on the dynamic behavior of the plates under clamped and condition. From the results obtained, it is realized that increase in non-homogenous material results in corresponding increase in natural frequency of the plates. Also, increase in Winkler, Pasternak and combine Winkler and Pasternak foundations stiffness leads to increase in natural frequency of the plates. Increase in thickness results to natural frequency increases. The findings will serve as benchmark for further study of plate vibration research.
]]>

Engineering and Applied Science Letter

Dynamic analysis of non-homogenous varying thickness rectangular plates resting on Pasternak and Winkler foundations

S. A. Salawu\(^1\), M. G. Sobamowo, O. M. Sadiq
Department of Civil and Environmental Engineering, University of Lagos, Akoka, Nigeria.; (S.A.S & O.M.S)
Department of Mechanical Engineering, University of Lagos, Akoka, Nigeria.; (M.G.S)

\(^{1}\)Corresponding Author: safolu@gmail.com

Abstract

Modern day technological advancement has resulted in manufacturing industries intensify the use and application of thin plates in their productions thereby, resulting in increased research awareness in the study of dynamic behavior of thin plates. This research analyzes the free vibration dynamic behavior of thin rectangular plates resting on elastic Winkler and Pasternak foundations using two-dimensional differential transformation method. The reliability of the obtained analytical solutions are validated with results presented in cited literature and confirmed very precise. However, the analytical solutions obtained are used to investigate the influence of elastic foundations, homogeneity and thickness variation on the dynamic behavior of the plates under clamped and condition. From the results obtained, it is realized that increase in non-homogenous material results in corresponding increase in natural frequency of the plates. Also, increase in Winkler, Pasternak and combine Winkler and Pasternak foundations stiffness leads to increase in natural frequency of the plates. Increase in thickness results to natural frequency increases. The findings will serve as benchmark for further study of plate vibration research.

Keywords:

Natural frequencies, nonlinear free vibration, thin plate, Winkler and Pasternak foundations, two-dimensional differential transformation method.
]]>