OMA – Vol 2 – Issue 1 (2018) – PISRT https://old.pisrt.org Thu, 07 Mar 2019 22:35:24 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Zagreb polynomials and redefined Zagreb indices for the line graph of carbon nanocones https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/zagreb-polynomials-and-redefined-zagreb-indices-for-the-line-graph-of-carbon-nanocones/ Sat, 30 Jun 2018 20:24:35 +0000 https://old.pisrt.org/?p=890
OMA-Vol. 2 (2018), Issue 1, pp. 66–73 | Open Access Full-Text PDF
Saba Noreen, Atif Mahmood
Abstract:A line graph has many useful applications in physical chemistry. Topological indices are numerical parameters associated to a structure and, in combination, determine properties of the concerned material. In this paper, we compute the closed form of Zagreb polynomilas of all generalized class of carbon nanocones and compute important degree-based topological indices.
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

Zagreb polynomials and redefined Zagreb indices for the line graph of carbon nanocones

Saba Noreen\(^1\), Atif Mahmood
Department of Mathematics and Statistics, The University of Lahore, Lahore Pakistan.; (S.N)
Department of Mathematics and Statistics, The University of Lahore, (Pakpattan Campus) Lahore Pakistan.; (A.M)
\(^{1}\)Corresponding Author; sabaalvi77@yahoo.com

Copyright © 2018 Saba Noreen, Atif Mahmood. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A line graph has many useful applications in physical chemistry. Topological indices are numerical parameters associated to a structure and, in combination, determine properties of the concerned material. In this paper, we compute the closed form of Zagreb polynomilas of all generalized class of carbon nanocones and compute important degree-based topological indices.

Keywords:

Zagreb-polynomial; Degree-based index; Carbon nanocone.

1. Introduction

Chemical graph theory is a subject which connects Mathematics, chemistry and graph theory. A topological index is a numeric number associated with molecular graph and this number correlate certain physico-chemical properties of chemical compounds. The topological indices such as the Wiener index, first and second Zagreb index, modified Zagreb index, Randi´c index and symmetric division index, Harmonic index, Invers sum index, Augmented Zagreb index, etc. are useful in prediction of bioactivity of the chemical compounds [1, 2, 3, 4, 5]. These indices capture the overall structure of compound and predict chemical properties such as strain energy, heat of formation, and boiling points etc. Carbon nanocones have been observed since 1968 or even earlier [6], on the surface of naturally occurring graphite. The importance of carbon nanostructures is due to their potential use in many applications including gas sensors, energy storage, nanoelectronic devices, biosensors and chemical probes [7]. Carbon allotropes such as carbon nanocones and carbon nanotubes have been proposed as possible molecular gas storage devices [8, 9]. More recently, carbon nanocones have gained increased scientific interest due to their unique properties and promising uses in many novel applications such as energy and hydrogen-storage [10]. Figure 1 and figure 2 are carbon nenocones.

Figure 1. Carbon Nenocone \(CNC_{k}[5]\).

Figure 2. The Molecular graph of \(CNC_{k}[5]\).

The molecular graph of \(CNC_{k}[n]\) nanocones have conical structures with a cycle of length \(k\) at its core and \(n\) layers of hexagons placed at the conical surface around its center as shown in following figure 3.

Figure 3. Carbon nenocone \(CNC_{k}[n]\).

The line graph \(L(G)\) of a graph \(G\) is the graph each of whose vertex represents an edge of \(G\) [11, 12, 13,14] and two of its vertices are adjacent if their corresponding edges are adjacent in \(G\).

Figure 2. The line graph ofCarbon nenocone \(CNC_{k}[n]\).

In the present report, we gave closed form of Zagreb-polynomials of Carbon nenocones. We also compute some degree-based topological indices. In [15], authors computed Hosoya polynomial and related distance based indices for \(CNC_{7}[n]\). In [16] authors computed the Vertex PI, Szeged and Omega Polynomials of Carbon Nanocones \(CN_{4}[n]\). Similarly many partial results about topological indices have been obtained about some particular classes of Nanocones. We however present most general results about complete families of nanocones. Our results present nice generalizations of many existing partial results. Let \(G\) be a connected graph. The vertex and edge sets are denoted by \(V(G)\) and \(E(G)\), respectively. For every vertex \(v\in V(G)\), degree of \(v\) is number of vertices attached with it. The first and the second Zagreb indices (cf. [17]) are defined as $$M_{1}(G)=\sum\limits_{uv\in E(G)}(d_{u}+d_{v})$$ and $$M_{2}(G)=\sum\limits_{uv\in E(G)}(d_{u}.d_{v}).$$ Considering the Zagreb indices, Fath-Tabar [18] defined first and the second Zagreb polynomials $$M_{1}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}+d_{v}}$$ and $$M_{2}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}.d_{v}}.$$ The properties of first and second Zagreb polynomials for some chemical structures have been studied in the literature [19]. After that, in [20], the authors defined the third Zagreb index $$M_{3}(G)=\sum\limits_{uv\in E(G)}(d_{u}-d_{v})$$ and Zagreb polynomials $$M_{3}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}-d_{v}}.$$ In the year 2016, [21] following Zagreb type polynomials were defined
  • \(M_{4}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{u}(d_{u}+d_{v})}\),
  • \(M_{5}(G,x)=\sum\limits_{uv\in E(G)}x^{d_{v}(d_{u}+d_{v})}\),
  • \(M_{a,b}(G,x)=\sum\limits_{uv\in E(G)}x^{ad_{u}+bd_{v}}\),
  • \(M^{'}_{a,b}(G,x)=\sum\limits_{uv\in E(G)}x^{(a+d_{u})+(b+d_{v})}\).
Ranjini et al. [22] redefines the Zagreb index, i. e, the redefined first, second and third Zagreb indices of graph \(G\). These indicators appear as
  • Re\(ZG_{1}(G)=\sum\limits_{uv\in E(G)}\frac{d_{u}+d_{v}}{d_{u}d_{v}}\),
  • Re\(ZG_{2}(G)=\sum\limits_{uv\in E(G)}\frac{d_{u}d_{v}}{d_{u}+d_{v}}\),
  • Re\(ZG_{3}(G)=\sum\limits_{uv\in E(G)}(d_{u}.d_{v})(d_{u}+d_{v})\).

2. Main Results

In this section, we will present our computational results

Theorem 2.1 Let \(L(CNC_{k}[n])\) be the line graph of Carbon Nanocones \(CNC_{k}[n]\) . Then

  1. \(M_{1}(L(CNC_{k}[n]),x)=2kx^{5}+k(2n-1)x^{6}+2knx^{7}+3kn^{2}x^{8}\)
  2. \(M_{2}(L(CNC_{k}[n]),x)=2kx^{6}+k(2n-1)x^{9}+2knx^{12}+3kn^{2}x^{16}\)
  3. \(M_{3}(L(CNC_{k}[n]),x)=k[3n^2+2n-1]+2k(n+1)x\)
  4. \(M_{4}(L(CNC_{k}[n]),x)=2kx^{10}+k(2n-1)x^{18}+2knx^{21}+3kn^{2}x^{32}\)
  5. \(M_{5}(L(CNC_{k}[n]),x)=2kx^{15}+k(2n-1)x^{18}+2knx^{21}+3kn^{2}x^{32}\)
  6. \(M_{a,b}(L(CNC_{k}[n]),x)=2kx^{(2a+3b)}+k(2n-1)x^{3(a+b)}+2knx^{(3a+4b)}+3kn^{2}x^{4(a+b)}\)
  7. \(M^{'}_{a,b}(L(CNC_{k}[n]),x)=2kx^{(a+2)(b+3)}+k(2n-1)x^{(a+2)(b+3)}+2knx^{(a+2)(b+3)}+3kn^{2}x^{(a+2)(b+3)}\)

Proof. Let \(L(CNC_{k}[n])\) be the line graph of Carbon Nanocones \(CNC_{k}[n]\). From the graph of \(CNC_{k}[n]\)(figure 4) we can see that the total number of vertices are \(8k+2kn\) and total number of edges are \(k(n+1)(3n+1)\). The edge set of \(L(CNC_{k}[n])\) has following four partitions $$E_{1}=E_{\{2,3\}}=\{e=uv\in L(CNC_{k}[n]): d_{u}=2, d_{v}=3\}, $$ $$E_{2}=E_{\{3,3\}}=\{e=uv\in L(CNC_{k}[n]): d_{u}=3, d_{v}=3\}, $$ $$E_{3}=E_{\{3,4\}}=\{e=uv\in L(CNC_{k}[n]): d_{u}=3, d_{v}=4\}, $$ and $$E_{4}=E_{\{4,4\}}=\{e=uv\in L(CNC_{k}[n]): d_{u}=4, d_{v}=4\}. $$ Now, $$|E_{1}(L(CNC_{k}[n]))|=2k, $$ $$|E_{2}(L(CNC_{k}[n]))|=k(2n-1), $$ $$|E_{3}(L(CNC_{k}[n]))|=2kn, $$ and $$|E_{4}(L(CNC_{k}[n]))|=3kn^{2}. $$ \begin{eqnarray*} M_{1}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{d_{u}+d_{v}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{2+3}+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3+3}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{3+4}+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4+4}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{5}+|E_{2}(L(CNC_{k}[n]))|x^{6}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{7}+|E_{4}(L(CNC_{k}[n]))|x^{8}\\ &=&2kx^{5}+k(2n-1)x^{6}+2knx^{7}+3kn^{2}x^{8}. \end{eqnarray*} \begin{eqnarray*} M_{2}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{d_{u}\times d_{v}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{2\times 3}+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3\times 3}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{3\times 4}+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4\times 4}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{6}+|E_{2}(L(CNC_{k}[n]))|x^{9}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{12}+|E_{4}(L(CNC_{k}[n]))|x^{16}\\ &=&2kx^{6}+k(2n-1)x^{9}+2knx^{12}+3kn^{2}x^{16}. \end{eqnarray*} \begin{eqnarray*} M_{3}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{d_{v}-d_{u}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{3-2}+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3-3}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{4-3}+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4-4}\\ &=&|E_{1}(L(CNC_{k}[n]))|x+|E_{2}(L(CNC_{k}[n]))|\\ &&+|E_{3}(L(CNC_{k}[n]))|x+|E_{4}(L(CNC_{k}[n]))|\\ &=&k[3n^2+2n-1]+2k(n+1)x. \end{eqnarray*} \begin{eqnarray*} M_{4}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{d_{u}(d_{u}+d_{v})}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{2(2+3)}+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3(3+3)}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{3(3+4)}+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4(4+4)}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{10}+|E_{2}(L(CNC_{k}[n]))|x^{18}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{21}+|E_{4}(L(CNC_{k}[n]))|x^{32}\\ &=&2kx^{10}+k(2n-1)x^{18}+2knx^{21}+3kn^{2}x^{32}. \end{eqnarray*} \begin{eqnarray*} M_{5}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{d_{v}(d_{u}+d_{v})}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{3(2+3)}+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3(3+3)}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{4(3+4)}+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4(4+4)}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{15}+|E_{2}(L(CNC_{k}[n]))|x^{18}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{28}+|E_{4}(L(CNC_{k}[n]))|x^{32}\\ &=&2kx^{15}+k(2n-1)x^{18}+2knx^{28}+3kn^{2}x^{32}. \end{eqnarray*} \begin{eqnarray*} M_{a,b}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}x^{ad_{u}+bd_{v}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{2a+3b}\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{3a+3b}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}x^{3a+4b}\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{4a+4b}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{2a+3b}\\ &&+|E_{2}(L(CNC_{k}[n]))|x^{3a+3b}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{3a+3b}\\ &&+|E_{4}(L(CNC_{k}[n]))|x^{4a+4b}\\ &=&2kx^{(2a+3b)}+k(2n-1)x^{3(a+b)}\\ &&+2knx^{(3a+4b)}+3kn^{2}x^{4(a+b)}. \end{eqnarray*} \begin{eqnarray*} M^{'}_{a,b}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(9L(CNC_{k}[n]))}x^{(a+d_{u})+(b+d_{v})}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}x^{(a+2)+(b+3)}\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}x^{(a+3)+(3+b)}\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{(a+3)+(4+b)}\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}x^{(4+a)+(4+b)}\\ &=&|E_{1}(L(CNC_{k}[n]))|x^{(a+2)+(b+3)}\\ &&+|E_{2}(L(CNC_{k}[n]))|x^{(a+3)+(3+b)}\\ &&+|E_{3}(L(CNC_{k}[n]))|x^{(a+3)+(4+b)}\\ &&+|E_{4}(L(CNC_{k}[n]))|x^{(4+a)+(4+b)}\\ &=&2kx^{(a+2)(b+3)}+k(2n-1)x^{(a+2)(b+3)}\\ &&+2knx^{(a+2)(b+3)}+3kn^{2}x^{(a+2)(b+3)}. \end{eqnarray*}

Theorem 2.2 Let \(L(CNC_{k}[n])\) be the line graph of Carbon Nanocones \(CNC_{k}[n]\). Then,

  1. Re\(ZG_{1}(L(CNC_{k}[n]))=\frac{3}{2}kn^{2}+\frac{5}{2}kn+k\),
  2. Re\(ZG_{2}(L(CNC_{k}[n]))=6kkn^{2}+\frac{45}{7}kn+\frac{9}{10}k\),
  3. Re\(ZG_{3}(L(CNC_{k}[n]))=6k(64n^{2}+46n+1)\),

Proof.

    \begin{eqnarray*} ReZG_{1}(L(CNC_{k}[n]))&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}\frac{d_{u}+d_{v}}{d_{u}.d_{v}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}\frac{2+3}{2.3}\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}\frac{3+3}{3.3}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}\frac{3+4}{3.4}\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}\frac{4+4}{4.4}\\ &=&|E_{1}(L(CNC_{k}[n]))|\frac{5}{6}+|E_{2}(L(CNC_{k}[n]))|\frac{6}{9}\\ &&+|E_{3}(L(CNC_{k}[n]))|\frac{7}{12}+|E_{4}(L(CNC_{k}[n]))|\frac{8}{16}\\ &=&(2k)\frac{5}{6}+k(2n-1)\frac{6}{9}+(2kn)\frac{7}{12}+(3kn^{2})\frac{1}{2}\\ &=&\frac{5}{3}k+\frac{4}{3}kn-\frac{2}{3}k+\frac{7}{6}kn+\frac{1}{2}kn^{2}\\ &=&\frac{3}{2}kn^{2}+\left(\frac{24+21}{18}\right)kn+\left(\frac{5-2}{3}\right)k\\ &=&\frac{3}{2}kn^{2}+\frac{5}{2}kn+k. \end{eqnarray*} \begin{eqnarray*} ReZG_{2}(L(CNC_{k}[n]),x)&=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}\frac{d_{u}.d_{v}}{d_{u}+d_{v}}\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}\frac{2.3}{2+3}\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}\frac{3.3}{3+3}\\ &&+\sum\limits_{uv\in E_{3}(L(CNC_{k}[n]))}\frac{3.4}{3+4}\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}\frac{4.4}{4+4}\\ &=&|E_{1}(L(CNC_{k}[n]))|\frac{6}{5}+|E_{2}(L(CNC_{k}[n]))|\frac{9}{6}\\ &&+|E_{3}(L(CNC_{k}[n]))|\frac{12}{7}+|E_{4}(L(CNC_{k}[n]))|\frac{16}{8}\\ &=&(2k)\frac{6}{5}+k(2n-1)\frac{9}{6}+(2kn)\frac{12}{6}+2(3kn^{2})\\ &=&\frac{12}{5}k+3kn-\frac{3}{2}k+\frac{24}{7}kn+6kn^{2}\\ &=&6kn^{2}+\left(\frac{24+21}{7}\right)kn+\left(\frac{24-15}{10}\right)k\\ &=&6kkn^{2}+\frac{45}{7}kn+\frac{9}{10}k. \end{eqnarray*} \begin{eqnarray*} ReZG_{3}(L(CNC_{k}[n]),x) &=& \sum\limits_{uv\in E(L(CNC_{k}[n]))}(d_{u}.d_{v})(d_{u}+d_{v})\\ &=& \sum\limits_{uv\in E_{1}(L(CNC_{k}[n]))}(2.3)(2+3)\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}(3.3)(3+3)\\ &&+\sum\limits_{uv\in E_{2}(L(CNC_{k}[n]))}(3.4)(3+4)\\ &&+\sum\limits_{uv\in E_{4}(L(CNC_{k}[n]))}(4.4)(4+4)\\ &=&|E_{1}(L(CNC_{k}[n]))|30+|E_{2}(L(CNC_{k}[n]))|54\\ &&+|E_{3}(L(CNC_{k}[n]))|84+|E_{4}(L(CNC_{k}[n]))|128\\ &=&(2k)\frac{5}{6}+k(2n-1)\frac{6}{9}+(2kn)\frac{7}{12}+(3kn^{2})\frac{1}{2}\\ &=&30(2k)+54k(2n-1)+84(2kn)+128(3kn^{2})\\ &=&60k+108kn-54k+168kn+384kn^{2}\\ &=&6k(64n^{2}+46n+1). \end{eqnarray*}

Competing Interests

The author do not have any competing interests in the manuscript.

Referance

  1. S. C., Mills, D., Mumtaz, M. M., & Balasubramanian, K. (2003). Use of topological indices in predicting aryl hydrocarbon receptor binding potency of dibenzofurans: A hierarchical QSAR approach.[Google Scholor]
  2. García, I., Fall, Y., & Gómez, G. (2010). Using topological indices to predict anti-Alzheimer and anti-parasitic GSK-3 inhibitors by multi-target QSAR in silico screening. Molecules, 15(8), 5408-5422.[Google Scholor]
  3. Verma, S., Le Bras, J., Jain, S. L., & Muzart, J. (2013). Thiol-yne click on nano-starch: An expedient approach for grafting of oxo-vanadium Schiff base catalyst and its use in the oxidation of alcohols. Applied Catalysis A: General, 468, 334-340.[Google Scholor]
  4. Verma, S., Le Bras, J., Jain, S. L., & Muzart, J. (2013). Nanocrystalline starch grafted palladium (II) complex for the Mizoroki–Heck reaction. Dalton Transactions, 42(40), 14454-14459.[Google Scholor]
  5. Verma, S., Tripathi, D., Gupta, P., Singh, R., Bahuguna, G. M., Chauhan, R. K., ... & Jain, S. L. (2013). Highly dispersed palladium nanoparticles grafted onto nanocrystalline starch for the oxidation of alcohols using molecular oxygen as an oxidant. Dalton Transactions , 42(32), 11522-11527.[Google Scholor]
  6. Gillot, J., Bollmann, W., & Lux, B. (1968). Cristaux de graphite en forme de cigare et a structure conique. Carbon , 6(3), 381-387.[Google Scholor]
  7. Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.[Google Scholor]
  8. Adisa, O. O., Cox, B. J., & Hill, J. M. (2011). Modelling the surface adsorption of methane on carbon nanostructures. Carbon , 49(10), 3212-3218.[Google Scholor]
  9. Zhao, J., Buldum, A., Han, J., & Lu, J. P. (2002). Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology , 13(2), 195.[Google Scholor]
  10. Li, X., Gutman, I., & Randić, M. (2006). Mathematical aspects of Randić-type molecular structure descriptors. University, Faculty of Science.[Google Scholor]
  11. Wu, B. (2010). Wiener index of line graphs. MATCH Commun. Math. Comput. Chem, 64(3), 699-706.[Google Scholor]
  12. Buckley, F., & Superville, L. (1981). Mean distance in line graphs. Congr. Numer, 32(1).[Google Scholor]
  13. DeniHuo, Y., Liu, J. B., Zahid, Z., Zafar, S., Farahani, M. R., & Nadeem, M. F. (2016). On Certain Topological Indices of the Line Graph of \(CNC_{k}[n]\) Nanocones. Journal of Computational and Theoretical Nanoscience , 13(7), 4318-4322. [Google Scholor]
  14. Iranmanesh, A., Gutman, I., Khormali, O., & Mahmiani, A. (2009). The edge versions of the Wiener index. Match , 61(3), 663.[Google Scholor]
  15. Xu, S. J., & Zhang, Q. X. (2013). The Hosoya Polynomial of One-Heptagonal Nanocone. Current Nanoscience, 9(3), 411-414.[Google Scholor]
  16. Ghorbani, M., & Jalali, M. (2009). The Vertex PI, Szeged and Omega Polynomials of Carbon Nanocones \(CNC_{4}\) (n). Match , 62(2), 353.[Google Scholor]
  17. Gutman, I., & Das, K. C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50(1), 83-92.[Google Scholor]
  18. Fath-Tabar, G. H. (2011). Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem , 65(1), 79-84.[Google Scholor]
  19. Ranjini, P. S., Lokesha, V., Bindusree, A. R., & Raju, M. P. (2012). New bounds on Zagreb indices and the Zagreb co-indices. Boletim da Sociedade Paranaense de Matemática, 31(1), 51-55.[Google Scholor]
  20. Fath-Tabar, G. (2009). Zagreb polynomial and Pi indices of some Nano Structures. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(1).[Google Scholor]
  21. Bindusree, A. R., Cangul, I. N., Lokesha, V., & Cevik, A. S. (2016). Zagreb polynomials of three graph operators. Filomat, 30(7), 1979-1986.[Google Scholor]
  22. Ranjini, P. S., Lokesha, V., & Usha, A. (2013). Relation between phenylene and hexagonal squeeze using harmonic index. International Journal of Graph Theory, 1(4), 116-121.[Google Scholor]

]]>
General solution of casson fluid past a vertical plate subject to the time dependent velocity with constant wall temperature https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/general-solution-of-casson-fluid-past-a-vertical-plate-subject-to-the-time-dependent-velocity-with-constant-wall-temperature/ Sat, 30 Jun 2018 14:56:48 +0000 https://old.pisrt.org/?p=860
OMA-Vol. 2 (2018), Issue 1, pp. 47–65 | Open Access Full-Text PDF
Allia Naseem
Abstract:Unsteady free convection flow of Casson fluid over an unbounded upright plate subject to time dependent velocity \(U_{o}f(t)\) with constant wall temperature has been carried out. By introducing dimensionless variables, the general solutions are obtained by Laplace transform method. The solution corresponding to Newtonian fluid for \(\gamma \rightarrow \infty\) is obtained as a limiting case. Exact solutions corresponding to (i) \(f(t)=f H(t)\), (ii) \(f(t)=f t^{a}\), \(a > 0 \) (iii) \( f(t)=f H(t)cos(\omega t)\) are also discussed as special cases of our general solutions. Expressions for shear stress in terms of skin friction and the rate of heat transfer in the form of Nusselt number are also presented. Velocity and temperature profiles for different parameters are discussed graphically.
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

General solution of casson fluid past a vertical plate subject to the time dependent velocity with constant wall temperature

Allia Naseem\(^1\)
Department of Mathematics, University of Management and Technology, Lahore, 54770 Pakistan.; (A.N)
\(^{1}\)Corresponding Author; sajeel2004@hotmail.com

Copyright © 2018 Allia Naseem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Unsteady free convection flow of Casson fluid over an unbounded upright plate subject to time dependent velocity \(U_{o}f(t)\) with constant wall temperature has been carried out. By introducing dimensionless variables, the general solutions are obtained by Laplace transform method. The solution corresponding to Newtonian fluid for \(\gamma \rightarrow \infty\) is obtained as a limiting case. Exact solutions corresponding to (i) \(f(t)=f H(t)\), (ii) \(f(t)=f t^{a}\), \(a > 0 \) (iii) \( f(t)=f H(t)cos(\omega t)\) are also discussed as special cases of our general solutions. Expressions for shear stress in terms of skin friction and the rate of heat transfer in the form of Nusselt number are also presented. Velocity and temperature profiles for different parameters are discussed graphically.

Keywords:

Free convection; Time depending velocity; Exact solutions; Casson fluid; Vertical plate.

1. Introduction

For the last few decades Casson fluid become popular among researchers due to its importance in the field of food processing, drilling muds, metallurgy, different oils and suspensions and in bioengineering. Casson fluid is assessed as a non-Newtonian fluid because of its rheological traits. These characteristics display shear stress-strain relationships which might be extensively one of a kind from Newtonian fluids. Unlike Newtonian fluids, these fluids are described by a nonlinear relationship between the stress and the rate of strain. These fluids can be complicated when compare to Newtonian fluids and can not be described by Navier-Stokes equations. The properties of non-Newtonian fluids's flow can be very critical due to the fact they play an extensive part in engineering and industry. In numerous regions of biorheology, geophysics, and chemical and petroleum industries such interest is encouraged because of their considerable application. As a result the research on non-Newtonian fluids have now increasingly grown and becomes a more attractive subject matter of modern studies in this discipline. It is therefore important to focus the study of Casson fluid. As non-Newtonian fluids are complicated in nature, they are very hard to explain by a single constitutive relation. So different constitutive equations and expressions are established to discuss their behavior. Second grade, Maxwell, Power law, viscoplastic, Jeffrey, Bingham plastic, Brinkman, Oldroyd-B and Walters-B are some examples of these models [1, 2, 3, 4, 5, 6, 7, 8, 9]. Recently, Casson model has attracted the attention of the researchers. Casson properties were firstly described by Casson [10] for the flow charecteristics of pigment oil solutions of the printing ink. So, to produce the motion, the shear stress of Casson fluid must be greater than the yield shear stress, and if not then fluid acts like a solid. Such kind of fluids are considered as a viscous fluid with high viscosity [11]. At zero rates of shear, Casson fluid has a boundless viscosity and a yield stress below which flow cannot be occurred. Casson model exhibits the solid and liquid phases [12]. In fluid dynamics, the study of Casson fluids become very important due to its various applications in pharmaceutical products, paints, lubricants sewage sludge, jelly, tomato sauce, honey, soup, and blood. Blood can also be handled as Casson fluid because of the presence of numerous materials inclusive of protein, fibrinogen, globulin in aqueous base plasma and human red blood cells [1, 14]. Afterwards, a lot of work is done on Casson fluid for different flow conditions and combinations by researchers [15, 16, 17, 18, 19, 20, 21, 22, 23, 24] Free convection takes place when the medium transferring the heat is being inspired to move by the heat itself. This happens both, in the case of gases because the medium expands as it heats up and also because buoyancy causes the warmer fluid to rise. Convection is of three types namely free, mixed and force. Amongst them free convection is important in many engineering applications including an example of automatic control systems consist of electrical and electronic components, regularly subjected to periodic heating and cooled by free convection process. Many scientists studied the free convection phenomena for different situations [25, 26, 27, 28, 29, 30, 31]. Free convection phenomena has wide applications in engineering, industrial, nuclear reactors technology, geophysics, geothermal energy, construction insulation, food processing and aeronautics. Mixed convection stagnation-point flow of Casson fluid with convective boundary conditions is examined by Hayat et al. [32]. Mustafa et al. [33] investigated the unsteady flow and heat transfer of a Casson fluid over a moving flat plate. Rao et al. [34] considered the thermal and hydrodynamic slip conditions on heat transfer flow of a Casson fluid over a semi-infinite upright plate. Heat transfer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation was considered by Qasim and Noreen [35]. Exact solutions for unsteady free convection flow of Casson fluid over an oscillating vertical plate with constant wall temperature and unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium are studied by Sharidan Shafie et al. [36, 37]. Unsteady boundary layer flow and heat transfer of a Casson fluid over an oscillating upright plate with Newtonian heating was investigated by Abid Hussanan et.al. [38]. Natural convection flow of a non-Newtonian Casson fluid over an upright stretching plane with mass diffussion is examined by A. Mahdy [39]. In all of the above studies the solutions of Casson fluid are obtained by using either approximate method or any numerical scheme. There are very few cases in which the exact analytical solutions of Casson fluid are obtained. These solutions are very few when Casson fluid in free convection flow with constant wall temperature is considered. However, the Casson fluids model in the presence of heat transfer, is an vital research area as it is frequently used to process molten chocolate, toffee and blood situations. Motivated by the above investigations, the present analysis is focused on the study of jerky and unformed free convection flow of Casson fluid past an upright plate subject to the time dependent velocity with constant wall temperature. Analytical as well as numerical results for skin friction and Nusselt number are obtained. Also we will discuss the effects of different parameters on the velocity and temperature profiles graphically.

2. Statement of the problem

Consider the impact of heat diffusion on jerky and unformed boundary layer flow of an incompressible Casson fluid over an unbounded flat plate located at \(y=0\). The flow is restricted to \(y>0\), where the \(x\) coordinate is taken along the plate in the upright direction and \(y\) is normal direction to the surface. Let us suppose that, initially at \(t=0\), the fluid and plate are stationary with invariant temperature \(T_\infty\). When time is \(t=0^+\), the plate starts moving with time dependent velocity \(U_{o}f(t)\) in its plane where \(U_o\) is the characteristics velocity. At the same time, the plate temperature raised to constant temperature \(T_w\).

Figure 1. Coordinate system and Physical model

The rheological equation of the state for an isotropous and incompressible flow of a Casson fluid can be written as, [19,31] $$\tau=\tau_0+\mu\gamma^\star$$,
\begin{equation} \begin{split} \tau_{ij}=\left\{2\left(\mu_{\beta}+\frac{p_{y}}{\sqrt{2\pi_c}}\right)e_{ij}, \ \pi>\pi_{c}\right\}\\ \left\{2\left(\mu_{\beta}+\frac{p_{y}}{\sqrt{2\pi_c}}\right)e_{ij}, \ \pi< \pi_{c}\right\}, \end{split} \end{equation}
(1)
where \(\tau\) is the shear stress, \(\tau_{0}\) is the Casson yield stress, \(\mu\) is the dynamic viscosity, \(\gamma^{*}\) is the shear rate, \(\pi=e_{ij} \ e_{ij}\) and \(e_{ij}\) is the \((i,j)^{th}\) component of the deformation rate, \(\pi\) is the product of the component of deformation rate with itself, \(\pi_{c}\) is a critical value of this product based on model, \(\mu_{\beta}\) is plastic dynamic viscosity of non -Newtonian fluid and \(p_{y}\) is the yield stress of fluid. Under the conditions along with the assumption that the viscous dissipation term in the energy equation is neglected, we get the following set of partial differential equations [36],
\begin{equation} \rho\frac{\partial u(y,t)}{\partial t}=\mu\left(1+\frac{1}{\gamma}\right)\frac{\partial^{2} u(y,t)}{\partial y^{2}}+\rho g\beta(T-T_{\infty}), \end{equation}
(2)
\begin{equation} \rho C_{p}\frac{\partial T(y,t)}{\partial t}=k\frac{\partial^{2}T(y,t)}{\partial y^{2}}, \end{equation}
(3)
\begin{equation} u(y,0)=0, \ \ T(y,0)=T_{\infty} , \ \ for \ all \ \ y \geq 0, \end{equation}
(4)
\begin{equation} u(0,t)=U_{o}f(t),\ \ T(0,t)=T_{w}, \ \ for \ t\geq0, \end{equation}
(5)
\begin{equation} u(y,t)\rightarrow0, \ \ T(y,t)\rightarrow 0, \ as \ y\ \rightarrow \ \infty. \end{equation}
(6)
In the next, the solution of coupled partial differential equations (2) and (3) with the initial and boundary conditions will be determined by means of Laplace transforms.

3. Solution of the problem

In order to solve the above problem, we firstly introduce the following dimensionless quantities.
\begin{equation} \frac{\partial u(y,t)}{\partial t}=\left(1+\frac{1}{\gamma}\right)\frac{\partial^{2} u(y,t)}{\partial y^{2}}+ \textrm{Gr}\theta(y,t) , \end{equation}
(7)
\begin{equation} \textrm{Pr}\frac{\partial \theta(y,t)}{\partial t}=\frac{\partial^{2}\theta(y,t)}{\partial y^{2}} , \end{equation}
(8)
\begin{equation} u(y,0)=0, \ \ \theta(y,0)=0 , \ \ for \ all \ y \geq 0, \end{equation}
(9)
\begin{equation} u(0,t)=f(t), \ \ \theta(0,t)=1 , \ \ for \ t>0, \end{equation}
(10)
\begin{equation} u(\infty,t)\longrightarrow 0, \ \ \theta(\infty,t)\longrightarrow 0,\ \ for \ t>0, \end{equation}
(11)
where \(\textrm{Pr}=\frac{\mu c_{p}}{R}, \textrm{Gr}=\frac{\nu\beta(T_{w}-T_{\infty})}{U_{o}^{3}},\) and \(\gamma=\frac{\mu_{\beta}\sqrt{2\pi c}}{p_{y}},\) are Prandtl number, Grashof number and Casson Parameter respectively. In order to solve the initial-boundary value problem (7 - 11), we use the Laplace transform technique. The Laplace transform of eq. (7) and (8) is given as
\begin{equation} q\bar{u}(y,q)=\left(1+\frac{1}{\gamma}\right)\frac{d^{2}\bar{u}(y,q)}{dy^{2}}+ \textrm{Gr}\bar{\theta}(y,q), \end{equation}
(12)
\begin{equation} \textrm{Pr} q\bar{\theta}(y,q)=\frac{d^{2}\bar{\theta}(y,q)}{dy^{2}}, \end{equation}
(13)
and associated initial and boundry conditions are:
\begin{equation} \bar{u}(0,q) = \overline{F}(q) ,\ \ \bar{\theta}(0,q) = \frac{1}{q} , \ \ t>0 , \end{equation}
(14)
\begin{equation} \bar{u}(\infty,q)\rightarrow 0 ,\ \ \bar{\theta}(\infty,q)\rightarrow 0, \end{equation}
(15)
where \( \bar{u}(y,q),\ \bar{\theta}(y,q)\) and \(\bar{F}(q)\) are Laplace transform of the functions \( u(y,t), \theta(y,t)\) and \(f(t)\) respectively. The solution of eq. (13) subject to \( (14)_{2}\) , \((15)_{2}\) is given by
\begin{equation} \bar{\theta}(y,q)=\frac{1}{q}e^{-y\sqrt{\textrm{Prq}}}. \end{equation}
(16)
The general solution of (12) keeping in mind \((14)_{1}\) and \((15)_{1}\),
\begin{equation} \bar{u}(y,q) =\overline{F}(q)e^{-y\sqrt{aq}} + \frac{b}{q^{2}}e^{-y\sqrt{aq}} - \frac{b}{q^{2}}e^{-y\sqrt{\textrm{qPr}}}\ \end{equation}
(17)
where \( b= \frac{a \textrm{G}_{r}}{Pr-a}, \) \(\textrm{Pr}\neq a \) and \( a= \frac{\gamma}{1+\gamma}\).

By inverting eq.(16) , we have the expression for the non dimensional temperature
\begin{equation} \theta(y,t) = erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right). \end{equation}
(18)
The nondimensional Nusselt number is
\begin{equation} Nu= - \frac{\partial \theta(y,t)}{\partial y}|_{y=0}, = \sqrt{\frac{\textrm{Pr}}{\pi t}}.\ \end{equation}
(19)
Applying the inverse Laplace transform to (17), the velocity \(u(y, t)\) can be written as a sum, namely
\begin{equation} u(y, t) = u_{m} (y, t)+u_{t}(y, t) \end{equation}
(20)
\begin{equation} \begin{split} u(y,t)=\frac{y\sqrt{a}}{2\sqrt{\pi}}\int_{0}^{t}f(t-\tau)\frac{e^-{\frac{ay^{2}}{4\tau}}}{\tau\sqrt{\tau}}d\tau +\hspace{0.75cm} \\ +b\left[ \left(t+\frac{ay^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-y\sqrt{\frac{at}{\pi}}e^\frac{-ay^{2}}{4t}\right]-\hspace{-2cm} \\ -b\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{tPr}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right].\hspace{-2.75cm} \end{split} \end{equation}
(21)
where
\begin{equation} \begin{split} u _{t}(y,t)= b\left[ \left(t+\frac{ay^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-y\sqrt{\frac{at}{\pi}}e^\frac{-ay^{2}}{4t}\right]- \\ -b\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{tPr}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right].\hspace{-0.75cm} \end{split} \end{equation}
(22)
corresponds to the thermal effects, and
\begin{equation} u_{m}(y,t)=\frac{y\sqrt{a}}{2\sqrt{\pi}}\int_{0}^{t}f(t-\tau)\frac{e^-{\frac{ay^{2}}{4\tau}}}{\tau\sqrt{\tau}}d\tau, \end{equation}
(23)
corresponds to mechanical part. The non-dimensional skin friction is calculated from the velocity field (21), using the relation \(\tau= -\mu\left(1+\frac{1}{\gamma}\right)\frac{\partial u}{\partial y}|_{y=0}\)
\begin{equation} \tau=-\frac{1}{2\sqrt{\pi}\sqrt{a}}\int_{0}^{t}f(t-\tau)\frac{1}{\tau\sqrt{\tau}}d\tau+\frac{2b\sqrt{t}}{\sqrt{a\pi}}-\frac{2b}{a}\frac{\sqrt{\textrm{tPr}}}{\sqrt{\pi}}. \end{equation}
(24)

4. Limiting cases

Case 1: Taking \(\gamma \longrightarrow\infty\) \(\Rightarrow a=1\) in eq. (21). We obtained the solution corresponding to the viscous fluid.

\begin{equation} \begin{split} u(y,t)=\frac{y}{2\sqrt{\pi}}\int_{0}^{t}f(t-\tau)\frac{e^-{\frac{y^{2}}{4\tau}}}{\tau\sqrt{\tau}}d\tau +\hspace{6cm}\\ +\frac{\textrm{Gr}}{\textrm{Pr}-1}\left[ \left(t+\frac{y^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{1}{t}}\right)-y\sqrt{\frac{t}{\pi}}e^\frac{-y^{2}}{4t}\right]-\hspace{2.5cm}\\ -\frac{\textrm{Gr}}{\textrm{Pr}-1}\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{\textrm{tPr}}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right],\ Pr\neq 1\hspace {0.1cm} \end{split} \end{equation}
(25)

Case 2: In the absence of free convection the corresponding buoyancy forces are zero i.e \((Gr=0)\) due to the differences in temperature gradient. This shows that the thermal part of the velocity is zero and flow is governed only by mechanical part of the velocity.

\begin{equation} u(y,t)=\frac{y\sqrt{a}}{2\sqrt{\pi}}\int_{0}^{t}f(t-\tau)\frac{e^-{\frac{ay^{2}}{4\tau}}}{\tau\sqrt{\tau}}d\tau. \end{equation}
(26)

5. Applications

  1. Let us firstly consider \(f (t) = f H(t)\) where \(f\) is a dimensionless constant and \(H(.)\) is the unit Heaviside step function. In this case, after time \(t = 0^{+}\), the infinite plate starts to move with constant velocity. The thermal component of velocity \(u_{t}(y, t)\) remain unchanged, while \(u_{m}(y, t)\) takes the simplified form
    \begin{equation} u_{m}(y,t)=\frac{y\sqrt{a}}{2\sqrt{\pi}}f\int_{0}^{t} \frac{1}{\tau \sqrt{\tau}} exp\left(-\frac{ay^{2}}{4\tau}\right)d\tau, \end{equation}
    (27)
    or equivalently
    \begin{equation} u_{m}(y,t)=\frac{y\sqrt{a}}{\sqrt{\pi}}f\int_{\frac{1}{\sqrt{t}}}^{\infty} exp\left(-\frac{ay^{2}}{4}x^{2}\right)dx, \end{equation}
    (28)
    in more simplified form,
    \begin{equation} u_{m}(y,t)=ferfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right). \end{equation}
    (29)
    and eq. (21) becomes,
    \begin{equation} \begin{split} u(y,t)=ferfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)+ b\left[ \left(t+\frac{ay^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-y\sqrt{\frac{at}{\pi}}e^\frac{-ay^{2}}{4t}\right]-\\ -b\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{\textrm{tPr}}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right].\hspace{2.10cm} \end{split} \end{equation}
    (30)
    is a known result obtained by Sharidan et al. ([36], see (22)), which describe the solution of Stokes’ first problem for Casson fluid.
  2. When \(f(t)=ft^{a}\), \( a >0 \) eq. (23) becomes
    \begin{equation} u_{m}(y,t)=\frac{f y\sqrt{a}}{2\sqrt{\pi}}\int_{0}^{t} \frac{(t-\tau)^{a}}{\tau\sqrt{\tau}}exp\left(-\frac{ay^{2}}{4\tau}\right) d\tau, \end{equation}
    (31)
    when \(a=1\) the plate starts to move with constant acceleration. The corresponding expression of the mechanical component \(u_{m 1}(y, t)\), resulting from (31), is
    \begin{equation} u_{m}(y,t)=\frac{f y}{2\sqrt{\pi}} \int_{0}^{t} \frac{t-\tau}{\tau\sqrt{\tau}}exp\left(-\frac{y^{2}}{4\tau}\right) d\tau, \end{equation}
    (32)
    evaluating the integral,
    \begin{equation} u_{m 1}(y,t)=f\left(t+\frac{ay^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-f y\sqrt{\frac{at}{\pi}}exp{\frac{-ay^{2}}{4t}}. \end{equation}
    (33)
  3. When \(f(t)= fH(t)cos(wt)\), oscillating motion Eq (21) becomes
    \begin{equation} \begin{split} u(y,t)=\frac{f y\sqrt{a}}{2\sqrt{\pi}} \int_{0}^{t} \frac{cos \omega(t-\tau)}{\tau\sqrt{\tau}}exp\left(-\frac{ay^{2}}{4\tau}\right) d\tau+ \\ +b\left[ \left(t+\frac{ay^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-y\sqrt{\frac{at}{\pi}}e^\frac{-ay^{2}}{4t}\right]-\hspace{-1cm}\\ -b\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{\textrm{tPr}}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right].\hspace{-1.75cm} \end{split} \end{equation}
    (34)
    where
    \begin{equation} u_{m}(y,t)=\frac{f y\sqrt{a}}{2\sqrt{\pi}} \int_{0}^{t} \frac{cos \omega(t-\tau)}{\tau\sqrt{\tau}}exp\left(-\frac{ay^{2}}{4\tau}\right) d\tau. \end{equation}
    (35)
    This is the mechanical component of the fluid velocity in the motion induced by an infinite oscillating plate. It can be written as a sum between steady-state and transient solutions:
    \begin{equation} \begin{split} u_{m}(y,t)=\frac{f y\sqrt{a}}{2\sqrt{\pi}} \int_{0}^{\infty} \frac{cos \omega(t-\tau)}{\tau\sqrt{\tau}}exp\left(-\frac{ay^{2}}{4\tau}\right) d\tau \\ +\frac{f y\sqrt{a}}{2\sqrt{\pi}} \int_{t}^{\infty} \frac{cos \omega(t-\tau)}{\tau\sqrt{\tau}}exp\left(-\frac{ay^{2}}{4\tau}\right) d\tau,\hspace{0.25cm} \end{split} \end{equation}
    (36)
    When the direction and magnitude of flow is constant with time throughout the entire domain steady state flow occurs. Whereas, transient flow occurs if the magnitude and direction of the flow varies with time. When \(\gamma\rightarrow\infty\), we obtained well known results in the absence of free convection identical to Fetecau ([40], see (10)) when \(U=1\), \(\nu=1\) and \(f=1\). On evaluating eq. (34),
    \begin{equation} \begin{split} u(y,t)=\frac{f H(t)}{4}e^{-i wt}\left[e^{-y\sqrt{-i wa}}erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}-\sqrt{-i wt}\right)\right]+\hspace{4cm}\\ +\frac{f H(t)}{4}e^{-i wt}\left[e^{y\sqrt{-i wa}}erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}+\sqrt{-i wt}\right)\right]+\hspace{4.25cm}\\ +\frac{f H(t)}{4}e^{i wt}\left[e^{-y\sqrt{i wa}}erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}-\sqrt{i wt}\right)+e^{y\sqrt{i wa}}erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}+\sqrt{i wt}\right)\right]+\hspace{0.5cm}\\ +b\left[ \left(t+\frac{ay^{2}}{2}\right) erfc\left(\frac{y}{2}\sqrt{\frac{a}{t}}\right)-y\sqrt{\frac{at}{\pi}}e^\frac{-ay^{2}}{4t}\right]-\hspace{4.75cm}\\ -b\left[\left(t+\frac{\textrm{Pry}^{2}}{2}\right)erfc\left(\frac{y}{2}\sqrt{\frac{\textrm{Pr}}{t}}\right)-y\sqrt{\frac{\textrm{tPr}}{\pi}}e^{\frac{-\textrm{Pry}^{2}}{4t}}\right].\hspace{4cm} \end{split} \end{equation}
    (37)
    which is identical to Sharidan [36].

6. Graphical results and discussion

For the sake of conclusion of the behaviour of dimensionless temperature and velocity fields and to get some tangible perception of the obtained solutions, successive numerical calculations were accomplished for different values of pertinent constraints like Prandtl number Pr, Grashof number Gr, time \(t\) and Casson parameter \(\gamma\). Numerical calculations of Nusselt number and skin friction are presented in tables 1 and 2 for different constraints. Figure 2-8 correspond to the case when the plate applies a constant velocity to the fluid. Figure 2 illustrates the consequence of time \(t\) on the velocity. It is depicted that the velocity is an increasing function of time \(t\). Figure 3 shows the profiles of velocity for different values of Gr which states that velocity is decreasing with decreasing values of \(Gr\). In Figure 4, consequences of Prandtl number upon velocity profiles are shown. This indicates that velocity of the fluid is decreasing with increasing Prandtl number. In Figure 5, effect of Casson parameter upon velocity profiles are discussed. It is noted that for increasing values of \(\gamma\), velocity decreases. It is also seen that with increasing Casson parameter velocity boundary layer thickness shorter. It is further noticed from this graph that when the Casson parameter $\gamma$ is large enough, that is, \(\gamma \rightarrow \infty\), the non-Newtonian behavior vanishes and the fluid acts just like a Newtonian fluid. Therefore, for Casson fluid, the velocity boundary layer thickness is greater as compare to the Newtonian fluid. Figure 6 interprets the profiles of velocity for different values of \(f\). It is noticed that velocity increases when \(f\) is increased. The consequence of time t on temperature profiles can be seen in Figure 7. As expected, when the time is increased, the temperature is also increased. This graphical behavior of temperature is in good accordance with the corresponding boundary conditions of temperature profiles as shown in (8-9). Figure 8 illustrates the effect of specific values of Prandtl number such as \(Pr = 0.71\) (air), \(Pr = 7.0\) (water), and \(\textrm{Pr} = 25\) (honey) on the temperature profile. It can be seen that temperature falls as the values of Prandtl number Pr are increased. It is depicted from the diagram that near the plate, thickness of thermal boundary layer is largest. It is decreased when distance from the leading edge is increased and ultimately it is approached to zero. It can be seen that the value of temperature is smaller for honey as compared to water and air. The reason behind this is as Prandtl number increases thermal conductivity of the fluid decreases which reduces the thickness of thermal boundary layer. For the sake of correctness and verification, obtained results are tallied with those of Fetecau et al. [40] and Sharidan et al. [36]. Figure 9 shows that our results (37) are in good accordance with those obtained by Sharidan et al. ([36], see (14)). This confirms the accuracy of our obtained results. It is also found from Figure 10, that our limiting solutions (35) are identical the results obtained by Fetecau et al. ([40], see (9) and (11)) and by Sharidan et al.([36], see (24)). Figure 11 illustrates the fact that our results (25) for Newtonian fluid when fluid is moving with constant velocity are identical to (30) when \(\gamma \rightarrow \infty\). We have also compared the velocity profiles for Newtonian and Casson fluids in Fig. 12. It is observed that Casson fluids are slower than Newtonian fluids. It is cleared from the figure that Newtonian fluids have greater velocity as compare to the Casson fluids. Table 1 indicates that with increasing Pr, Nusselt number is increasing whereas it decreases with increasing t. From Table 2, it is found that skin friction increases with increasing \(Pr\) and \(f\) whereas it increases with decreasing \(Gr\), \(\gamma\) and \(t\).

Figure 2. Profiles of the velocity for different values of \(t\), when \(Pr=0.3\), \(f=5\), \(Gr=3\), and \(\gamma=0.6\).

Figure 3. Profiles of the velocity for different values of \(Gr\), when \(\textrm{Pr}=0.3\), \(f=5\),  \(\gamma=0.6\), and \(t=0.2\).

Figure 4. Profiles of the velocity for different values of \(\textrm{Pr}\), when \(\textrm{Gr}=3\), \(f=5\), \(\gamma=0.6\), and \(t=0.2\).

Figure 5. Profiles of the velocity for different values of \(\gamma\), when \(\textrm{Pr}=0.3\), \(f=5\), \(\textrm{Gr}=3\), and \(t=0.2\).

Figure 6. Profiles of the velocity for different values of \(f\), when \(\textrm{Pr}=0.3\), \(\gamma=0.6\), \(\textrm{Gr}=3\), and \(t=0.2\).

Figure 7. Profiles of the temperature for different values of \(t\), when \(\textrm{Pr}=0.3\).

Figure 8. Profiles of the temperature for different values of \(\textrm{Pr}\), when \(t=0.4\).

Figure 9. Comparison of the present results (see (37)) with those obtained by Sharidan et al. [36] (see (14)) and, when \(t = 0.2\), \(\textrm{Gr} = 3\), \(a = 0.375\), \(f=1\) and \(\textrm{Pr}=0.15\).

Figure 10. Comparison of the present results (see (35)) with those obtained by Fetecau et al. [40] (see (8) and (10)) Sharidan et al. [36] (see (24)) and, when \(t = 0.2\), \(\textrm{Gr} = 0\), \(a = 1\), \(U = 1\), \(f=1\) and \(\nu = 1\).

Figure 11. Comparison of the velocity profiles for Casson fluid when \(\gamma\rightarrow\infty\) (25) and Newtonian fluid (30), when plate moves with constant velocity and \(a=1\), \(f=1\), \(\textrm{Pr}=0.3\), \(\textrm{Gr}=2\) and \(t=0.3\).

Figure 12. Comparison of the velocity profiles for Casson fluid (30) and Newtonian fluid (25) when plate starts to move with constant velocity and \(\textrm{Gr}=2\), \(f=1\), \(\textrm{Pr}=0.3\) and \(t=0.3\).

Table 1. Nusselt number Variations

\(Pr\) \(t\) \(Nu\)
\(0.3\) \(0.3\) \(0.564\)
\(0.3\) \(0.5\) \(0.437\)
\(0.71\) \(0.3\) \(0.868\)
\(0.71\) \(0.5\) \(0.672\)
\(1\) \(0.3\) \(1.03\)
\(7\) \(0.3\) \(2.725\)

Table 2. Skin Friction Variations

\(Pr\) \(Gr\) \(\gamma\) \(f\) \(t\) \(r\)
\(0.3\) \(3\) \(0.6\) \(5\) \(0.2\) \(8.996\)
\(1\) \(3\) \(0.6\) \(5\) \(0.2\) \(9.362\)
\(0.3\) \(3\) \(0.6\) \(5\) \(0.2\) \(8.126\)
\(0.3\) \(3\) \(1.0\) \(5\) \(0.2\) \(7.714\)
\(0.3\) \(3\) \(0.6\) \(2\) \(0.2\) \(2.815\)
\(0.3\) \(3\) \(0.6\) \(5\) \(0.4\) \(1.068\)

7. Conclusion

General solutions of the casson fluid over a vertical plate subject to the time dependent velocity with invariant wall temperature are obtained. The governing equations are obtained by using Laplace transform method. Results for temperature and velocity are obtained and plotted graphically. The fluid velocity is presented as a sum of thermal and mechanical parts. All results regarding velocity are new and its mechanical and thermal component reduces to known forms from the literature. Also, to underline some tangible observation of present solutions, three special cases of technical relevance motions are considered. The first case is about the fluid motion due to a boundless plate that employed an invariant velocity to the fluid. The second case when the plat is accelerating and the third case when plate is moving with oscillating velocity. The numerical results for Nusselt numbers and skin friction are computed in tables. We conclude these facts:
  1. Casson fluids are slower than Newtonian fluids.
  2. Newtonian fluids are the limiting case of the Casson fluids when \(\gamma \rightarrow \infty.\)
  3. With increasing Gr, f and t, velocity increases , while it is decreasing with increasing values of Pr, \(\gamma\).
  4. Temperature is decreased with decreasing \(t\), while it increases when Pr is decreased.
  5. Skin friction is increasing function of Pr and \(f\), whereas it increases with deccreasing values of Gr, \(\gamma\) and \(t\).
  6. Nusselt number increases with increasing Pr, whereas it decreases with increasing \(t\).
  7. Solutions (35) and (37) are found in excellent accordance with those obtained by Sharidan et al. [36] and Fetecau et al. [40].

8. Acknowledgement

The authors are highly thankful to the University of Management and Technology Lahore for generous supporting and facilitating the research work.

Competing Interests

The authors declare that they have no competing interests.

Referance

  1. Olajuwon, B. I. (2009). Flow and natural convection heat transfer in a power law fluid past a vertical plate with heat generation. International Journal of Nonlinear Science, 7(1), 50-56.[Google Scholor]
  2. Khan, I., Ellahi, R., & Fetecau, C. (2008). Some MHD flows of a second grade fluid through the porous medium. Journal of Porous Media, 11(4).[Google Scholor]
  3. Qasim, M. (2013). Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alexandria Engineering Journal, 52(4), 571-575.[Google Scholor]
  4. Khan, I., Ali, F., & Shafie, S. (2013). Exact Solutions for Unsteady Magnetohydrodynamic oscillatory flow of a maxwell fluid in a porous medium. Zeitschrift für Naturforschung A, 68(10-11), 635-645. [Google Scholor]
  5. Hassan, M. A., Pathak, M., & Khan, M. K. (2013). Natural convection of viscoplastic fluids in a square enclosure. Journal of Heat Transfer, 135(12), 122501.[Google Scholor]
  6. Kleppe, J., & Marner, W. J. (1972). Transient free convection in a Bingham plastic on a vertical flat plate. Journal of Heat Transfer, 94(4), 371-376.[Google Scholor]
  7. Zakaria, M. N., Abid, H., Khan, I., & Sharidan, S. (2013). The effects of radiation on free convection flow with ramped wall temperature in Brinkman type fluid. Jurnal Teknologi, 62(3), 33-39.[Google Scholor]
  8. Khan, I., Fakhar, K., & Anwar, M. I. (2012). Hydromagnetic rotating flows of an Oldroyd-B fluid in a porous medium. Special Topics & Reviews in Porous Media: An International Journal, 3(1).[Google Scholor]
  9. Khan, I., Ali, F., Shafie, S., & Qasim, M. (2014). Unsteady free convection flow in a Walters-B fluid and heat transfer analysis. Bulletin of the Malaysian Mathematical Sciences Society (37), 437-448.[Google Scholor]
  10. Casson, N. (1959). A flow equation for pigment-oil suspensions of the printing ink type. In: Mill, C.C., Ed., Rheology of Disperse Systems, Pergamon Press, Oxford, 84-104.[Google Scholor]
  11. Bhattacharyya, K., Hayat, T., & Alsaedi, A. (2014). Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 94(6), 522-528.[Google Scholor]
  12. Hayat, T., Awais, M., & Sajid, M. (2011). Mass transfer effects on the unsteady flow of UCM fluid over a stretching sheet. International Journal of Modern Physics B , 25(21), 2863-2878.[Google Scholor]
  13. Fung, Y. C. (1984). Biodynamics: Circulation Springer-Verlag. New York.[Google Scholor]
  14. Dash, R. K., Mehta, K. N., & Jayaraman, G. (1996). Casson fluid flow in a pipe filled with a homogeneous porous medium.[Google Scholor]
  15. Shaw, S., Gorla, R. S. R., Murthy, P. V. S. N., & Ng, C. O. (2009). Pulsatile Casson fluid flow through a stenosed bifurcated artery. International Journal of Fluid Mechanics Research, 36(1).[Google Scholor]
  16. Boyd, J., Buick, J. M., & Green, S. (2007). Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Physics of Fluids, 19(9), 093103.[Google Scholor]
  17. Mernone, A. V., Mazumdar, J. N., & Lucas, S. K. (2002). A mathematical study of peristaltic transport of a Casson fluid. Mathematical and Computer Modelling, 35(7-8), 895-912.[Google Scholor]
  18. Mukhopadhyay, S. (2013). Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing. Chinese Physics B , 22(11), 114702.[Google Scholor]
  19. Mukhopadhyay, S., De, P. R., Bhattacharyya, K., & Layek, G. C. (2013). Casson fluid flow over an unsteady stretching surface. Ain Shams Engineering Journal, 4(4), 933-938.[Google Scholor]
  20. Bhattacharyya, K. (2013). Boundary layer stagnation-point flow of casson fluid and heat transfer towards a shrinking/stretching sheet. Frontiers in Heat and Mass Transfer (FHMT), 4(2).[Google Scholor]
  21. Pramanik, S. (2014). Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Engineering Journal, 5(1), 205-212.[Google Scholor]
  22. Bhattacharyya, K., Hayat, T., & Alsaedi, A. (2013). Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer. Chinese Physics B , 22(2), 024702.[Google Scholor]
  23. Ng, C. O. (2013). Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel. Journal of Non-Newtonian Fluid Mechanics, 198, 1-9.[Google Scholor]
  24. Makanda, G., Shaw, S., & Sibanda, P. (2015). Diffusion of chemically reactive species in Casson fluid flow over an unsteady stretching surface in porous medium in the presence of a magnetic field. Mathematical problems in engineering, 2015.[Google Scholor]
  25. Bég, O. A., Prasad, V. R., Vasu, B., Reddy, N. B., Li, Q., & Bhargava, R. (2011). Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. International Journal of Heat and Mass Transfer, 54(1-3), 9-18.[Google Scholor]
  26. Rajesh, V. (2010). MHD effects on free convection and mass transform flow through a porous medium with variable temperature. Int J Appl Math Mech , 6, 1-16.[Google Scholor]
  27. Ali, F., Khan, I., & Shafie, S. (2014). Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate. PLoS One, 9(2), e85099.[Google Scholor]
  28. Marneni, N. (2012). An exact solution of unsteady MHD free convection flow of a radiating gas past an infinite inclined isothermal plate. In Applied Mechanics and Materials (Vol. 110, pp. 2228-2233). Trans Tech Publications.[Google Scholor]
  29. Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243-247.[Google Scholor]
  30. Turkyilmazoglu, M., & Pop, I. (2012). Soret and heat source effects on the unsteady radiative MHD free convection flow from an impulsively started infinite vertical plate. International Journal of Heat and Mass Transfer, 55(25-26), 7635-7644.[Google Scholor]
  31. Thermal diffusion effect of free convection mass transfer flow past a uniformly accelerated porous plate with heat sink. International Journal of Mathematical Archive EISSN 2229-5046, 2(8)[Google Scholor]
  32. Hayat, T., Shehzad, S. A., Alsaedi, A., & Alhothuali, M. S. (2012). Mixed convection stagnation point flow of Casson fluid with convective boundary conditions. Chinese Physics Letters , 29(11), 114704.[Google Scholor]
  33. Mustafa, M., Hayat, T., Pop, I., & Aziz, A. (2011). Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transfer—Asian Research, 40(6), 563-576.[Google Scholor]
  34. Subba Rao, A., Ramachandra Prasad, V., Bhaskar Reddy, N., & Anwar Bég, O. (2015). Heat Transfer in a Casson Rheological Fluid from a Semi‐infinite Vertical Plate with Partial Slip. Heat Transfer—Asian Research , 44(3), 272-291.[Google Scholor]
  35. Qasim, M., & Noreen, S. (2014). Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. The European Physical Journal Plus , 129(1), 7.[Google Scholor]
  36. Khalid, A., Khan, I., & Shafie, S. (2015). Exact solutions for unsteady free convection flow of Casson fluid over an oscillating vertical plate with constant wall temperature. In Abstract and Applied Analysis (Vol. 2015). Hindawi.[Google Scholor]
  37. Khalid, A., Khan, I., Khan, A., & Shafie, S. (2015). Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Engineering Science and Technology, an International Journal , 18(3), 309-317.[Google Scholor]
  38. Hussanan, A., Salleh, M. Z., Tahar, R. M., & Khan, I. (2014). Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PloS one , 9(10), e108763.[Google Scholor]
  39. Mahdy, A. (2014). Natural convection flow of a non-Newtonian Casson fluid past a vertical stretching plane with mass transfer. World Journal of Engineering and Physical Sciences , 099-107.[Google Scholor]
  40. Fetecau, C., Vieru, D., & Fetecau, C. (2008). A note on the second problem of Stokes for Newtonian fluids. International Journal of Non-Linear Mechanics, 43(5), 451-457.[Google Scholor]
]]> New type integral inequalities for three times differentiable preinvex and prequasiinvex functions https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/new-type-integral-inequalities-for-three-times-differentiable-preinvex-and-prequasiinvex-functions/ Sat, 30 Jun 2018 13:44:39 +0000 https://old.pisrt.org/?p=789
OMA-Vol. 2 (2018), Issue 1, pp. 33–46 | Open Access Full-Text PDF
Huriye Kadakal, Mahir Kadakal, İmdat İşcan
Abstract:In this paper, a new identity for functions defined on an open invex subset of set of real numbers is established, and by using the this identity and the Hölder and Power mean integral inequalities we present new type integral inequalities for functions whose powers of third derivatives in absolute value are preinvex and prequasiinvex functions.
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

New Type Integral Inequalities for Three Times Differentiable Preinvex and Prequasiinvex Functions

Huriye Kadakal\(^1\), Mahir Kadakal, İmdat İşcan
Institute of Science, Ordu University-Ordu-TÜRKİYE.; (H.K)
Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE.; (M.K & İ.İ)
\(^{1}\)Corresponding Author; huriyekadakal@hotmail.com

Copyright © 2018 Huriye Kadakal, Mahir Kadakal, İmdat İşcan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, a new identity for functions defined on an open invex subset of set of real numbers is established, and by using the this identity and the Hölder and Power mean integral inequalities we present new type integral inequalities for functions whose powers of third derivatives in absolute value are preinvex and prequasiinvex functions.

Keywords:

Invex set; Preinvex function; Prequasiinvex function; Hölder Integral inequality.

1. Preliminary

Definition 1.1. A function \(f:I\subset \mathbb{R}\rightarrow\mathbb{R}\) is said to be convex if the inequality \(f\left( tx+(1-t)y\right) \leq tf\left( x\right) +(1-t)f\left( y\right)\) is valid for all \(x,y\in I\) and \( t\in \left[ 0,1\right]\). If this inequality reverses, then \(f\) is said to be concave on interval \(I\neq \varnothing\) .

This definition is well known in the literature. Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences.

Definition 1.2. \(f:I\subset\mathbb{R}\rightarrow \mathbb{R} \) be a convex function on the interval \(I\) of real numbers and \(a,b\in I\) with \(a< b\). The following celebrated double inequality is well known in the literature as Hermite-Hadamard's inequality for convex functions [1]. Both inequalities hold in the reserved direction if \(f\) is concave.

The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex or concave function. Hadamard's inequality for convex or concave functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found; for example see [1, 2, 3, 4, 5]. Hermite-Hadamard inequality [6] has been considered the most useful inequality in mathematical analysis. Some of the classical inequalities for means can be derived from Hermite-Hadamard inequality for particular choices of the function \(f\).

Definition 1.3. A function \(f:I\subseteq \mathbb{R} \rightarrow \mathbb{R}\) is said to be quasi-convex if the inequality \(f\left( tx+(1-t)y\right) \leq \max \left\{ f\left( x\right) ,f\left( y\right) \right\}\) holds for all \(x,y\in I\) and \(t\in \left[ 0,1\right]\) . Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex [7].

Let us recall the notions of preinvexity and prequasiinvexity which are signicant generalizations of the notions of convexity and qusi-convexity respectively, and some related results.

Definition 1.4.[8] Let \(K\) be a non-empty subset in \(\mathbb{R}^{n}\) and \(\eta :K\times K\rightarrow\mathbb{R}^{n}\). Let \(x\in K\), then the set \(K\) is said to be invex at \(x\) with respect to \(\eta \left( \cdot ,\cdot \right) \), if \(x+t\eta \left( y,x\right) \in K,~~~\forall x,y\in K~~~t\in \left[ 0,1\right] .\) \(K\) is said to be an invex set with respect to \(\eta \) if \(K\) is invex at each \(x\in K\). The invex set \(K\) is also called \(\eta \)-connected set.

Definition 1.4 essentially says that there is a path starting from a point \(x\) which is contained in \(K\). We do not require that the point \(y\) should be one of the end points of the path. This observation plays an important role in our analysis. Note that, if we demand that \(y\) should be an end point of the path for every pair of points \(x,y\in K\), then \(\eta \left( y,x\right)=y-x\), and consequently invexity reduces to convexity. Thus, it is true that every convex set is also an invex set with respect to \(\eta \left( y,x\right)=y-x\), but the converse is not necessarily true, see [9, 10] and the references therein. For the sake of simplicity, we always assume that \(K=\left[ x,x+t\eta \left( y,x\right) \right] \), unless otherwise specified [11].

Definition 1.5.[8] A function \(f:K\rightarrow\mathbb{R}\) on an invex set \(K\subseteq\mathbb{R} \) is said to be preinvex with respect to \(\eta \), if \(f\left( u+t\eta (v,u)\right) \leq (1-t)f(u)+tf(v),~~~\forall u,v\in K,~~t\in \left[ 0,1% \right] .\) The function \(f\) is said to be preconcave if and only if \(-f\) is preinvex.

It is to be noted that every convex function is preinvex with respect to the map \(\eta \left( y,x\right) =x-y\) but the converse is not true see for instance.

Definition 1.6.[12] A function \(f:K\rightarrow\mathbb{R}\) on an invex set \(K\subseteq\mathbb{R}\) is said to be prequasiinvex with respect to \(\eta \), if \(f\left( u+t\eta (v,u)\right) \leq \max \left\{ f(u),f(v)\right\} ,\forall u,v\in K,~~t\in % \left[ 0,1\right] .\)

Also every quasi-convex function is a prequasiinvex with respect to the map \( \eta (v,u)=v-u\) but the converse does not hold, see for example [12]. Mohan and Neogy [9] introduced Condition \(C\) defined as follows:

Definition 1.7.[9] Let \(S\subseteq \mathbb{R}\) be an open invex subset with respect to the map \(\eta :S\times S\rightarrow\mathbb{R}\). We say that the function satisfies the Condition \(C\) if, for any \(x,y\in S \) and any \(t\in \left[ 0,1\right] \),

\begin{equation} \eta \left( y,y+t\eta \left( x,y\right) \right)=-t\eta \left( x,y\right) \end{equation}
(1)
\begin{equation} \eta \left( x,y+t\eta \left( x,y\right) \right) =\left( 1-t\right) \eta \left( x,y\right). \end{equation}
(2)
Note that, from the Condition \(C\), we have \begin{equation*} \eta \left( y+t_{2}\eta \left( x,y\right) ,y+t_{1}\eta \left( x,y\right) \right) =\left( t_{2}-t_{1}\right) \eta \left( x,y\right) \end{equation*} for any \(x,y\in S\) and any \(t_{1},t_{2}\in \left[ 0,1\right] \).

In recent years, many mathematicians have been studying about preinvexity and types of preinvexity. A lot of efforts have been made by many mathematicians to generalize the classical convexity. These studies include, among others, the work of [8, 13, 14, 15, 16, 17]. In this papers have been studied the basic properties of the preinvex functions and their role in optimization, variational inequalities and equilibrium problems. Ben-Israel and Mond gave the concept of preinvex functions which is a special case of invexity [13]. Pini introduced the concept of prequasiinvex functions as a generalization of invex functions [16]. In a recent paper, Noor has obtained the following Hermite-Hadamard type inequalities for the preinvex functions [18].

Theorem 1.8.[18] Let \(f:\left[ a,a+t\eta (b,a)\right] \rightarrow \left( 0,\infty \right) \) be a preinvex function on the interval of the real numbers \(K^{\circ }\) (the interior of \(K\)) and \(a,b\in K^{\circ }\) with \(\eta (b,a)>0\). Then the following inequalities holds

\begin{equation} f\left( \frac{2a+\eta (b,a)}{2}\right) \leq \frac{1}{\eta (b,a)}% \int_{a}^{a+\eta (b,a)}f(x)dx\leq \frac{f(a)+f(b)}{2}. \label{1.3} \end{equation}
(3)
For several recent results on inequalities for preinvex and prequasiinvex functions which are connected to (3), we refer the interested reader to [19, 20, 21, 22] and the references therein. Let \(0< a < b\), throughout this paper we will use \begin{eqnarray*} A &=&A\left( a,b\right) =\frac{a+b}{2} \\ L_{p}\left( a,b\right) &=&\left( \frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{ \frac{1}{p}}, a\neq b, p\in\mathbb{R}, p\neq -1,0 \end{eqnarray*} for the arithmetic and generalized logarithmic mean, respectively. Moreover, for shortness, the following notations will be used: \begin{eqnarray*} \alpha &=&\alpha \left( a,b,\eta \right) =a+\frac{\eta (b,a)}{2},~~~\ ~\ ~\alpha _{t}=\alpha _{t}\left( a,b,\eta \right) =a+t\frac{\eta (b,a)}{2}, \\ \beta &=&\beta \left( a,b,\eta \right) =a+\frac{\eta (b,a)}{3},~\ \ \ \ \beta _{t}=\beta _{t}\left( a,b,\eta \right) =a+t\frac{\eta (b,a)}{3}, \end{eqnarray*} and \begin{eqnarray*} &&I_{f}(a,b,\eta ):=\frac{\eta ^{2}(b,a)}{2}\left( a+\frac{\eta (b,a)}{3}% \right) f^{\prime \prime }\left( a+\eta (b,a)\right) \\ &&-\eta (b,a)\left( a+\frac{\eta (b,a)}{2}\right) f^{\prime }\left( a+\eta (b,a)\right) \\ &&+f\left( a+\eta (b,a)\right) \left( a+\eta (b,a)\right) -f(a)a-\int_{a}^{a+\eta (b,a)}f(x)dx. \end{eqnarray*} In this paper, using a general integral identity for a three times differentiable functions, we establish some new type integral inequalities for mappings whose third derivative in absolute value at certain powers are preinvex and prequasiinvex.

2. Main results for our lemma

We will use the following Lemma for obtain our main results about the preinvexity and prequasiinvexity.

Lemma 2.1. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K\rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) Then the following identity hold: \begin{eqnarray*} &&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+f\left( a+\eta (b,a)\right) \left( a+\eta (b,a)\right) -f(a)a-\int_{a}^{a+\eta (b,a)}f(x)dx \\ &=&\eta ^{3}(b,a)\int_{0}^{1}\frac{t^{2}}{2}\beta _{t}f^{\prime \prime \prime }(a+t\eta (b,a))dt. \end{eqnarray*}

Proof. Integrating three times by parts and then changing the variable, we obtain \begin{eqnarray*} &&\eta ^{3}(b,a)\int_{0}^{1}\frac{t^{2}}{2}\beta _{t}f^{\prime \prime \prime }(a+t\eta (b,a))dt \\ &=&\left. \eta ^{2}(b,a)\frac{t^{2}}{2}\beta _{t}f^{\prime \prime }\left( a+t\eta (b,a)\right) \right\vert _{0}^{1}-\left. \eta (b,a)t\alpha _{t}f^{\prime }\left( a+t\eta (b,a)\right) \right\vert _{0}^{1} \\ &&+\left. \left( a+t\eta (b,a)\right) f\left( a+t\eta (b,a)\right) \right\vert _{0}^{1}-\eta (b,a)\int_{0}^{1}f\left( a+t\eta (b,a)\right) dt \\ &=&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+\left( a+\eta (b,a)\right) f\left( a+\eta (b,a)\right) -af\left( a\right) -\eta (b,a)\int_{0}^{1}f\left( a+t\eta (b,a)\right) dt \\ &=&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+\left( a+\eta (b,a)\right) f\left( a+\eta (b,a)\right) -af\left( a\right) -\int_{a}^{a+\eta (b,a)}f(x)dx. \end{eqnarray*} This completes the proof of lemma.

Theorem 2.2. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K \rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is preinvex on \(K\) for \(q>1\), then the following inequality holds:

\begin{equation} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{3^{\frac{1}{q}}}{2}\frac{ \eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}C_{1,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2,\eta }\left( a,b\right) \right] ^{\frac{1}{q}}. \label{2-1} \end{equation}
(4)
where \begin{equation*} C_{1,\eta }\left( a,b\right) :=\left\{ \begin{array}{c} \eta (b,a)\left[ L_{q+1}^{q+1}\left( \beta ,a\right) -aL_{q}^{q}\left( \beta ,a\right) \right] ,~\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a>0,\beta >0, \\ 3\left( a+\beta \right) L_{q+1}^{q+1}\left( \beta ,-a\right) -\frac{6a}{q+1}% A\left( \beta ^{q+1},(-a)^{q+1}\right) ,a< 0,\beta >0, \\ -\eta (b,a)\left[ L_{q+1}^{q+1}\left( -a,-\beta \right) +aL_{q}^{q}\left( -a,-\beta \right) \right] ,~\ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{equation*} and \begin{equation*} C_{2,\eta }\left( a,b\right) :=\left\{ \begin{array}{c} -\eta (b,a)\left[ L_{q+1}^{q+1}\left( \beta ,a\right) -\alpha L_{q}^{q}\left( \beta ,a\right) \right] ,~\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a>0,\beta >0, \\ -3\left( a+\beta \right) L_{q+1}^{q+1}\left( \beta ,-a\right) +\frac{6\beta }{q+1}A\left( \beta ^{q+1},(-a)^{q+1}\right) ,a<0,\beta >0, \\ \eta (b,a)\left[ L_{q+1}^{q+1}\left( -a,-\beta \right) +\alpha L_{q}^{q}\left( -a,-\beta \right) \right] ,~\ \ \ \ \ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{equation*}

Proof. If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) for \(q>1\) is preinvex on \(\left[ a,a+\eta (b,a)\right] \), using Lemma 2.1, the Hölder integral inequality and \(\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\)we get \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1 }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{ q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1 }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\frac{\eta ^{3}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}} \left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t\left\vert \beta _{t}\right\vert ^{q}dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}\left( 1-t\right) \left\vert \beta _{t}\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\frac{\eta ^{3}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left( \frac{3\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}}{\eta ^{2}(b,a)}\int_{a}^{\beta }3\left( x-a\right) \left\vert x\right\vert ^{q}dx\right. \\ &&+\left. \frac{3\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{ \eta ^{2}(b,a)}\int_{a}^{\beta }\left( \eta (b,a)-3(x-a)\right) \left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}3^{\frac{1}{q}}\frac{\eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3\left( x-a\right) \left\vert x\right\vert ^{q}dx\right. \\ &&+\left. \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }\left( \eta (b,a)-3(x-a)\right) \left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\frac{\eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}C_{1,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2,\eta }\left( a,b\right) \right] ^{ \frac{1}{q}}. \end{eqnarray*} This completes the proof of theorem.

Corollary 2.3. Suppose that all the assumptions of Theorem 2.2 are satisfied. If we choose \(\eta (b,a)=b-a\) then when \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is convex on \(K\) for \(q>1\) we obtain following inequality: \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a} \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{1}{2}3^{\frac{1}{q}}\frac{(b-a)^{\frac{2}{p}}}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}C_{1}\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2}\left( a,b\right) \right] ^{\frac{1}{q}}, \end{eqnarray*} where% \begin{equation*} C_{1}\left( a,b\right) =\left\{ \begin{array}{c} (b-a)\left[ L_{q+1}^{q+1}\left( \frac{2a+b}{3},a\right)-aL_{q}^{q}\left( \frac{2a+b}{3},a\right) \right] ,~\ a>0, \frac{2a+b}{3}>0, \\ \left( 5a+b\right) L_{q+1}^{q+1}\left( \frac{2a+b}{3},-a\right)\\ -\frac{6a}{ q+1}A\left( \left( \frac{2a+b}{3}\right) ^{q+1},(-a)^{q+1}\right) ,~\ \ \ \ \ \ \ \ \ \ \ \ a< 0,\frac{ 2a+b}{3}>0, \\ -(b-a)\left[ L_{q+1}^{q+1}\left( -a,-\frac{2a+b}{3}\right) +aL_{q}^{q}\left( -a,-\frac{2a+b}{3}\right) \right],a< 0,\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*} \begin{equation*} C_{2}\left( a,b\right) =\left\{ \begin{array}{c} -(b-a)\left[ L_{q+1}^{q+1}\left( \frac{2a+b}{3},a\right) -\alpha L_{q}^{q}\left( \frac{2a+b}{3},a\right) \right] ,~ \ a>0,\frac{2a+b}{3}>0, \\ -\left( 5a+b\right) L_{q+1}^{q+1}\left( \frac{2a+b}{3},-a\right)\\ +\frac{% 6\beta }{q+1}A\left( \left( \frac{2a+b}{3}\right) ^{q+1},(-a)^{q+1}\right) ,a< 0,\frac{2a+b}{3}>0, \\ (b-a)\left[ L_{q+1}^{q+1}\left( -a,-\frac{2a+b}{3}\right) +\alpha L_{q}^{q}\left( -a,-\frac{2a+b}{3}\right) \right] ,~\ a< 0,\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*}

Remark 2.5. If the mapping \(\eta \) satisfies condition C then by use of the preinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we obtain following inequality for every \(t\in \left[ 0,1\right] \):

\begin{eqnarray} \left\vert f^{\prime \prime \prime }\left( a+t\eta (b,a)\right) \right\vert ^{q} &=&\left\vert f^{\prime \prime \prime }\left( a+\eta (b,a)+(1-t)\eta (a,a+\eta (b,a))\right) \right\vert ^{q} \notag \\ &\leq &t\left\vert f^{\prime \prime \prime }\left( a+\eta (b,a)\right) \right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}. \label{2-a} \end{eqnarray}
(5)
If we use the inequality (5) in the proof of Theorem 2.1, then the inequality (4) becomes the following inequality:
\begin{eqnarray} &&I_{f}(a,b,\eta ) \notag \\ &\leq &\frac{3^{\frac{1}{q}}}{2}\frac{\eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}C_{1,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2,\eta }\left( a,b\right) \right] ^{\frac{1}{q}}. \end{eqnarray}
(6)
We note that by use of the preinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we get \(\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\leq \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}.\) Therefore, the inequality (6) is better than the inequality (4).

Theorem 2.5. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K \rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is preinvex on \(K\) for \(q>1\), then the following inequality holds:

\begin{equation} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{3^{\frac{1}{p}}}{2}\eta ^{2+\frac{1}{q}}(b,a)C_{3,\eta }^{\frac{1}{p}}\left( a,b\right) \left[ \frac{ \left( 2q+1\right) \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{1}{q}}, \label{2-c} \end{equation}
(7)
where \begin{equation*} C_{3,\eta }\left( a,b\right) =\left\{ \begin{array}{c} \frac{\eta (b,a)}{3}L_{p}^{p}\left( \beta ,a\right) ,~\ \ \ \ \ \ \ \ \ a>0,~\beta >0, \\ \frac{2}{p+1}A\left( \beta ^{p+1},(-a)^{p+1}\right) ,a< 0,~~\beta >0, \\ \frac{\eta (b,a)}{3}L_{p}^{p}\left( -a,-\beta \right) ,~\ \ \ \ \ a< 0,~~\beta < 0. \end{array} \right. \end{equation*}

Proof. If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) for \(q>1\) is preinvex on \(\left[ a,a+\eta (b,a)\right] \), using Lemma 2.1, the Hölder integral inequality and \(\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\) we obtain the following inequality: \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\left( \int_{0}^{1}t^{2q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\\ &&\times \left( \int_{0}^{1}t^{2q}\left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\\ &&\times \left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t^{2q+1}dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}\left( t^{2q}-t^{2q+1}\right) dt\right) ^{\frac{1}{q}} \end{eqnarray*} \begin{eqnarray*} &=&\frac{1}{2}3^{\frac{1}{p}}\eta ^{2+\frac{1}{q}}(b,a)\left( \int_{a}^{\beta }\left\vert x\right\vert ^{p}dx\right) ^{\frac{1}{p}}\left[ \frac{\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}}{2q+2} +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\left( \frac{1}{2q+1} -\frac{1}{2q+2}\right) \right] ^{\frac{1}{q}} \\ &=&\frac{1}{2}3^{\frac{1}{p}}\eta ^{2+\frac{1}{q}}(b,a)C_{3,\eta }^{\frac{1}{ p}}\left( a,b\right) \left[ \frac{\left( 2q+1\right) \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{ 1}{q}}. \end{eqnarray*} This completes the proof of theorem.

Corollary 2.6. Suppose that all the assumptions of Theorem 2.5 are satisfied. If we choose \(\eta (b,a)=b-a\) then when \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is convex on \(K\) for \(q>1\) we have the following inequality: \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{3^{\frac{1}{p}}}{2}(b-a)^{1+\frac{1}{q}}C_{3}^{\frac{1}{p}% }\left( a,b\right) \left[ \frac{\left( 2q+1\right) \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{% 1}{q}}, \end{eqnarray*} where \begin{equation*} C_{3}\left( a,b\right) =\left\{ \begin{array}{c} \frac{b-a}{3}L_{p}^{p}\left( \frac{2a+b}{3},a\right) ,~\ \ \ \ \ \ \ \ \ \ \ \ \ \ a>0,~\frac{2a+b}{3}>0, \\ \frac{2}{p+1}A\left( \left( \frac{2a+b}{3}\right) ^{p+1},(-a)^{p+1}\right) ,a< 0,~~\frac{2a+b}{3}>0, \\ \frac{b-a}{3}L_{p}^{p}\left( -a,-\frac{2a+b}{3}\right) ,~\ \ \ \ \ \ \ \ \ \ \ a< 0,~~\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*}

Remark 2.7. If the mapping \(\eta \) satisfies condition C then using the inequality (5) in the proof of Theorem 2.5, then the inequality (7) becomes the following inequality:

\begin{equation} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{3^{\frac{1}{p}}}{2}\eta ^{2+\frac{1}{q}}(b,a)C_{3,\eta }^{\frac{1}{p}}\left( a,b\right) \left[ \frac{ \left( 2q+1\right) \left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{1}{q}}. \end{equation}
(8)
We note that by use of the preinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we get \(\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\leq \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}.\) Therefore, the inequality (8) is better than the inequality (7).

Theorem 2.8. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K \rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is preinvex on \(K\) for \(q\geq 1\) , then the following inequality holds:

\begin{equation} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\eta ^{-\frac{1}{q} }(b,a)D_{1,\eta }^{1-\frac{1}{q}}\left( a,b\right) \left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3,\eta }\left( a,b\right) \right] ^{\frac{1}{q}} \label{2-2} \end{equation}
(9)
where \begin{eqnarray*} D_{1,\eta }(a,b) &:&=\left\{ \begin{array}{c} \frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12},~\ \ \ \ \ \ \ a>0,\beta >0~ \\ \frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12}+\frac{a^{4}}{6},a< 0,~\beta >0 \\ -\frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \\ D_{2,\eta }(a,b) &:&=\left\{ \begin{array}{c} \frac{\eta ^{4}(b,a)}{27}\frac{4\eta (b,a)+15a}{60},~\ \ \ \ \ \ a>0,\beta >0 \\ \frac{\eta ^{4}(b,a)}{27}\frac{4\eta (b,a)+15a}{60}-3\frac{a^{5}}{10} ,a< 0,\beta >0 \\ -\frac{\eta ^{4}(b,a)}{27}\frac{4\eta (b,a)+15a}{60},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \\ D_{3,\eta }(a,b) &:&=\left\{ \begin{array}{c} \frac{\eta ^{4}(b,a)}{27}\frac{\eta (b,a)+5a}{60},~\ \ \ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a>0,\beta >0 \\ \frac{\eta ^{4}(b,a)}{27}\frac{\eta (b,a)+5a}{60}+\eta (b,a)\frac{a^{4}}{6}+3 \frac{a^{5}}{10},a< 0,\beta >0 \\ -\frac{\eta ^{4}(b,a)}{27}\frac{\eta (b,a)+5a}{60},~\ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{eqnarray*}

Proof. Using Lemma 2.1 and Power-mean integral inequality, we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\\ &&\times\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}}\\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\\ &&\times\left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t^{3}\left\vert \beta _{t}\right\vert dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}t^{2}(1-t)\left\vert \beta _{t}\right\vert dt\right) ^{\frac{ 1}{q}}\\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \frac{27}{\eta ^{3}(b,a)}\right) ^{1- \frac{1}{q}}\left( \frac{27}{\eta ^{4}(b,a)}\right) ^{\frac{1}{q}}\left( \int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx\right) ^{1-\frac{1}{q}}\\ &&\times\left( \begin{array}{c} \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3(x-a)^{3}\left\vert x\right\vert dx\\+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }(x-a)^{2}\left[ \eta (b,a)-3(x-a)\right] \left\vert x\right\vert dx \end{array} \right)^{\frac{1}{q}} \\ &=&\frac{27}{2}\eta ^{-\frac{1}{q}}(b,a)\left( \int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx\right) ^{1-\frac{1}{q}} \\ &&\times \left( \begin{array}{c} \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3(x-a)^{3}\left\vert x\right\vert dx\\+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }(x-a)^{2}\left[ \eta (b,a)-3(x-a)\right] \left\vert x\right\vert dx \end{array} \right) ^{\frac{1}{q}} \\ &=&\frac{27}{2}\eta ^{-\frac{1}{q}}(b,a)D_{1,\eta }^{1-\frac{1}{q}}\left( a,b\right) \left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3,\eta }\left( a,b\right) \right] ^{\frac{1}{q}}. \end{eqnarray*} This completes the proof of theorem.

Corollary 2.9. Suppose that all the assumptions of Theorem 3 are satisfied. If we choose \( \eta (b,a)=b-a\) then when \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is convex on \(K\) for \(q\geq 1\) we get \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{27}{2}(b-a)^{-1-\frac{1}{q}}D_{1}^{1-\frac{1}{q}}\left( a,b\right) \left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}D_{2}\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3}\left( a,b\right) \right] ^{\frac{1}{q}}, \end{eqnarray*} where \begin{eqnarray*} D_{1}(a,b) &=&\left\{ \begin{array}{c} \frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ \ \ a>0,\beta >0~ \\ \frac{(b-a)^{3}}{27}\frac{b+3a}{12}+\frac{a^{4}}{6},a< 0,~\beta >0 \\ -\frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \\ D_{2}(a,b) &=&\left\{ \begin{array}{c} \frac{(b-a)^{4}}{27}\frac{4b+11a}{60},~\ \ \ \ \ \ a>0,\beta >0 \\ \frac{(b-a)^{4}}{27}\frac{4b+11a}{60}-3\frac{a^{5}}{10},a< 0,\beta >0 \\ -\frac{(b-a)^{4}}{27}\frac{4b+11a}{60},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \end{eqnarray*} and \begin{equation*} D_{3}(a,b)=\left\{ \begin{array}{c} \frac{(b-a)^{4}}{27}\frac{b+4a}{60},~\ \ \ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a>0,\beta >0 \\ \frac{(b-a)^{4}}{27}\frac{b+4a}{60}+(b-a)\frac{a^{4}}{6}+3\frac{a^{5}}{10} ,a< 0,\beta >0 \\ -\frac{(b-a)^{4}}{27}\frac{b+4a}{60},~\ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{equation*}

Remark 2.10. If the mapping \(\eta \) satisfies condition C then using the inequality (5) in the proof of Theorem 2.8, then the inequality (9) becomes the following inequality:

\begin{eqnarray} \left\vert I_{f}(a,b,\eta )\right\vert &\leq &\frac{27}{2}\eta ^{-\frac{1}{q} }(b,a)D_{1,\eta }^{1-\frac{1}{q}}\left( a,b\right) \label{2-2a} \\ &&\times \left[ \left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3,\eta }\left( a,b\right) \right] ^{ \frac{1}{q}}. \notag \end{eqnarray}
(10)
We note that by use of the preinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we get \(\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\leq \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}.\) Therefore, the inequality (10) is better than the inequality (9).

Corollary 2.11. If we take \(q=1\) in Theorem 2.8, then we have the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2\eta (b,a)}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert D_{3,\eta }\left( a,b\right) \right] \end{equation*}

Now we will give our results for prequasiinvex functions by using Lemma 2.1.

Theorem 2.12. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K \rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is prequasiinvex on \(K\) for \(q>1\) , then the following inequality holds:

\begin{eqnarray} &&\left\vert I_{f}(a,b,\eta )\right\vert \notag \\ &\leq &\frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{% 2p+1}\right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}C_{\eta }^{\frac{1}{q} }(q,a,b) \label{2-5} \end{eqnarray}
(11)
where \begin{equation*} C_{\eta }(q,a,b):=\left\{ \begin{array}{c} \frac{\eta (b,a)}{3}L_{q}^{q}\left( \beta ,a\right) ,~\ \ \ \ \ \ \ \ \ \ a>0,\beta >0, \\ \frac{2}{q+1}A\left[ \beta ^{q+1},\left( -a\right) ^{q+1}\right] ,a< 0,\beta >0, \\ \frac{\eta (b,a)}{3}L_{q}^{q}\left( -a,-\beta \right) ,~\ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{equation*}

Proof. If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) for \(q>1\) is prequasiinvex on \(\left[ a,a+\eta (b,a)\right] \), using Lemma 2.1, the Hölder integral inequality and \(\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \) we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1% }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{% q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1% }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} dt\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\left( \int_{a}^{\beta }\left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}C_{\eta }^{\frac{1}{q}}(q,a,b) \end{eqnarray*} This completes the proof of theorem.

Corollary 2.13. Suppose that all the assumptions of Theorem 2.12 are satisfied. If we choose \(\eta (b,a)=b-a\) then when \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is prequasiinvex on \(K\) for \(q>1\) we have \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)-% \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{3^{\frac{1}{q}}}{2}(b-a)^{1+\frac{1}{p}}\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}C^{\frac{1}{q}}(q,a,b) \end{eqnarray*} where \begin{equation*} C(q,a,b)=\left\{ \begin{array}{c} \frac{b-a}{3}L_{q}^{q}\left( \frac{b+2a}{3},a\right) ,~\ \ \ \ \ \ \ \ \ \ a>0,\frac{b+2a}{3}>0, \\ \frac{2}{q+1}A\left[ \left( \frac{b+2a}{3}\right) ^{q+1},\left( -a\right) ^{q+1}\right] ,a< 0,\frac{b+2a}{3}>0, \\ \frac{b-a}{3}L_{q}^{q}\left( -a,-\frac{b+2a}{3}\right) ,~\ \ \ \ \ \ a< 0, \frac{b+2a}{3}< 0. \end{array} \right. \end{equation*}

Remark 2.14. If the mapping \(\eta \) satisfies condition C then by use of the prequasiinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we get

\begin{eqnarray} \left\vert f^{\prime \prime \prime }\left( a+t\eta (b,a)\right) \right\vert ^{q} &=&\left\vert f^{\prime \prime \prime }\left( a+\eta (b,a)+(1-t)\eta (a,a+\eta (b,a))\right) \right\vert ^{q} \notag \\ &\leq &\max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }\left( a+\eta (b,a)\right) \right\vert ^{q}\right\} \label{2-5a} \end{eqnarray}
(12)
for every \(t\in \left[ 0,1\right] .\) If we use the inequality (12) in the proof of Theorem 2.12, then the inequality (11) becomes the following inequality:
\begin{eqnarray} &&\left\vert I_{f}(a,b,\eta )\right\vert\\ && \leq \frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{2p+1}\right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\right\} \right) ^{% \frac{1}{q}}C_{\eta }^{\frac{1}{q}}(q,a,b)\nonumber \label{2-5b} \end{eqnarray}
(13)
We note that by use of the prequasiinvexity of \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) we have \(\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\leq \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\right\} .\) Therefore, the inequality (14) is better than the inequality (11).

Theorem 2.15. Let \(K\subseteq\mathbb{R}\) be an open invex subset with respect to mapping \(\eta \left(\cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n}\) and \(a,b\in K\) with \(\eta (b,a)>0\). Suppose that the function \(f:K\rightarrow\mathbb{R}\) is a three times differentiable function on \(K\) such that \(f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] .\) If \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is prequasiinvex on \(K\) for \( q\geq 1\), then the following inequality holds:

\begin{equation} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}D_{1,\eta}(a,b) \end{equation}
(14)
where \begin{equation*} D_{1,\eta }(a,b):=\left\{ \begin{array}{c} \frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12},~\ \ \ \ \ \ \ a>0,\beta >0~ \\ \frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12}+\frac{a^{4}}{6},a< 0,~\beta >0 \\ -\frac{\eta ^{3}(b,a)}{27}\frac{\eta (b,a)+4a}{12},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \end{equation*}

Proof. From Lemma 2.1 and Power-mean integral inequality, we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\eta^{3}(b,a)\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime}(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\int_{0}^{1}t^{2}\left \vert \beta _{t}\right\vert dt \\ &=&\frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx \\ &=&\frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}D_{1,\eta }(a,b). \end{eqnarray*} This completes the proof of theorem.

Corollary 2.16. Suppose that all the assumptions of Theorem 2.15 are satisfied. If we choose \(\eta (b,a)=b-a\) then when \(\left\vert f^{\prime \prime \prime }\right\vert ^{q}\) is prequasiinvex on \(K\) for \(q\geq 1\) we have \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a} \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{27}{2}\frac{D_{1}(a,b)}{b-a}\left[ \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right] ^{\frac{1}{q}} \end{eqnarray*} where \begin{equation*} D_{1}(a,b)=\left\{ \begin{array}{c} \frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ \ \ a>0,\frac{b+2a}{3}>0~ \\ \frac{(b-a)^{3}}{27}\frac{b+3a}{12}+\frac{a^{4}}{6},a< 0,~\frac{b+2a}{3}>0 \\ -\frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ a< 0,\frac{b+2a}{3}< 0 \end{array} \right. , \end{equation*}

Remark 2.17. If we use the inequality (12) in the proof of Theorem 2.15, then the inequality (14) becomes the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\right\} \right) ^{\frac{1}{q} }D_{1,\eta }(a,b) \end{equation*} This inequality is better than the inequality (14).

Corollary 2.18. If we take \(q=1\) in Theorem 2.15, then we have the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} D_{1,\eta }(a,b) \end{equation*}

Competing Interests

The author do not have any competing interests in the manuscript.

Referance

  1. Peajcariaac, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications . Academic Press. [Google Scholor]
  2. Dragomir, S. S., & Pearce, C. E. M. (2004). Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. ONLINE: http://rgmia. vu. edu. au/monographs. [Google Scholor]
  3. İşcan, İ., Set, E., & Özdemir, M. E. (2014). On new general integral inequalities for s-convex functions. Applied Mathematics and Computation, 246, 306-315. [Google Scholor]
  4. Iscan, I., Kadakal, H., & Kadakal, M. (2017). Some New Integral Inequalities for \(n\)-Times Differentiable Quasi-Convex Functions. Sigma Journal of Engineering and Natural Sciences , 35 (3), 363-368. [Google Scholor]
  5. Maden, S., Kadakal, H., Kadakal, M., & İşcan, İ. (2017). Some new integral inequalities for \(n\)-times differentiable convex and concave functions. J. Nonlinear Sci. Appl , 10 (12), 6141-6148. [Google Scholor]
  6. Hadamard, J. (1893). Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. Journal de mathématiques pures et appliquées , 171-216. [Google Scholor]
  7. Ion, D. A. (2007). Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Annals of the University of Craiova-Mathematics and Computer Science Series, 34, 82-87. [Google Scholor]
  8. Weir, T., & Mond, B. (1988). Pre-invex functions in multiple objective optimization. Journal of Mathematical Analysis and Applications, 136(1), 29-38. [Google Scholor]
  9. Mohan, S. R., & Neogy, S. K. (1995). On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications, 189(3), 901-908.[Google Scholor]
  10. Yang, X. M., Yang, X. Q., & Teo, K. L. (2003). Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications , 117(3), 607-625. [Google Scholor]
  11. Antczak, T. (2005). Mean value in invexity analysis. Nonlinear Analysis: Theory, Methods & Applications, 60(8), 1473-1484. [Google Scholor]
  12. Barani, A., Ghazanfari, A. G., & Dragomir, S. S. (2011). Hermite-Hadamard inequality through prequsiinvex functions. RGMIA Res. Rep. Collect, 14. [Google Scholor]
  13. Ben-Israel, A., & Mond, B. (1986). What is invexity?. The ANZIAM Journal, 28(1), 1-9. [Google Scholor]
  14. Noor, M. A. (2005). Invex equilibrium problems. Journal of Mathematical Analysis and Applications , 302(2), 463-475. [Google Scholor]
  15. Aslam Noor, M. (1994). Variational-like inequalities. Optimization , 30(4), 323-330. [Google Scholor]
  16. Pini, R. (1991). Invexity and generalized convexity. Optimization, 22(4), 513-525.[Google Scholor]
  17. Yang, X. M., & Li, D. (2001). On properties of preinvex functions. Journal of Mathematical Analysis and Applications, 256(1), 229-241. [Google Scholor]
  18. Noor, M. A. (2007). Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory, 2(207), 126-131. [Google Scholor]
  19. Barani, A., Ghazanfari, A. G., & Dragomir, S. S. (2012). Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications , 2012(1), 247.[Google Scholor]
  20. Iscan, I. (2012). Ostrowski type inequalities for functions whose derivatives are preinvex. Bulletin of the Iranian Mathematical Society, 40(2), 373-386. [Google Scholor]
  21. Latif, M. A., & Dragomir, S. S. (2013). Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the co-oordinates. Facta Univ. Ser. Math. Inform, 28, 257-270. [Google Scholor]
  22. Matloka, M. (2014). On some new inequalities for differentiable (\(h_{1}\); \(h_{2}\))-preinvex functions on the co-ordinates. Mathematics and Statistics, 2(1), 6-14.[Google Scholor]
]]> Some new Hermite-Hadamard-Fejér type inequalities for harmonically convex functions https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/some-new-hermite-hadamard-fejer-type-inequalities-for-harmonically-convex-functions/ Sat, 30 Jun 2018 13:43:07 +0000 https://old.pisrt.org/?p=786
OMA-Vol. 2 (2018), Issue 1, pp. 19–32 | Open Access Full-Text PDF
Sercan Turhan, İmdat İşcan
Abstract:In this paper, we gave the new general identity for differentiable function. As a result of this identity some new and general fractional integral inequalities for differentiable harmonically convex functions are obtained.
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

Some new Hermite-Hadamard-Fejér type inequalities for harmonically convex functions

Sercan Turhan\(^1\), İmdat İşcan
Dereli Vocational High School, Giresun University, 28100, Giresun-TÜRKİYE.; (S.T)
Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE.; (İ.İ)
\(^{1}\)Corresponding Author; sercanturhan28@gmail.com

Copyright © 2018 Sercan Turhan, İmdat İşcan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we gave the new general identity for differentiable function. As a result of this identity some new and general fractional integral inequalities for differentiable harmonically convex functions are obtained.

Keywords:

Harmonically-convex; Hermite-Hadamard-Fejer type inequalities; Fractional Integral.

1. Introduction

The classical or the usual convexity is defined as follows: A function \(f:\emptyset\neq I\subseteq \mathbb{R} \longrightarrow \mathbb{R}\), is said to be convex on \(I\) if inequality \begin{equation*} f\left(tx+\left(1-t\right)y\right) \leq tf(x)+\left(1-t\right)f(y) \end{equation*} holds for all \(x,y \in I \) and \(t\in \left[0,1\right]\). A number of papers have been written on inequalities using the classical convexity and one of the most fascinating inequalities in mathematical analysis is stated as follows
\begin{equation} f\left( \frac{a+b}{2}\right) \leq \frac{1}{b-a}\int\limits_{a}^{b}f(x)dx\leq \frac{f(a)+f(b)}{2}\text{,} \end{equation}
(1)
where \(f:I\subseteq\mathbb{R}\longrightarrow\mathbb{R}\) be a convex mapping and \(a,b\in I\) with \(a\leq b\) . Both the inequalities hold in reversed direction if \(f\) is concave. The inequalities stated in (1) are known as Hermite-Hadamard inequalities. For more results on (1) which provide new proof, significantly extensions, generalizations, refinements, counterparts, new Hermite-Hadamard-type inequalities and numerous applications, we refer the interested reader [1, 2, 3, 4] and the references therein. Many researchers extend their studies to Hermite-Hadamard type inequalities involving fractional integrals not limited to integer integrals. The usual notion of convex function have been generalized in diverse manners. Some of them is the so called harmonically \(s\)-convex function and harmonically convex function is stated in the definition below.

Definition 1.1 [5] A function \(f:I\subset \left( 0,\infty \right) \longrightarrow\mathbb{R}\) is said to be harmonically-\(s\)-convex function if \begin{equation*} f\left( \frac{xy}{tx+(1-t)y}\right) \leq t^{s}f\left( y\right) +\left( 1-t\right) ^{s}f\left( x\right) \end{equation*} holds for all \(x,y\in I\) and \(t\in \left[ 0,1\right]\), and for some fixed \(s\in \left( 0,1\right]\). In [6], İ.İşcan gave definition of harmonically convex functions and established following Hermite-Hadamard type inequality for harmonically convex functions as follows:

Definition 1.2 [6] A function \(f:I\subseteq \mathbb{R} \backslash \left\{ 0\right\} \longrightarrow \mathbb{R}\) is said to be harmonically-convex function on \(I\) if \begin{equation*} f\left( \frac{xy}{tx+(1-ty)}\right) \leq tf\left( y\right) +\left( 1-t\right) f\left( x\right) \end{equation*} holds for all \(x,y\in I\) and \(t\in \left[ 0,1\right]\). If the inequality is reversed, then \(f\) is said to be harmonically concave.

Proposition 1.3 [6] Let \(I \subset \mathbb{R}\backslash \{0\}\) be a real interval and \(f:I\rightarrow\mathbb{R}\) is function, then:

  • if \(I\subset (0,\infty )\) and \(f\) is convex and nondecreasing function then \(f\) is harmonically convex.
  • if \(I\subset (0,\infty )\) and \(f\) is harmonically convex and nonincreasing function then \(f\) is convex.
  • if \(I\subset (-\infty ,0)\) and \(f\) is harmonically convex and nondecreasing function then \(f\) is convex.
  • if \(I\subset (-\infty ,0)\) and \(f\) is convex and nonincreasing function then \(f\) is harmonically convex.
For the properties of harmonically-convex functions and harmonically-\(s\)-convex function, we refer the reader to [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the reference there in. Most recently, a number of findings have been seen on Hermite-Hadamard type integral inequalities for harmonically-convex and for harmonically-\(s\)-convex functions.

Definition 1.4 A function \(g:\left[ a,b\right] \subseteq \mathbb{R}\backslash \{0\}\longrightarrow\mathbb{R}\) is said to be harmonically symmetric with respect to \(2ab/a+b\) if \begin{equation*} g\left( x\right) =g\left( \frac{1}{\frac{1}{a}+\frac{1}{b}-\frac{1}{x}}\right) \end{equation*} holds for all \(x\in \lbrack a,b]\).

Definition 1.5 Let \(f\in L[a,b]\). The right-hand side and left-hand side Hadamard fractional integrals \(J_{a^{+}}^{\alpha }f\) and \(J_{b^{-}}^{\alpha }f\) of order \(\alpha >0\) with \(b>a\geq 0\) are defined by \begin{equation*} J_{a^{+}}^{\alpha }f(x)=\frac{1}{\Gamma (\alpha )}\overset{x}{\underset{a}{ \int }}\left( x-t\right) ^{\alpha -1}f(t)dt,\ x>a, \end{equation*} \begin{equation*} J_{b^{-}}^{\alpha }f(x)=\frac{1}{\Gamma (\alpha )}\overset{b}{\underset{x}{ \int }}\left( t-x\right) ^{\alpha -1}f(t)dt,\ x< b \end{equation*} respectively where \(\Gamma (\alpha )\) is the Gamma function defined by \(\Gamma (\alpha )=\overset{\infty }{\underset{0}{\int }}e^{-t}t^{\alpha -1}\), \(J_{a^{+}}^{0}f(x)=J_{b^{-}}^{0}f(x)=f(x)\).

Theorem 1.6 [5] Let \(f:I\subset \mathbb{R}\backslash \{0\}\mathbb{\rightarrow R}\) be a harmonically convex function and \(a,b\in I\) with \(a< b \). If \(\ f\in L\left[ a,b\right] \) then the following inequalities hold:

\begin{equation} f\left( \frac{2ab}{a+b}\right) \leq \frac{ab}{b-a}\int\limits_{a}^{b}\frac{ f(x)}{x^{2}}dx\leq \frac{f(a)+f(b)}{2}. \end{equation}
(2)
In [10], İ. İşcan and Wu represented Hermite-Hadamard's inequalities for harmonically convex functions in fractional integral form as follows:

Theorem 1.7 [ 10] Let \(f:I\subseteq \mathbb{R}^{+}\mathbb{\rightarrow R}\) be differentiable on \(I^{\circ }\), and \(a,b\in I\) with \(a< b \) and \(f\in L\left[ a,b\right]\). If \(f\) is harmonically-convex on \(\left[ a,b\right]\), then the following inequalities for fractional integrals hold:

\begin{eqnarray} f\left( \frac{2ab}{a+b}\right) &\leq &\frac{\Gamma (\alpha +1)}{2}\left( \frac{ab}{a+b}\right) ^{\alpha }\left\{ \begin{array}{c} J_{1/a^{-}}^{\alpha }(f\circ h)(1/b) \\ +J_{1/b^{+}}^{\alpha }(f\circ h)(1/a) \end{array} \right\} &\leq & \frac{f(a)+f(b)}{2}.\label{1.4} \end{eqnarray}
(3)
with \(\alpha >0\) and \(h(x)=1/x\).

In [ 12], Chan and Wu represented Hermite-Hadamard-Fejér inequality for harmonically convex functions as follows:

Theorem 1.8 Suppose that \(f:I\subseteq\mathbb{R} \backslash \{0\}\longrightarrow\mathbb{R}\) be harmonically-convex function and \(a,b\in I\), with \(a< b\). If \(f\in L \left[ a,b\right]\) and \(g:[a,b]\subseteq\mathbb{R}\backslash \{0\}\longrightarrow\mathbb{R}\) is nonnegative, integrable and harmonically symmetric with respect to \(2ab/a+b\), then

\begin{equation} f\left( \frac{2ab}{a+b}\right) \int\limits_{a}^{b}\frac{g(x)}{x^{2}}dx\leq \int\limits_{a}^{b}\frac{f(x)g(x)}{x^{2}}dx\leq \frac{f(a)+f(b)}{2} \int\limits_{a}^{b}\frac{g(x)}{x^{2}}dx \end{equation}
(4)
In [ 8], İ. İşcan and Kunt represented Hermite-Hadamard-Fejér type inequality for harmonically convex functions in fractional integral forms and established following identity as follow

Theorem 1.9 Let \(f:[a,b]\longrightarrow \mathbb{R}\) be harmonically convex function with \(a< b\) and \(f\in L\left[ a,b\right]\). If \(g:[a,b]\longrightarrow\mathbb{R}\) is nonnegative, integrable and harmonically symmetric with respect to \(2ab/a+b\), then the following inequalities for fractional integrals hold:

\begin{equation} f\left( \frac{2ab}{a+b}\right) \left[ J_{1/a^{-}}^{\alpha }(g\circ h)(1/b)+J_{1/b^{+}}^{\alpha }(g\circ h)(1/a)\right] \label{1.7} \end{equation} \begin{equation*} \leq \left[ J_{1/a^{-}}^{\alpha }(fg\circ h)(1/b)+J_{1/b^{+}}^{\alpha }(fg\circ h)(1/a)\right] \end{equation*} \begin{equation*} \leq \frac{f(a)+f(b)}{2}\left[ J_{1/a^{-}}^{\alpha }(g\circ h)(1/b)+J_{1/b^{+}}^{\alpha }(g\circ h)(1/a)\right] \end{equation*}
(5)
with \(\alpha >0\) and \(h(x)=1/x\), \(x\in \left[ \frac{1}{b},\frac{1}{a}\right]\). In [ 2] D. Y. Hwang found out a new identity and by using this identity, established a new inequalities. Then in [ 14] İ. İşcan and S. Turhan used this identity for harmonically convex functions and obtain generalized new inequalities. In this paper, we established a new inequality similar to inequality in [ 14] and then we obtained some new and general integral inequalities for differentiable harmonically-convex functions using this lemma. The following sections, let the notion, \(L\left( t\right) =\frac{aH}{tH+(1-t)a}\), \(U\left( t\right) =\frac{bH}{tH+(1-t)b}\) and \(H=H\left( a,b\right) =\frac{2ab}{a+b}\).

2. Main Results

Throughout this section, let \(\left\Vert g\right\Vert _{\infty }=\sup_{x\in \left[ a,b\right] }\left\vert g(x)\right\vert \), for the continuous function \(g:[a,b]\longrightarrow\mathbb{R}\) be differentiable mapping \(I^{o}\), where \(a,b\in I\) with \(a\leq b\), and \(h: \left[ a,b\right] \longrightarrow \left[ 0,\infty \right)\) be differentiable mapping.

Lemma 2.1. Let \(f:I\subseteq \mathbb{R}_{+}=(0,\infty )\longrightarrow \mathbb{R}\) be a differentiable function on \(I^{o}\), \(a,b\in I^{o}\) with \(a< b\). If \(h:\left[ a,b\right] \longrightarrow \left[ 0,\infty \right)\) is a differentiable function and \(f^{\prime }\in L\left( [a,b]\right)\), the following inequality holds:

\begin{equation} \begin{split} \left( \frac{f(a)+f(b)}{2}\right) h(a)-f(H)h(b)\\+\frac{b-a}{4ab}\left\{ \begin{array}{c} \int\limits_{0}^{1}\left[ h^{\prime }(L(t))\left( L(t)\right)^{2} +h^{\prime}(U(t))\left( U(t)\right) ^{2}\right] \\ \times \left[ f(L(t))+f(U(t))\right] dt \end{array} \right\} \ \end{split} \end{equation} \begin{equation*} =\frac{b-a}{4ab}\left\{ \begin{array}{c} \int\limits_{0}^{1}\left[ h(L(t))-h(U(t))+h(b)\right]\\ \times \left[ -f^{\prime }(L(t))\left( L(t)\right) ^{2}+f^{\prime }(U(t))\left( U(t)\right) ^{2}\right] dt \end{array} \right\}. \end{equation*}
(6)

Proof. By the integration by parts, we have \begin{eqnarray*} I_{1}&=&\int\limits_{0}^{1}\left[ h(L(t))-h(U(t))+h(b)\right] d\left( f\left( L(t)\right) \right) \\ &=&\left. \left[ h(L(t))-h(U(t))+h(b)\right] f\left( L(t)\right) \right\vert _{0}^{1} \\ &-&\int\limits_{0}^{1}f(L(t))\left[ h^{\prime }(L(t))L^{\prime }(t)-h^{\prime }(U(t))U^{\prime }(t)\right] dt \\ &=& h(a)f(a)-h(b)f(H)-\int\limits_{0}^{1}f(L(t))\left[ h^{\prime }(L(t))L^{\prime }(t)-h^{\prime }(U(t))U^{\prime }(t)\right] dt \end{eqnarray*} and \begin{eqnarray*} I_{2}&=&\int\limits_{0}^{1}\left[ h(L(t))-h(U(t))+h(b)\right] d\left( f\left( U(t)\right) \right) \\ &=&\left. \left[ h(L(t))-h(U(t))+h(b)\right] f\left( U(t)\right) \right\vert _{0}^{1} \\ &-&\int\limits_{0}^{1}f(U(t))\left[ h^{\prime }(L(t))L^{\prime }(t)-h^{\prime }(U(t))U^{\prime }(t)\right] dt \\ &=&h(a)f(b)-h(b)f(H)-\int\limits_{0}^{1}f(U(t))\left[ h^{\prime }(L(t))L^{\prime }(t)-h^{\prime }(U(t))U^{\prime }(t)\right] dt \end{eqnarray*} Therefore

\begin{eqnarray} \frac{I_{1}+I_{2}}{2} &=&\left( \frac{f(a)+f(b)}{2}\right) h(a)-h(b)f(H)\nonumber\\ &&-\frac{ b-a}{4ab}\left\{ \begin{array}{c} \int\limits_{0}^{1}\left[ h^{\prime }(L(t))\left( L(t)\right) ^{2}+h^{\prime }(U(t))\left( U(t)\right) ^{2}\right] \\ \times \left[ f(L(t))+f(U(t))\right] dt \end{array} \right\} \end{eqnarray}
(7)
This complete the proof.

Theorem 2.2. Let \(f:I\subseteq\mathbb{R}_{+}=\left( 0,\infty \right) \longrightarrow\mathbb{R}\) be differentiable function on \(I^{o}\) and \(a,b\in I^{o}\) with \(a< b\). If \(h:\left[ a,b\right] \longrightarrow \left[ 0,\infty \right)\) is a differentiable function and \(\left\vert f^{\prime }\right\vert\) is harmonically convex on \(\left[ a,b\right]\), the following inequality holds

\begin{eqnarray} &&\left\vert \left( \frac{f(a)+f(b)}{2}\right) h(a)-h(b)f(\frac{2ab}{a+b})\right. \\ &&+\left. \frac{1}{2}\left[ \int\limits_{a}^{b}f(x)h^{\prime }(x)dx+\int\limits_{a}^{b}f(x)h^{\prime }(\frac{Hx}{2x-H})\left( \frac{H}{ 2x-H}\right) ^{2}dx\right] \right\vert \nonumber \\ &&\leq \frac{b-a}{4ab}\left[ \zeta _{1}(a,b)\left\vert f^{\prime }(a)\right\vert +\zeta _{2}(a,b)\left\vert f^{\prime }(H)\right\vert +\zeta _{3}(a,b)\left\vert f^{\prime }(b)\right\vert \right] \nonumber \end{eqnarray}
(8)
where
\begin{equation} \zeta _{1}\left( a,b\right) =\int\limits_{0}^{1}t\left( L(t)\right) ^{2}\left\vert h(L(t))-h(U(t))+h(b)\right\vert dt, \end{equation}
(9)
\begin{equation} \zeta _{2}\left( a,b\right) =\int\limits_{0}^{1}(1-t)\left\vert h(L(t))-h(U(t))+h(b)\right\vert \left[ \left( L(t)\right) ^{2}+\left( U(t)\right) ^{2}\right] dt , \end{equation}
(10)
\begin{equation} \zeta _{3}\left( a,b\right) = \int\limits_{0}^{1}t\left( U(t)\right) ^{2}\left\vert h(L(t))-h(U(t))+h(b)\right\vert dt . \label{2.5} \end{equation}
(11)

Proof. We get the following inequality take the absolute value to (6):

\begin{eqnarray} &&\left\vert \left( \frac{f(a)+f(b)}{2}\right) h(a)-h(b)f(\frac{2ab}{a+b}) \right. \label{2.7} \\ &&\left.+\frac{1}{2}\left[ \int\limits_{a}^{b}f(x)h^{\prime }(x)dx+\int\limits_{a}^{b}f(x)h^{\prime }(\frac{Hx}{2x-H})\left( \frac{H}{% 2x-H}\right) ^{2}dx\right] \right\vert \nonumber \\ &&\leq \frac{b-a}{4ab}\left\{ \int\limits_{0}^{1}\left\vert h(L(t))-h(U(t))+h(b)\right\vert \left\vert f^{\prime }\left( L(t)\right) \left( L(t)\right) ^{2}\right\vert dt\ \right. \nonumber \\ &&\left. +\int\limits_{0}^{1}\left\vert h(L(t))-h(U(t))+h(b)\right\vert \left\vert f^{\prime }\left( U(t)\right) \left( U(t)\right) ^{2}\right\vert dt\right\}.\nonumber \end{eqnarray}
(12)
Since \(\left\vert f^{\prime }\right\vert\) is harmonically-convex on \([a,b]\) in (12), we have for all \(t\in \lbrack a,b]\) that
\begin{eqnarray} &&\left\vert \left( \frac{f(a)+f(b)}{2}\right) h(a)-h(b)f(\frac{2ab}{a+b})\right. \label{2.8} \\ &&+\left.\frac{1}{2}\left[ \int\limits_{a}^{b}f(x)h^{\prime }(x)dx+\int\limits_{a}^{b}f(x)h^{\prime }(\frac{Hx}{2x-H})\left( \frac{H}{% 2x-H}\right) ^{2}dx\right] \right\vert \nonumber \\ &&\leq \frac{b-a}{4ab}\left\{ \int\limits_{0}^{1}\left\vert h(L(t))-h(U(t))+h(b)\right\vert \left[ t\left\vert f^{\prime }(a)\right\vert +(1-t)\left\vert f^{\prime }(H)\right\vert \right] \left( L(t)\right) ^{2}dt\ \right. \nonumber \\ &&\left. +\int\limits_{0}^{1}\left\vert h(L(t))-h(U(t))+h(b)\right\vert \left[ t\left\vert f^{\prime }(b)\right\vert +(1-t)\left\vert f^{\prime }(H)\right\vert \right] \left( U(t)\right) ^{2}dt\right\} , \nonumber \end{eqnarray}
(13)
this proof is completed.

Corollary 2.3. Suppose that \(g:\left[ a,b\right] \longrightarrow \left[ 0,\infty \right)\) is a continuous positive mapping and geometrically symmetric with respect to \(\frac{2ab}{a+b}\) (i.e. \(g(x)=g\left(\frac{1}{\frac{1}{a}+\frac{1}{b}-\frac{1}{x}}\right)\) holds for all \(x\in \lbrack a,b]\) with \(a< b \). Taking $$h(t)=\int\limits_{1/t}^{1/a}\left[ \left( x-\frac{1}{b}\right) ^{\alpha -1}+\left( \frac{1}{a}-x\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx$$ \(1/t\in \lbrack \frac{1}{b},\frac{1}{a}],\alpha >0 \) and \(\varphi \left( x\right) =\frac{1}{x}\) in Theorem \ref{aa}, we get

\begin{eqnarray} &&\left\vert \left[ J_{1/b^{+}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/a\right) +J_{1/a^{-}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/b\right) \right] \right. \label{2.9} \\ &&-\left. f\left( \frac{2ab}{a+b}\right) \left[ J_{1/b^{+}}^{% \alpha }\left( g\circ \varphi \right) (1/a)+J_{1/a^{-}}^{\alpha }\left( g\circ \varphi \right) (1/b)\right] \right\vert \nonumber \\ &&\leq \frac{(b-a)^{\alpha +1}\left\Vert g\right\Vert _{\infty }}{% 2(ab)^{\alpha +1}\Gamma \left( \alpha +1\right) }\left[ C_{1}\left( \alpha \right) \left\vert f^{\prime }(a)\right\vert +C_{2}\left( \alpha \right) \left\vert f^{\prime }(H)\right\vert +C_{3}\left( \alpha \right) \left\vert f^{\prime }(b)\right\vert \right] \nonumber \end{eqnarray}
(14)
where \begin{eqnarray*} C_{1}\left( \alpha \right) &=&\int\limits_{0}^{1}\left[ 1-(\frac{1+t}{2} )^{\alpha }+(\frac{1-t}{2})^{\alpha }\right] t\left( L(t)\right) ^{2}dt ,\\ C_{2}\left( \alpha \right) &=&\int\limits_{0}^{1}\left[ 1-(\frac{1+t}{2} )^{\alpha }+(\frac{1-t}{2})^{\alpha }\right] \left( 1-t\right) \left[ \left( L(t)\right) ^{2}+\left( U(t)\right) ^{2}\right] dt ,\\ C_{3}\left( \alpha \right) &=&\int\limits_{0}^{1}\left[ 1-(\frac{1+t}{2} )^{\alpha }+(\frac{1-t}{2})^{\alpha }\right] t\left( U(t)\right) ^{2}dt . \end{eqnarray*}

Proof. If we write \(h(t)=\int\limits_{1/t}^{1/a}\left[ \left( x-\frac{1}{b}\right) ^{\alpha-1}\right.\) \(+\left. \left( \frac{1}{a}-x\right) ^{\alpha -1}\right] g\circ \varphi (x)dx\) for all \(1/t\in \lbrack \frac{1}{b},\frac{1}{a}]\) and \(\varphi (x)=1/x\) in (13), we have

\begin{eqnarray} &&\left\vert \frac{1}{2}\left[ \int\limits_{a}^{b}\left[ \left( \frac{1}{a}% -x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \frac{% f(x)g(x)}{x^{2}}dx \right.\right. \label{2.10} \\ &&\left.\left. +\int\limits_{a}^{b}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \frac{f(x)g(% \frac{Hx}{2x-H})}{x^{2}}dx\right] \right. \nonumber \end{eqnarray}
(14)
\begin{eqnarray*} &&\left. -f(\frac{2ab% }{a+b})\int\limits_{a}^{b}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \frac{g(x)}{x^{2}} dx\right\vert . \end{eqnarray*} From \(g(x)\) is harmonically symmetric with respect to \(x=2ab/a+b\), we get
\begin{eqnarray} &&\left\vert \int\limits_{a}^{b}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \frac{f(x)g(x)}{x^{2}} dx\right. \label{2.11} \\ &&\left. -f(\frac{2ab}{a+b})\int\limits_{a}^{b}\left[ \left( \frac{1}{a} -x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \frac{ g(x)}{x^{2}}dx\right\vert \nonumber \\ &&=\left\vert \begin{array}{c} \Gamma (\alpha )\left[ J_{1/b^{+}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/a\right) +J_{1/a^{-}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/b\right) \right] \\ -\Gamma (\alpha )\left[ J_{1/b^{+}}^{\alpha }g\circ \varphi (1/a)+J_{1/a^{-}}^{\alpha }g\circ \varphi (1/b)\right] f\left( \frac{2ab}{a+b% }\right) \end{array} \right\vert . \nonumber \end{eqnarray}
(15)
On the other hand, right side of inequality (13)
\begin{eqnarray} \leq \frac{b-a}{4ab}\left\{ \int\limits_{0}^{1}\left\vert \begin{array}{c} \overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ -\overset{1/a}{\int\limits_{1/U(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ +\int\limits_{1/b}^{1/a}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \end{array} \right\vert Adt\ \right. \label{2.12} \end{eqnarray}
(16)
\begin{equation*} +\left. \int\limits_{0}^{1}\left\vert \begin{array}{c} \overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ -\overset{1/a}{\int\limits_{1/U(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ +\int\limits_{1/b}^{1/a}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \end{array} \right\vert B dt \right\}. \end{equation*} Where $$A=\left[ tf^{\prime }(a)+(1-t)f^{\prime }(H)\right] \left( L(t)\right) ^{2}$$ and $$B=\left[ tf^{\prime }(b)+(1-t)f^{\prime }(H)\right] \left( U(t)\right) ^{2}$$ Since \(g(x)\) is symmetric to \(x=2ab/a+b\), we have
\begin{eqnarray} &&\left\vert \begin{array}{c} \overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ -\overset{1/a}{\int\limits_{1/U(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \\ +\int\limits_{1/b}^{1/a}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \end{array} \right\vert \nonumber \\ &&=\overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \nonumber \\ &&+\overset{1/U(t)}{\int\limits_{1/b}}\left[ \left( \frac{ 1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \nonumber \end{eqnarray}
(17)
and
\begin{eqnarray} &&\overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \nonumber \\ &&=\overset{1/U(t)}{\int\limits_{1/b}}\left[ \left( \frac{% 1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx \label{2.14} \end{eqnarray}
(18)
for all \(t\in \lbrack 0,1]\) and \(\varphi (x)=1/x\). By (15)-(18), we have
\begin{eqnarray} &&\left\vert \left[ J_{a^{+}}^{\alpha }\left( fg\right) \left( b\right) +J_{b^{-}}^{\alpha }\left( fg\right) \left( a\right) \right] -\left[ J_{a^{+}}^{\alpha }g\left( b\right) +J_{b^{-}}^{\alpha }g\left( a\right) \right] f(\frac{2ab}{a+b})\right\vert \label{2.15} \\ &&\leq \frac{b-a}{2ab\Gamma \left( \alpha \right) }\left\{ \int\limits_{0}^{1} \begin{array}{c} \left\vert \overset{1/a}{\int\limits_{1/L(t)}} \left[\left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx\right\vert \\ \left[ tf^{\prime }(a)+(1-t)f^{\prime }(H)\right] \left( L(t)\right) ^{2}dt \end{array} \right. \\ &&+\left. \int\limits_{0}^{1} \begin{array}{c} \left\vert \overset{1/a}{\int\limits_{1/L(t)}} \left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx\right\vert \\ \left[ tf^{\prime }(b)+(1-t)f^{\prime }(H)% \right] \left( U(t)\right) ^{2}dt \end{array} \right\} \\ &&\leq \frac{\left( b-a\right) \left\Vert g\right\Vert _{\infty }}{2ab\Gamma \left( \alpha \right) }\left\{ \int\limits_{0}^{1} \begin{array}{c} \left( \overset{1/a}{ \int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] dx\right) \\ \left[ tf^{\prime}(a)+(1-t)f^{\prime }(H)\right] \left( L(t)\right) ^{2}dt\ \end{array} \right. \\ &&+\left. \int\limits_{0}^{1} \begin{array}{c} \left( \overset{ 1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] dx\right) \\ \left[tf^{\prime }(b)+(1-t)f^{\prime }(H)\right] \left( U(t)\right) ^{2}dt \end{array} \right\}. \nonumber \end{eqnarray}
(19)
In the last inequality, we calculate
\begin{equation} \overset{1/a}{\int\limits_{1/L(t)}}\left[ \left( \frac{1}{a}-x\right) ^{\alpha -1}+\left( x-\frac{1}{b}\right) ^{\alpha -1}\right] dx=\frac{% (b-a)^{\alpha }}{\alpha (ab)^{\alpha }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] . \label{2.16} \end{equation}
(20)
A combination of (19) and (20), we have (14). This complete is proof.

Corollary 2.4. In Corollary 2.3,(1)If we take \(\alpha =1\), we obtain following Hermite-Hadamard-Fej\'{e}r Type inequality for harmonically-convex functions related to (14):

\begin{eqnarray} &&\left\vert \overset{b}{\underset{a}{\int }}f(x)\frac{g(x)}{x^{2}}dx-f\left( \frac{2ab}{a+b}\right) \underset{a}{\overset{b}{\int }}\frac{g(x)}{x^{2}}% dx\right\vert \label{2.17} \\ &&\leq \frac{\left( b-a\right) ^{2}}{2\left( ab\right) ^{2}}\left\Vert g\right\Vert _{\infty }\left[ C_{1}(1)\left\vert f^{\prime }\left( a\right) \right\vert +C_{2}(1)\left\vert f^{\prime }\left( H\right) \right\vert +C_{3}(1)\left\vert f^{\prime }\left( b\right) \right\vert \right] \nonumber \end{eqnarray}
(21)
where \begin{eqnarray*} C_{1}(1)&=&\overset{1}{\underset{0}{\int }}t\left( 1-t\right) \left( L(t)\right) ^{2}dt, \\ C_{2}\left( 1\right) &=&\overset{1}{\underset{0}{\int }}(1-t)^{2}\left[ \left( L(t)\right) ^{2}+\left( U(t)\right) ^{2}\right] dt, \\ C_{3}(1)&=&\overset{1}{\underset{0}{\int }}t\left( 1-t\right) \left( U(t)\right) ^{2}dt. \end{eqnarray*} (2)If we take \(g(x)=1\), we obtain following inequality is related to(14):
\begin{eqnarray} &&\left\vert \frac{(ab)^{\alpha }\Gamma (\alpha +1)}{2\left( b-a\right) ^{\alpha }}\left[ J_{1/b^{+}}^{\alpha }\left( f\circ \varphi \right) \left( 1/a\right) +J_{1/a^{-}}^{\alpha }\left( f\circ \varphi \right) \left( 1/b\right) \right] -f\left( \frac{2ab}{a+b}\right) \right\vert \nonumber \\ &&\leq \frac{\left( b-a\right) }{4ab}\left[ C_{1}\left( \alpha \right) \left\vert f^{\prime }(a)\right\vert +C_{2}\left( \alpha \right) \left\vert f^{\prime }(H)\right\vert +C_{3}\left( \alpha \right) \left\vert f^{\prime }(b)\right\vert \right] .\label{2.18} \end{eqnarray}
(22)
(3)If we take \(g(x)=1\) and \(\alpha =1\), we obtain following inequality is related to (14):
\begin{eqnarray} &&\left\vert \frac{ab}{b-a}\int\limits_{a}^{b}\frac{f(x)}{x}dx-f\left( \frac{ 2ab}{a+b}\right) \right\vert \label{2.19}\\ &&\leq \frac{\left( b-a\right) }{4ab}\left[ C_{1}\left( 1\right) \left\vert f^{\prime }(a)\right\vert +C_{2}\left( 1\right) \left\vert f^{\prime }(H)\right\vert +C_{3}\left( 1\right) \left\vert f^{\prime }(b)\right\vert \right] . \nonumber \end{eqnarray}
(23)

Theorem 2.5. Let \(f:I\subseteq\mathbb{R}_{+}=\left( 0,\infty \right) \longrightarrow\mathbb{R}\) be a differentiable function on \(I^{o}\), \(a,b\in I^{o}\) with \(a< b \). If \(h:\left[ a,b\right] \longrightarrow \left[ 0,\infty \right) \) is a differentiable function and \(\left\vert f^{\prime }\right\vert ^{q}\) is harmonically convex on \(\left[ a,b\right]\) for \(q\geq 1\), the following inequality holds

\begin{eqnarray} &&\left\vert \left( \frac{f(a)+f(b)}{2}\right) h(a)-h(b)f\left( \frac{2ab}{a+b}% \right)\right. \label{2.20} \\ &&+\left. \frac{1}{2}\left[ \int\limits_{a}^{b}f(x)h^{\prime }(x)dx+\int\limits_{a}^{b}f(x)h^{\prime }(\frac{Hx}{2x-H})\left( \frac{H}{% 2x-H}\right) ^{2}dx\right] \right\vert \nonumber \\ &&\leq \frac{\left( b-a\right) }{4ab}\left\{ \begin{array}{c} \left( \underset{0}{\int\limits^{1}}\left\vert h(L(t))-h(U(t))+h(b)\right\vert dt\right) ^{1-\frac{1}{q}}\times \\ \left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left( \left\vert h(L(t))-h(U(t))+h(b)\right\vert \right) \\ \times \left( t\left( L(t)\right) ^{2q}\left\vert f^{\prime }(a)\right\vert ^{q}+(1-t)\left( L(t)\right) ^{2q}\left\vert f^{\prime }(H)\right\vert ^{q}\right) \end{array} dt\right) ^{\frac{1}{q}} \end{array} \right. \nonumber \\ &&\left. \begin{array}{c} +\ \left( \underset{0}{\int\limits^{1}}\left\vert h(L(t))-h(U(t))+h(b)\right\vert dt\right) ^{1-\frac{1}{q}}\times \\ \left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left( \left\vert h(L(t))-h(U(t))+h(b)\right\vert \right) \\ \times \left( t\left( U(t)\right) ^{2q}\left\vert f^{\prime }(b)\right\vert ^{q}+(1-t)\left( U(t)\right) ^{2q}\left\vert f^{\prime }(H)\right\vert ^{q}\right) \end{array} dt\right) ^{\frac{1}{q}} \end{array} \right\} \nonumber \end{eqnarray}
(24)

Proof. Continuing from (12) in proof of Theorem 2.2, the power mean inequality and using the fact that \(\left\vert f^{\prime }\right\vert ^{q}\) is harmonically convex on \(\left[ a,b\right]\), we get the required result. This completes the proof of the theorem.

Corollary 2.6. Let \(g:\left[ a,b\right] \longrightarrow \left[ 0,\infty \right)\) be a positive continuous mapping and harmonically symmetric with respect to \(2ab/a+b\) (i.e. \(g\left( \frac{1}{\frac{1}{a}+\frac{1}{b}-\frac{1}{x}}\right)=g(x)\) holds for all \(x\in\lbrack a,b]\) with \(a< b\). If we take $$h(t)=\int\limits_{1/t}^{1/a}\left[ \left( x-\frac{1}{b}\right) ^{\alpha -1}+\left( \frac{1}{a}-x\right) ^{\alpha -1}\right] \left( g\circ \varphi \right) (x)dx$$, \(t\in \left[ a,b\right]\), \(\varphi \left( x\right) =\frac{1 }{x}\) in Theorem 2.5, we obtain

\begin{eqnarray} &&\left\vert \left[ J_{1/b^{+}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/a\right) +J_{1/a^{-}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/b\right) \right] \right. \label{2.21} \\ &&\left. -f\left( \frac{2ab}{a+b}\right) \left[ J_{1/b^{+}}^{% \alpha }\left( g\circ \varphi \right) (1/a)+J_{1/a^{-}}^{\alpha }\left( g\circ \varphi \right) (1/b)\right] \right\vert \nonumber \\ &&\leq \frac{\left( b-a\right) ^{\alpha +1}\left\Vert g\right\Vert _{\infty }}{% 2(ab)^{\alpha +1}\Gamma \left( \alpha +1\right) }\left[ 2-\frac{4}{\alpha +1}% +\frac{2^{2-\alpha }}{\alpha +1}\right] ^{1-\frac{1}{q}} \nonumber \\ &&\left[ C_{1}\left( \alpha ,q\right) \left\vert f^{\prime }(a)\right\vert ^{q}+C_{2}\left( \alpha ,q\right) \left\vert f^{\prime }(H)\right\vert ^{q}+C_{3}\left( \alpha ,q\right) \left\vert f^{\prime }(b)\right\vert ^{q}\right] ^{\frac{1}{% q}} \nonumber \end{eqnarray}
(25)
where for \(q\geq 1\) \begin{eqnarray*} C_{1}\left( \alpha ,q\right) &=& \overset{1}{\underset{0}{\int }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] t\left( L(t)\right) ^{2q}dt ,\\ C_{2}\left( \alpha ,q\right) &=&\overset{1}{\underset{0}{\int }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] (1-t)\left( \left( L(t)\right) ^{2q}+\left( U(t)\right) ^{2q}\right) dt ,\\ C_{3}\left( \alpha ,q\right) &=&\overset{1}{\underset{0}{\int }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] t\left( U(t)\right) ^{2q}dt. \end{eqnarray*}

Proof . We use the equality (20) of Corollary 2.3 and (24) in Theorem 2.5,

\begin{eqnarray} &&\qquad\quad \left\vert \left[ J_{1/b^{+}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/a\right) +J_{1/a^{-}}^{\alpha }\left( fg\circ \varphi \right) \left( 1/b\right) \right]\right. \label{2.22} \\ &&\left. -f\left( \frac{2ab}{a+b}\right) \left[ J_{1/b^{+}}^{% \alpha }\left( g\circ \varphi \right) (1/a)+J_{1/a^{-}}^{\alpha }\left( g\circ \varphi \right) (1/b)\right] \right\vert \end{eqnarray}
(26)
\begin{eqnarray} &&\leq \frac{\left( b-a\right) ^{\alpha +1}\left\Vert g\right\Vert _{\infty }}{% 2(ab)^{\alpha +1}\Gamma \left( \alpha +1\right) }\times\\ &&\left\{ \begin{array}{c} \left( \underset{0}{\overset{1}{\int }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] dt\right) ^{1-\frac{% 1}{q}}\times \\ \left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] \\ \left( t\left( L(t)\right) ^{2q}\left\vert f^{\prime }(a)\right\vert ^{q}+(1-t)\left( L(t)\right) ^{2q}\left\vert f^{\prime }\left( H\right) \right\vert ^{q}\right) dt \end{array} \right) ^{\frac{1}{q}} \end{array} \right. \nonumber \\ &&+\left. \begin{array}{c} \left( \underset{0}{\overset{1}{\int }}\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] dt\right) ^{1-\frac{ 1}{q}}\times \\ \left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] \\ \left( t\left( U(t)\right) ^{2q}\left\vert f^{\prime }(b)\right\vert ^{q}+(1-t)\left( U(t)\right) ^{2q}\left\vert f^{\prime }(H)\right\vert ^{q}\right) \end{array} dt\right)^{\frac{1}{q}} \end{array} \right\} \nonumber \\ &&\leq \frac{\left( b-a\right) ^{\alpha +1}\left\Vert g\right\Vert _{\infty } }{2(ab)^{\alpha +1}\Gamma \left( \alpha +1\right) }\left[ 1-\frac{2}{\alpha +1}+\frac{2^{1-\alpha }}{\alpha +1}\right] ^{1-\frac{1}{q}}\times \nonumber \\ &&\left[ \begin{array}{c} \left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] \times \\ \left[ t\left( L(t)\right) ^{2q}\left\vert f^{\prime }(a)\right\vert ^{q}+(1-t)\left( L(t)\right) ^{2q}\left\vert f^{\prime }(H)\right\vert ^{q} \right] \end{array} dt\right) ^{\frac{1}{q}} \\ +\left( \underset{0}{\overset{1}{\int }} \begin{array}{c} \left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] \times \\ \left[ t\left( U(t)\right) ^{2q}\left\vert f^{\prime }(b)\right\vert ^{q}+(1-t)\left( U(t)\right) ^{2q}\left\vert f^{\prime }(H)\right\vert ^{q} \right] \end{array} dt\right) ^{\frac{1}{q}} \end{array} \right] \nonumber \end{eqnarray}
(27)
By the power-mean inequality \(\left( a^{r}+b^{r}<2^{1-r}\left( a+b\right) ^{r}for\ a>0,b>0,\quad r\leq 1\right)\), we have
\begin{eqnarray} &&\leq \frac{\left( b-a\right) ^{\alpha +1}\left\Vert g\right\Vert _{\infty }}{% 2(ab)^{\alpha +1}\Gamma \left( \alpha +1\right) }\left[ 2-\frac{4}{\alpha +1}% +\frac{2^{2-\alpha }}{\alpha +1}\right] ^{1-\frac{1}{q}} \label{2.23} \\ &&\times \left[ \overset{1}{\underset{0}{\int }}\left( \begin{array}{c} \left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] t\left( L(t)\right) ^{2q}\left\vert f^{\prime }(a)\right\vert ^{q} \\ +\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] (1-t)\left( \begin{array}{c} \left( L(t)\right) ^{2q} \\ +\left( U(t)\right) ^{2q}% \end{array}% \right) \left\vert f^{\prime }(H)\right\vert ^{q} \\ +\left[ 1-\left( \frac{1+t}{2}\right) ^{\alpha }+\left( \frac{1-t}{2}\right) ^{\alpha }\right] t\left( U(t)\right) ^{2q}\left\vert f^{\prime }(b)\right\vert ^{q}% \end{array}% \right) dt\right] ^{\frac{1}{q}}. \nonumber \end{eqnarray}
(28)

Proof. When \(\alpha =1\), \(g(x)=1\) is taken in Corollary 2.6, we obtain:

\begin{eqnarray} &&\left\vert \frac{ab}{b-a}\overset{b}{\underset{a}{\int }}\frac{f(x)}{x^{2}}% dx-f\left( \frac{2ab}{a+b}\right) \right\vert \label{2.24} \\ &&\leq \frac{\left( b-a\right) }{4ab}\left[ C_{1}\left( 1,q\right) \left\vert f^{\prime }(a)\right\vert ^{q}+C_{2}\left( 1,q\right) \left\vert f^{\prime }(H)\right\vert ^{q}+C_{3}\left( 1,q\right) \left\vert f^{\prime }(b)\right\vert ^{q}\right] ^{\frac{1}{q}}. \nonumber \end{eqnarray}
(29)
This proof is completed.

Referance

  1. Hwang, D. Y. (2011). Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables. Applied Mathematics and Computation, 217(23), 9598-9605. [Google Scholor]
  2. Hwang, D. Y. (2014). Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables. Applied Mathematics and Computation, 232, 68-75. [Google Scholor]
  3. Dragomir, S. S. (2012). Hermite–Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces. Linear Algebra and Its Applications, 436(5), 1503-1515. [Google Scholor]
  4. Dragomir, S. S., & Pearce, C. E. M. Selected topics on Hermite-Hadamard type inequalities and applications, RGMIA Monographs, 2000. Available on line at: http://rgmia. vu. edu. au/monographs/hermite hadamard. html. [Google Scholor]
  5. Chen, F., & Wu, S. (2014). Some Hermite-Hadamard type inequalities for harmonically s-convex functions. The Scientific World Journal, 2014. [Google Scholor]
  6. İşcan, İ. (2014). Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe Journal of Mathematics and statistics, 43(6), 935-942. [Google Scholor]
  7. İşcan, İ., Kunt, M. (2015). Fejér and Hermite-Hadamard-Fejér type inequalities for harmonically s-convex functions via Fractional Integrals The Australian Journal of Mathematical Analysis and Applcations, Vol: 12(1), Article 10, pp 1-6.
  8. İşcan, İ., Kunt, M., & Yazici, N. (2016). Hermite-Hadamard-Fej ér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences, 4(3), 239. [Google Scholor]
  9. İşcan, İ. (2015). Ostrowski type inequalities for harmonically s-convex functions. Konuralp Journal Mathematics, 3(1), 63-74.
  10. İşcan, İ., & Wu, S. (2014). Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Applied Mathematics and Computation, 238, 237-244. [Google Scholor]
  11. Chen, F. (2015). Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Applied Mathematics and Computation, 268, 121-128. [Google Scholor]
  12. Chen, F., & Wu, S. (2014). Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions. Journal of Applied Mathematics (Submitted). Volume 2014, Article ID 386806, 6 pages
  13. Latif, M. A., Dragomir, S. S., & Momoniat, E. (2012). Fejér type inequalities for harmonically-convex functions with applications. <>Journal of Applied Analysis and Computation (Accepted). [Google Scholor]
  14. İşcan, İ., Turhan, S., & Maden, S. (2015). Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. arXiv preprint arXiv:1511.06617. [Google Scholor]
  15. Niculescu, C. P. (2003). Convexity according to means. Mathematical Inequalities and Applications, 6, 571-580. [Google Scholor]
]]> Non-convex hybrid method corresponding to Karakaya iterative process https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/non-convex-hybrid-method-corresponding-to-karakaya-iterative-process/ Sat, 30 Jun 2018 11:32:54 +0000 https://old.pisrt.org/?p=782
OMA-Vol. 2 (2018), Issue 1, pp. 08–18 | Open Access Full-Text PDF
Samina Kausar, Muhammad Asif, Mubeen Munir
Abstract:In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces.
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

Non-convex hybrid method corresponding to Karakaya Iterative Process

Samina Kausar, Muhammad Asif, Mubeen Munir\(^1\)
Division of Science and Technology, University of Education, Lahore, 54000, Pakistan.; (S.K & M.M)
Department of Mathematics, Govt. Post Graduate College, Chistian, Pakistan.; (M.A)
\(^{1}\)Corresponding Author; mmunir@ue.edu.pk

Copyright © 2018 Samina Kausar, Muhammad Asif, Mubeen Munir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this article we present non-convex hybrid iteration algorithm corollaryresponding to Karakaya iterative scheme [1] as done by Guan et al. in [2] corollaryresponding to Mann iterative scheme [3]. We also prove some strong convergence results about common fixed points for a uniformly closed asymptotic family of countable quasi-Lipschitz mappings in Hilbert spaces.

Keywords:

Hybrid algorithm; Nonexpansive mapping; Karakaya iteration process; Closed quasi-nonexpansive

1. Introduction

Fixed points of special mappings like nonexpansive, asymptotically nonexpansive, contractive and other mappings has become a field of interest on its on and has a variety of applications in related fields like image recovery, signal processing and geometry of objects [4]. Almost in all branches of mathematics we see some versions of theorems relating to fixed points of functions of special nature. As a result we apply them in industry, toy making, finance, aircrafts and manufacturing of new model cars. A fixed-point iteration scheme has been applied in IMRT optimization to pre-compute dose-deposition coefficient (DDC) matrix , see [5]. Because of its vast range of applications almost in all directions, the research in it ismoving rapidly and an immense literature is present now. Constructive fixed point theorems (e.g. Banach fixed point theorem) which not only claim the existence of a fixed point but yield an algorithm, too (in the Banach case fixed point iteration \(x_{n+1}=f(x_n)\). Any equation that can be written as \(x=f(x)\) for some map \(f\) that is contracting with respect to some (complete) metric on \(X\) will provide such a fixed point iteration. Mann's iteration method was the stepping stone in this regard and is invariably used in most of the occasions see [6]. But it only ensures weak convergence, see [7] but more often then not, we require strong convergence in many real world problems relating to Hilbert spaces, see [8]. So mathematician are in search for the modifications of the Mann's process to control and ensure the strong convergence,[9,10, 11, 12, 13, 14, 15, 16] and references therein). Most probably the first noticeable modification of Mann's Iteration process was propositionosed by Nakajo et al. in [19] in 2003. They introduced this modification for only one nonexpansive mapping, where as Kim et al. introduced a variant for asymptotically nonexpansive mapping in the context of Hilbert spaces in the year 2006, see [20]. In the same year Martinez et al. in [21] introduced a variation of the Ishikawa Iteration process for a nonexpansive mapping for a Hilbert space. They also gave a variant of Halpern method. Su et al. in [20] gave a hybrid iteration process for nonexpansive mapping which is monotone. Liu et al. in [21] gave a novel method for quasi-asymptotically finite family of pseudo-contractive mapping. Let H be the reserved symbol for Hilbert space and C be nonempty, closed and convex subset of it. First we recall some basic definitions that will accompany us throughout this paper. Let \(P_c(.)\) be the metric projection onto \(C.\) A mapping \(T:C\rightarrow C\) is said to be non-expensive if \(\|Tx-Ty\|\leq \|x-y\|\) \(\forall\) \(x,y \in C\). And \(T:C\rightarrow C\) is said to be quasi-Lipschitz if:
  1. \(FixT\neq \phi\)
  2. For all \(p \in FixT\), \(\| Tx-p\|\leq L\|x-p\|\) where \(L\) is a constant \(1\leq L<\infty.\)
If \(L=1\) then \(T\) is known as quasi-nonexpansive. It is well-known that \(T\) is said to be closed if for \(n\rightarrow \infty\), \(x_n \rightarrow x \) and \(\| Tx_n-x_n\|\rightarrow 0\) implies \(Tx=x.\) \(T\) is said to be weak closed if \(x_n\rightharpoonup x\) and \(\|Tx_n-x_n\|\rightarrow 0\) implies \(Tx=x.\) as \(n\rightarrow \infty.\) It is trivial fact that a mapping which is weak closed should be closed but converse is no longer true. Let \(\{T_n\}\) be a sequence of mappings having non-empty fixed points sets. Then \(\{T_n\}\) is called uniformly closed if for all convergent sequences \(\{Z_n\} \subset C\) with conditions \(\|Zx_n-Z_n\|\rightarrow 0\),\(n\rightarrow \infty\) implies the limit of \(\{Z_n\}\) belongs to \(FixT_i.\) In 1953 [3], we have Mann iterative sheme: $$x_{n+1} =(1- a_n)x_nn+ a_nT(x_n); n=0,1,2,\ldots.$$ In [2] Guan et al. established non-convex hybrid iteration algorithm corollaryresponding to Mann iterative scheme: $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1- a_n)x_n+ a_nT_nx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq (1+(L_n-1) a_n)\|x_n-z\|\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right.$$ and proved some strong convergence results about common fixed points relating to a family of countable uniformly closed asymptotic quasi-Lipschitz mappings in \(H\). They applied their results for the finite case to obtain fixed points. The Karakaya iterative scheme [1] was defined in 2013 as $$\left\{ \begin{array}{ll} x_{n+1} = (1-\alpha_n-\beta_n)y_n+\alpha_nT(y_n)+\beta_nT(z_n);\\ y_n = (1-a_n-b_n)z_n+a_nT(z_n)+b_nT(x_n);\\ z_n = (1-\gamma_n)x_n+\gamma_nT(x_n); & n = 0,1,2,\ldots. \end{array} \right.$$ where \(\alpha_n, \beta_n, \gamma_n, a_n, b_n \in [0,1], \alpha_n+\beta_n \in [0,1], a_n+ b_n \in [0,1] \text{ for all } n \in {N}\) and \(\sum_{n=0}^\infty (\alpha_n+\beta_n)=\infty.\) In this article, we establish a non-convex hybrid algorithms corollaryresponding to Karakaya iteration scheme. Then we also establish strong convergence theorems with proofs about common fixed points related to a uniformly closed asymptotically family of countable quasi-Lipschitz mappings in the realm of Hilbert spaces. An application of this algorithm is also given. We fix \(\overline{co}C_n\) for closed convex closure of \(C_n\) for all \(n\geq 1\), \(A=\{z\in H:\|z-P_Fx_0\|\leq 1\}\), \(T_{n}\) for countable quasi-\(L_n\)-Lipschitz mappings from \(C\) into itself, and \(T\) be closed quasi-nonexpansive mapping from \(C\) into itself to avoid redundancy. We fix \(\overline{co}C_n\) for closed convex closure of \(C_n\) for all \(n\geq 1\), \(A=\{z\in H:\|z-P_Fx_0\|\leq 1\}\), \({T_n}\) for countable quasi-\(L_n\)-Lipschitz mappings from \(C\) into itself to avoid redundancy.

2. Main results

In this section we give our main results.

Definition 2.1. \(\{T_n\}\) is said to be asymptotic, if \(\lim_{n\rightarrow \infty} L_n=1\)

Proposition 2.2. For \(x\in H\) and \(z\in C\), \(z=P_Cx\) iff we have $$\langle x-z,z-y\rangle\geq 0$$ for all \(y\in C\).

Proposition 2.3. The common fixed point set \(F\) of above said \({T_n}\) is closed and convex.

Proposition 2.4. For any given \(x_0\in H\), we have \(p=P_Cx_0 \) \(\Longleftrightarrow\) \(\langle p-z,x_0-p\rangle\geq 0\), \(\forall z\in C\).

Theorem 2.5. Assume that \(\alpha_n\), \(\beta_n\), \(\gamma_n\), \(a_n\) and \(b_n\in [0,1]\), \(\alpha_n+\beta_n\in[0,1]\) and \(a_n+b_n\in[0,1]\) for all \(n\in N\) and \(\sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty\). Then \(\{x_n\}\) generated by \newpage $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT_nz_n+\beta_nT_nt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT_nx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right.$$ converges strongly to \(P_Fx_0\).

Proof. We partition our proof in following seven steps.

Step 2. We know that \(\overline{co}C_n\) and \(Q_n\) are closed and convex for all \(n\geq 0\). Next, we show that \(F\cap A\subset\overline{co}C_n\) for all \(n\geq 0\). Indeed, for each \(p\in F\cap A\), we have \begin{align*}\\ \nonumber \|y_n-p\|&=\|(1-\alpha_n-\beta_n)z_n+\alpha_nT_nz_n+\beta_nT_nt_n-p\|\\ &=\|(1-\alpha_n-\beta_n)[(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n]\\&+\alpha_nT_n[(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n]+\beta_nT_nt_n-p\|\\ &=\|(1-\alpha_n-\beta_n)[(1-a_n-b_n)((1-\gamma_n)x_n+\gamma_nT_nx_n)\\& +a_nT_n((1-\gamma_n)x_n+\gamma_nT_nx_n)+b_nT_nx_n ]\\&+\alpha_nT_n[(1-a_n-b_n)((1-\gamma_n)x_n+\gamma_nT_nx_n)\\&+a_nT_n((1-\gamma_n)x_n+\gamma_nT_nx_n)+b_nT_nx_n ]+\beta_nT_n[(1-\gamma_n)x_n+\gamma_nT_nx_n]-p\|\\ \nonumber &=\|(1-\gamma_n-a_n-b_n-\alpha_n-\beta_n-a_n\gamma_n+b_n\gamma_n+\alpha_n\gamma_n+a_n\alpha_n\\& +b_n\alpha_n+\beta_n\gamma_n+a_n\beta_n-b_n\beta_n-a_n\alpha_n\gamma_n-b_n\alpha_n\gamma_n- a_n\beta_n\gamma_n-b_n\beta_n\gamma_n)\\&\times (x_n-p)+(\gamma_n+a_n+b_n+\beta_n+\alpha_n-b_n\alpha_n-a_n\beta_n-b_n\beta_n-2a_n\gamma_n\\& -2b_n\gamma_n-2\alpha_n\gamma_n-2a_n\alpha_n-2\beta_n\gamma_n+3a_n\alpha_n\gamma_n+2b_n\alpha_n\gamma_n+2a_n\beta_n\gamma_n\\& -b_n\beta_n\gamma_n)(T_nx_n-p)+(a_n\gamma_n-3a_n\alpha_n\gamma_n-a_n\beta_n\gamma_n+\alpha_n\gamma_n-b_n\alpha_n\gamma_n\\& +a_n\alpha_n+b_n\alpha_n+\beta_n\gamma_n)(T_{n}^2x_n-p)+(a_n\alpha_n\gamma_n)(T_{n}^3x_n-p)\|\\ \nonumber &\leq (1-\gamma_n-a_n-b_n-\alpha_n-\beta_n-a_n\gamma_n+b_n\gamma_n+\alpha_n\gamma_n+a_n\alpha_n\\& +b_n\alpha_n+\beta_n\gamma_n+a_n\beta_n-b_n\beta_n-a_n\alpha_n\gamma_n-b_n\alpha_n\gamma_n-a_n\beta_n\gamma_n\\& -b_n\beta_n\gamma_n)\|x_n-p\|+(\gamma_n+a_n+b_n+\beta_n+\alpha_n-b_n\alpha_n-a_n\beta_n-b_n\beta_n\\& -2a_n\gamma_n-2b_n\gamma_n-2\alpha_n\gamma_n-2a_n\alpha_n-2\beta_n\gamma_n+3a_n\alpha_n\gamma_n+2b_n\alpha_n\gamma_n\\& +2a_n\beta_n\gamma_n-b_n\beta_n\gamma_n)L_n\|x_n-p\|+(a_n\gamma_n-3a_n\alpha_n\gamma_n-a_n\beta_n\gamma_n\\& +\alpha_n\gamma_n-b_n\alpha_n\gamma_n+a_n\alpha_n+b_n\alpha_n+\beta_n\gamma_n)L_{n}^2\|x_n-p\|+(a_n\alpha_n\gamma_n)L_{n}^3\|x_n-p\|\\ \nonumber &=[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n\\& +\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\& +(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n\\&-a_n\gamma_n-b_n +a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n\\& -a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-p\| \end{align*} and \(p\in A\), so \(p\in C_n\) which implies that \(F\cap A\subset C_n\) for all \(n\geq 0\). Therefore, \(F\cap A\subset\overline{co}C_n\) for all \(n\geq 0\).

Step 2. We show that \(F\cap A\subset\overline{co}C_n\cap Q_n\) for all \(n\geq 0\). It suffices to show that \(F\cap A\subset Q_n\), for all \(n\geq 0\). We prove this by mathematical induction. For \(n=0\) we have \(F\cap A\subset C=Q_0\). Assume that \(F\cap A\subset Q_n\). Since \(x_{n+1}\) is the projection of \(x_0\) onto \(\overline{co}C_n\cap Q_n\), from Proposition 2.2, we have \(\langle x_{n+1}-z,x_{n+1}-x_0\rangle\leq 0\), \(\forall z\in \overline{co}C_n\cap Q_n\) as \(F\cap A\subset\overline{co}C_n\cap Q_n\), the last inequality holds, in particular, for all \(z\in F\cap A\). This together with the definition of \(Q_{n+1}\) implies that \(F\cap A\subset Q_{n+1}\). Hence the \(F\cap A\subset\overline{co}C_n\cap Q_n\) holds for all \(n\geq 0\).

Step 3. We prove \(\{x_n\}\) is bounded. Since \(F\) is a nonepmty, closed, and convex subset of \(C\), there exists a unique element \(z_0\in F\) such that \(z_0=P_Fx_0\). From \(x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0\), we have \(\|x_{n+1}-x_0\|\leq \|z-x_0\|\) for every \(z\in \overline{co}C_n\cap Q_n\). As \(z_0\in F\cap A\subset\overline{co}C_n\cap Q_n\), we get \(\|x_{n+1}-x_0\|\leq \|z_0-x_0\|\) for each \(n\geq 0\). This implies that \(\{x_n\}\) is bounded.

Step 4. We show that \(\{x_n\}\) converges strongly to a point of \(C\) by showing that \(\{x_n\}\) is a cauchy sequence. As \(x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0\subset Q_n\) and \(x_n=P_{Q_n}x_0\) (Proposition 2.4), we have \(\|x_{n+1}-x_0\|\geq \|x_n-x_0\|\) for every \(n\geq 0\), which together with the boundedness of \(\|x_n-x_0\|\) implies that there exsists the limit of \(\|x_n-x_0\|\). On the other hand, from \(x_{n+m}\in Q_n\), we have \(\langle x_n-x_{n+m},x_n-x_0\rangle\leq 0\) and hence \begin{align*} \|x_{n+m}-x_n\|^2&=\|(x_{n+m}-x_0)-(x_n-x_0)\|^2\\ \nonumber &\leq\|x_{n+m}-x_0\|^2-\|x_n-x_0\|^2-2\langle x_{n+m}-x_n,x_n-x_0\rangle\\ \nonumber &\leq\|x_{n+m}-x_0\|^2-\|x_n-x_0\|^2\rightarrow0,\ n\rightarrow\infty \end{align*} for any \(m\geq 1\). Therefore \(\{x_n\}\) is a cauchy sequence in \(C\), then there exists a point \(q\in C\) such that \(\lim_{n\rightarrow \infty} x_n=q\).

Step 5. We show that \(y_n\rightarrow q\), as \(n\rightarrow\infty\). Let \(D_n=\{z\in C:\|y_n-z\|^2\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}\). From the definition of \(D_n\), we have \begin{align*} D_n&=\{z\in C:\langle y_n-z,y_n-z\rangle\leq\langle x_n-z,x_n-z\rangle+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}\\ \nonumber &=\{z\in C:\|y_n\|^2-2\langle y_n,z\rangle+\|z\|^2\leq\|x_n\|^2-2\langle x_n,z\rangle\\&+\|z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}\\ \nonumber &=\{z\in C:2\langle x_n-y_n,z\rangle\leq\|x_n\|^2-\|y_n\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\} \end{align*} This shows that \(D_n\) is convex and closed, \(n \in \mathbb{Z^{+}}\cup \{0\}\). Next, we want to prove that \(C_n\subset D_n\),\(n\geq 0\). In fact, for any \(z\in C_n\), we have \begin{align*} \|y_n-z\|^2&\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n\\&-b_n\gamma_n+a_n+b_n) +a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\&+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n) +L_{n}^2(-a_n\gamma_n+\gamma_n)\\&-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)\\&+a_nL_{n}^2 +b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]^2\|x_n-z\|^2\\ &=\|x_n-z\|^2+2[(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)\\&+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n) +a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n\\&-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n -b_n\gamma_n)\\& +L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n\\& +(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\\& +[(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n) +L_{n}^2(-3a_n\gamma_n+\gamma_n\\&-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n \\&+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)\\&-b_n\gamma_n-a_n\gamma_n-b_n+a_n +\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)\\&+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]^2\alpha_n^2]\|x_n-z\|^2\\ &\leq\|x_n-z\|^2+[2(L_{n}^3-2L_n-6)+(L_{n}^3-2L_n-6)^2]\|x_n-z\|^2\\ &=\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\|x_n-z\|^2. \end{align*} From \(C_n=\{z\in C:\|y_n-z\|\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-z\|\}\cap A,\ n\geq 0\), we have \(C_n\subset A\), \(n\geq 0\). Since \(A\) is convex, we also have \(\overline{co}C_n\subset A\), \(n\geq 0\). Consider \(x_n\in\overline{co}C_{n-1}\), we know that \begin{align*} \|y_n-z\|&\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\|x_n-z\|^2\\ &\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4). \end{align*} This implies that \(z\in D_n\) and hence \(C_n\subset D_n\), \(n\geq 0\). Sinnce \(D_n\) is convex, we have \(\overline{co}(C_n)\subset D_n\), \(n\geq 0\). Therefore \(\|y_n-x_{n+1}\|^2\leq\|x_n-x_{n+1}\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\rightarrow 0,\) as \(n\rightarrow\infty\). That is, \(y_n\rightarrow q\) as \(n\rightarrow\infty\).

Step 6. To prove that \(q\in F\), we use definition of \(y_n\). So we have \((\alpha_n+\beta_n+\gamma_n+a_n+b_n-a_n\gamma_n-b_n\gamma_n-\alpha_n\gamma_n-a_n\alpha_n+a_n\alpha_n\gamma_n-b_n\alpha_n+b_n\alpha_n\gamma_n-\beta_n\gamma_n-a_n\beta_n+a_n\beta_n\gamma_n-b_n\beta_n+b_n\beta_n\gamma_n-a_n\beta_n\gamma_nT_n-a_n\alpha_n\gamma_nT_n+\alpha_n\gamma_nT_n+a_n\alpha_nT_n-a_n\alpha_n\gamma_nT_n+b_n\alpha_nT_n-b_n\alpha_n\gamma_nT_n+\beta_n\gamma_nT_n+a_n\alpha_n\gamma_nT_{n}^2+a_n\gamma_nT_n)\|T_nx_n-x_n\|=\|y_n-x_n\|\rightarrow 0,\) as \(n\rightarrow \infty\). Since \(\alpha_n\in(a,1]\subset[0,1]\), from the above limit we have \(\lim_n\rightarrow\infty\|T_nx_n-x_n\|=0.\) Since \(\{T_n\}\) is uniformly closed and \(x_n\rightarrow q\), we have \(q\in F\).

Step 7. We claim that \(q=z_0=P_Fx_0\), if not, we have that \(\|x_0-p\|>\|x_0-z_0\|\). There must exist a positive integer \(N\), if \(n>N\) then \(\|x_0-x_n\|>\|x_0-z_0\|\), which leads to \(\|z_0-x_n\|^2=\|z_0-x_n+x_n-x_0\|^2=\|z_0-x_n\|^2+\|x_n-x_0\|^2+2\langle z_0-x_n,x_n-x_0\rangle\). It follows that \(\langle z_0-x_n,x_n-x_0\rangle<0\) which implies that \(z_0\overline{\in} Q_n\), so that \(z_0\overline{\in} F\), this is a contradiction. This completes the proof.

Now, we present an example of \(C_n\) which does not involve a convex subset.

Example 2.6 Take \(H=R^2\), and a sequence of mappings \(T_n:R^2\rightarrow R^2\) given by \(T_n:(t_1,t_2)\mapsto(\frac{1}{8}t_1,t_2)\),\ \(\forall(t_1,t_2)\in R^2\), \(\forall n\geq 0\). It is clear that \(\{T_n\}\) satisfies the desired definition of with \(F=\{(t_1,0):t_1\in(-\infty,+\infty)\}\) common fixed point set. Take \(x_0=(4,0)\), \(a_0=\frac{6}{7}\), we have \(y_0=\frac{1}{7}x_0+\frac{6}{7}T_0x_0=(4\times\frac{1}{7}+\frac{4}{8}\times\frac{6}{7},0)=(1,0)\). Take \(1+(L_0-1) a_0=\sqrt{\frac{5}{2}}\), we have \(C_0=\{z\in R^2:\|y_0-z\|\leq\sqrt{\frac{5}{2}}\|x_0-z\|\}\). It is easy to show that \(z_1=(1,3)\), \(z_2=(-1,3)\in C_0\). But \(z^{'}=\frac{1}{2}z_1+\frac{1}{2}z_2=(0,3)\overline{\in} C_0\), since \(\|y_0-z\|=2\), \(\|x_0-z\|=1\). Therefore \(C_0\) is not convex.

Corollary 2.7 Assume that \(\alpha_n\), \(\beta_n\), \(\gamma_n\), \(a_n\) and \(b_n\in [0,1]\), \(\alpha_n+\beta_n\in[0,1]\) and \(a_n+b_n\in[0,1]\) for all \(n\in N\) and \(\sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty\). Then \(\{x_n\}\) generated by $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nTz_n+\beta_nTt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nTt_n+b_nTx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nTx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1-(\gamma_n-b_n)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(2a_n+b_n)\gamma_n-2b_n\beta_n(1+\gamma_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{C_n\cap Q_n}x_0, \end{array} \right.$$ converges strongly to \(P_{F(T)}x_0\).

Proof. Take \(T_n\equiv T\), \(L_n\equiv 1\) in Theorem 2.5, in this case, \(C_n\) is convex and closed and , for all \(n\geq 0\), by using Theorem 2.5, we obtain Corollary 2.7. Take \(T_n\equiv T\), \(L_n\equiv 1\) in Theorem 2.5, in this case, \(C_n\) is closed and convex, for all \(n\geq 0\), by using Theorem 2.5, we obtain Corollary 2.7.

Corollary 2.8 Assume that \(\alpha_n\), \(\beta_n\), \(\gamma_n\), \(a_n\) and \(b_n\in [0,1]\), \(\alpha_n+\beta_n\in[0,1]\) and \(a_n+b_n\in[0,1]\) for all \(n\in N\) and \(\sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty\). Then \(\{x_n\}\) generated by $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nTz_n+\beta_nTt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nTt_n+b_nTx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nTx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1-(\gamma_n-b_n)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(2a_n+b_n)\gamma_n-2b_n\beta_n(1+\gamma_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{C_n\cap Q_n}x_0, \end{array} \right.$$ converges strongly to \(P_{F(T)}x_0\).

3. Applications

Here, we give an application of our result for the following case of finite family of asymptotically quasi-nonexpansive mappings \(\{T_n\}_{n=0}^{N-1}\). Let \(\|T_{i}^{j}x-p\|\leq k_{i,j}\|x-p\|\), \(\forall x\in C\), \(p\in F\), where \(F\) is common fixed point set of \(\{T_n\}_{n=0}^{N-1}\),\(\lim_j\rightarrow \infty k_{i,j}=1\) for all \(0\leq i\leq N-1\). The finite family of asymptotically quasi-nonexpansive mappings \(\{T_n\}_{n=0}^{N-1}\) is uniformly \(L-Lipschitz\), if \(\|T_{i}^{j}x-T_{i}^{j}y\|\leq L_{i,j}\|x-y\|\), \(\forall x,y\in C\) for all \(i\in \{0,1,2,...,N-1\}\), \(j\geq1\), where \(L\geq1\).

Theorem 3.1 Let \(\{T_n\}_{n=0}^{N-1}: C\rightarrow C\) be a uniformly L-Lipschitz finit family of asymptotically quasi-nonexpansive mappings with nonempty common fixed point set \(F\). Assume that \(\alpha_n\), \(\beta_n\), \(\gamma_n\), \(a_n\) and \(b_n\in [0,1]\), \(\alpha_n+\beta_n\in[0,1]\) and \(a_n+b_n\in[0,1]\) for all \(n\in N\) and \(\sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty\). Then \(\{x_n\}\) generated by $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT_{i(n)}^{j(n)}z_n+\beta_nT_{i(n)}^{j(n)}t_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT_{i(n)}^{j(n)}t_n+b_nT_{i(n)}^{j(n)}x_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT_{i(n)}^{j(n)}x_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(k_{i(n),j(n)}(1-b_n-2\gamma_n-2a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+3a_n\gamma_n+2b_n\gamma_n)+k_{i(n),j(n)}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+b_n)+a_n\gamma_nk_{i(n),j(n)}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+(k_{i(n),j(n)}(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+k_{i(n),j(n)}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\gamma_n-1)\beta_n+(k_{i(n),j(n)}(1-2a_n-2b_n)+a_nk_{i(n),j(n)}^2\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+b_n-a_n-1)\gamma_n-a_n-b_n+k_{i(n),j(n)}(a_n+b_n)]\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right.$$ converges strongly to \(P_Fx_0\), where \(n=(j(n)-1)N+i(n)\) for all \(n\geq0\).

Proof We can drive the prove from the following two conclusions:
conclusion1 \(\{T_{n=0}^{N-1}\}_{n=0}^{\infty}\) is a uniformly closed asymptotically family of countable quasi-\(L_n\)-Lipschitz mappings from \(C\) into itself.

conclusion1 \(F=\bigcap_{n=0}^{N}F(T_n)=\bigcap_{n=0}^{\infty}F(T_{i(n)}^{j(n)})\), where \(F(T)\) denotes the fixed point set of the mappings \(T\).

Corollary 3.2 Let \(T: C\rightarrow C\) be a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common fixed point set \(F\). Assume that \(\alpha_n\), \(\beta_n\), \(\gamma_n\), \(a_n\) and \(b_n\in [0,1]\), \(\alpha_n+\beta_n\in[0,1]\) and \(a_n+b_n\in[0,1]\) for all \(n\in N\) and \(\sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty\). Then \(\{x_n\}\) generated by $$\left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT^nz_n+\beta_nT^nt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT^nt_n+b_nT^nx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT^nx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(k_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2b_n\gamma_n)+k_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nk_{n}^3\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(k_n(1-a_n-b_n-2\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2a_n\gamma_n-b_n\gamma_n)+k_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+\gamma_n-1)\beta_n+(k_n(1-2a_n-2b_n)+a_nk_{n}^2+b_n-a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-1)\gamma_n-a_n-b_n+k_n(a_n+b_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right.$$ converges strongly to \(P_Fx_0\), where \(\overline{co}C_n\) denotes the closed convex closure of \(C_n\) for all \(n\geq 1\), \(A=\{z\in H:\|z-P_Fx_0\|\leq 1\}\).

Proof. Take \(T_n\equiv T\) in Theorem 3.1, we proved.

Competing interests

The authors declare that they have no competing interests.

Referances

  1. Karakaya, V., Doğan, K., Gürsoy, F., & Ertürk, M. (2013). Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. In Abstract and Applied Analysis (Vol. 2013). Hindawi. [Google Scholor]
  2. Guan, J., Tang, Y., Ma, P., Xu, Y., & Su, Y. (2015). Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application. Fixed Point Theory and Applications, 2015(1), 214.[Google Scholor]
  3. Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3), 506-510.[Google Scholor]
  4. Youla, D. C. (1987). Mathematical theory of image restoration by the method of convex projections. Image Recovery: Theory and Application, 29-77.[Google Scholor]
  5. Tian, Z., Zarepisheh, M., Jia, X., & Jiang, S. B. (2013). The fixed-point iteration method for IMRT optimization with truncated dose deposition coefficient matrix. arXiv preprint arXiv:1303.3504.[Google Scholor]
  6. Genel, A., & Lindenstrauss, J. (1975). An example concerning fixed points. Israel Journal of Mathematics, 22(1), 81-86. [Google Scholor]
  7. Bauschke, H. H., & Combettes, P. L. (2001). A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Mathematics of operations research, 26(2), 248-264.[Google Scholor]
  8. Matsushita, S. Y., & Takahashi, W. (2005). A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 134(2), 257-266.[Google Scholor]
  9. Nakajo, K., & Takahashi, W. (2003). Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. Journal of Mathematical Analysis and Applications, 279(2), 372-379. [Google Scholor]
  10. Kim, T. H., & Xu, H. K. (2006). Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups. Nonlinear Analysis: Theory, Methods & Applications, 64(5), 1140-1152. [Google Scholor]
  11. Martinez-Yanes, C., & Xu, H. K. (2006). Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Analysis: Theory, Methods & Applications, 64(11), 2400-2411.[Google Scholor]
  12. Su, Y., & Qin, X. (2008). Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3657-3664. [Google Scholor]
  13. Liu, Y., Zheng, L., Wang, P., & Zhou, H. (2015). Three kinds of new hybrid projection methods for a finite family of quasi-asymptotically pseudocontractive mappings in Hilbert spaces. Fixed Point Theory and Applications, 2015(1), 118. [Google Scholor]
  14. Moudafi, A. (2000). Viscosity approximation methods for fixed-points problems. Journal of Mathematical Analysis and Applications, 241(1), 46-55.[Google Scholor]
  15. Xu, H. K. (2004). Viscosity approximation methods for nonexpansive mappings. Journal of Mathematical Analysis and Applications, 298(1), 279-291.[Google Scholor]
  16. Podilchuk, C. I., & Mammone, R. J. (1990). Image recovery by convex projections using a least-squares constraint. JOSA A, 7(3), 517-521. [Google Scholor]
]]> A new third-order iteration method for solving nonlinear equations https://old.pisrt.org/psr-press/journals/oma-vol-2-issue-1-2018/a-new-third-order-iteration-method-for-solving-nonlinear-equations/ Sat, 30 Jun 2018 10:08:15 +0000 https://old.pisrt.org/?p=776
OMA-Vol. 2 (2018), Issue 1, pp. 01–07 | Open Access Full-Text PDF
Muhammad Saqib, Zain Majeed, Muhammad Quraish, Waqas Nazeer
Abstract:In this paper, we establish a two step third-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.442 which is greater than Newton-Raphson method. It is important to note that our method is performing very well in comparison to fixed point method and the method discussed by Kang et al. (Abstract and applied analysis; volume 2013, Article ID 487060).
]]>
Open Access Full-Text PDF

Open Journal of Mathematical Analysis

A new third-order iteration method for solving nonlinear equations

Muhammad Saqib, Zain Majeed, Muhammad Quraish, Waqas Nazeer\(^1\)
Department of Mathematics Govt. Degree College Kharian Pakistan.; (M.S)
Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan.; (Z.M)
Department of Mathematics, The University of Lahore (Pakpattan Campus) Lahore, Pakistan.; (M.Q)
Division of Science and Technology, University of Education, Lahore, 54000, Pakistan.; (W.N)
\(^{1}\)Corresponding Author; nazeer.waqas@ue.edu.pk

Copyright © 2018 Muhammad Saqib, Zain Majeed, Muhammad Quraish, Waqas Nazeer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish a two step third-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.442 which is greater than Newton-Raphson method. It is important to note that our method is performing very well in comparison to fixed point method and the method discussed by Kang et al. (Abstract and applied analysis; volume 2013, Article ID 487060).

Keywords:

Nonlinear equations; Iterative methods; Order of convergence; Efficiency index.

1. Introduction

Solving equations in one variable is the most discussed problem in numerical analysis. There are several numerical techniques for solving nonlinear equations (\text{see for example } [1, 2, 3, 4, 5, 6, 7, 8] and the references there in). For a given function \(f\), we have to find at least one solution to the equation \(f(x)=0\). Note that, priory, we do not put any restrictions on the function \(f\). In order to check whether a given solution is true or not, we need to be able to evaluate the function, that is, \(f(\alpha) = 0\). In reality, the mere ability to be able to evaluate the function does not suffice. We need to assume some kind of "good behavior". The more we assume, the more potential we have to develop fast algorithms for finding the root. At the same time, more assumptions will reduce the number of function classes which will our assumptions. This is a fundamental paradigm in numerical analysis. We present a new iteration method that approximates the root of a nonlinear equation in one variable using the value of the function and its derivative. Our method converges to the root cubically. In this study, we suggest an improvement to the iteration of Kang iteration method at the expense of one additional first derivative evaluation. It is shown that the suggested method converges to the root, and the order of convergence is at least three in a neighborhood of the root, whenever the first and higher order derivatives of the function exist in a neighborhood of the root. This means that our method approximately triples the number of significant digits after an iteration. Numerical examples support this theory, and the computational order of convergence is even more than three for certain functions. We know that fixed point iteration method [9] is the fundamental algorithm for solving nonlinear equations in one variable. In this method equation is rewritten as
\begin{equation} x = g(x) \end{equation}
(1)
where, the following are true.
  1. \(\exists\) \([a,b]\) such that \(g(x)\in \lbrack a,b]\) for all \(x\in \lbrack a,b]\),
  2. \(\exists\) \([a,b]\) such that \(\left\vert g^{\prime}(x)\right\vert \leq L<1\) for all \(x\in \lbrack a,b]\).

Definition 1.1. Suppose, \(\{x_n\} \to \alpha\), with the property that, \begin{equation*} \lim\limits_{n \to \infty} \left\vert \frac{x_{n+1}-\alpha }{(x_{n}-\alpha )^{q}}\right\vert = D \end{equation*} where, \(D \in \mathbb{R}^+\) and \(q \in \mathbb{Z}\), then \(D\) is called the constant of convergence and \(q\) is called the order of convergence.

Definition 1.2. [2] Let \(g \in C^{p}[a,b]\). If \(g^{(k)}(x)=0\) for \(k = 1, 2, \ldots, p-1\) and \(g^{(p)}(x) \neq 0\), then the sequence \(\{x_{n}\}\) is of order \(p\).

Algorithm 1.3. [10] For a given \(x_{0}\), Kang et. al. gave the approximate solution \(x_{n+1}\) by an iteration scheme as follows. \begin{equation*} x_{n+1} = \frac{g\left( x_{n}\right) - x_{n} g^{\prime}(x_{n})}{1 - g^{\prime}(x_{n})} \end{equation*} where, \(g^{\prime}(x_{n}) \neq 1\). This scheme has convergence of order 2.

2. New Iteration Method

In the fixed-point iteration method, for some \(x \in \mathbb{R}\), if \(f\left( x\right) = 0\), then the nonlinear equation can be converted to, \begin{equation*} x = g(x) \end{equation*} Let \(\alpha\) be the root of \(f\left( x \right) = 0\). We can write functional equation of algorithm 1.3 as, \begin{equation*} H_{g}(x) = \frac{g\left( x\right) - x g^{\prime}(x)}{1 - g^{\prime}(x)}, \hspace{5mm} g^{\prime}(x) \neq 1 \end{equation*} or, \begin{equation*} H_{g}(x) = x - \frac{x - g(x)}{1 - g^{\prime}(x)}. \end{equation*}
To get higher order convergence, we introduce \(h(x)\) in above, as follows. \begin{equation}\label{a1} H_{h}(x)= x - \frac{x - g(x)}{1 - g^{\prime}(x + (x - g(x))h(x))}. \end{equation}
(2)
Then \(H_{h}(\alpha ) = \alpha\) and \(H_{h}^{\prime}(\alpha) = 0\). In order to make (2) efficient, we shall choose \(h(x)\) such that \(H_{h}^{\prime \prime}(\alpha) = 0\). By using Mathematica we have, \begin{equation*} H_{h}^{\prime \prime}(\alpha ) = \frac{(1 - 2h(\alpha )( - 1 + g^{\prime}(\alpha)))g^{\prime \prime}(\alpha)}{- 1 + g^{\prime}(\alpha)}. \end{equation*} Then, \(H_{h}^{\prime \prime}(\alpha) = 0\) gives, \begin{equation*} h(a)=\frac{-1}{2(1-g^{\prime }(\alpha ))}. \end{equation*} So, if we take \(h\left(x\right) = \frac{-1}{2(1-g^{\prime }(x))}\) and substitute it in (2), we get \begin{equation*} H_{h}(x) = x - \frac{x - g(x)}{1 - g^{\prime}(x - \frac{(x - g(x))}{2(1 - g^{\prime}(x))})}. \end{equation*} This formulation allows us to suggest the following two step iteration method for solving nonlinear equation, for a given \(x_{0}\).

Algorithm 2.1

\begin{equation} x_{n+1} = x_{n} - \frac{x_{n} - g(x_{n})}{1 - g^{\prime}(y_{n})}, n=0,1,2,.... \end{equation}
(3)
\begin{equation} y_{n} = x_{n} - \frac{x_{n} - g(x_{n})}{2(1 - g^{\prime}(x_{n}))}, g^{\prime}(x_{n}) \neq 1 . \end{equation}
(4)

3. Convergence Analysis of Algorithm

Theorem 3.1. Let \(f : D \subset \mathbb{R} \rightarrow \mathbb{R}\) be a nonlinear function on an open interval \(D\), such that \(f\left(x\right) = 0\) (or equivalently \(x = g\left(x\right) )\), has a simple root \(\alpha \in D\). Here, \(g : D \subset \mathbb{R} \rightarrow \mathbb{R}\), is sufficiently smooth in the neighborhood of the root \(\alpha\). Then, the order of convergence of algorithm 2.1 is at least \(3\), where \(c_{k} = \frac{g^{(k)}(\alpha)}{k!(1 - g^{\prime}(\alpha))}\), \(k = 2, 3, \ldots\).

Proof. As \(g\left(\alpha\right) = \alpha\), let \(x_{n} = \alpha + e_{n}\) and \(x_{n + 1} = \alpha + e_{n+1}\). By Taylor's expansion, we have, \begin{equation*} g(x_{n}) = g\left(\alpha\right) + e_{n}g^{\prime}(\alpha) + \frac{e_{n}^{2}}{2!}g^{\prime\prime}(\alpha) + \frac{e_{n}^{3}}{3!} g^{\prime \prime \prime}(\alpha ) + O(e_{n}^{4}). \end{equation*} This implies that,

\begin{equation}\label{eq:3} x_{n} - g(x_{n}) = (1 - g^{\prime }(\alpha)){e_{n}-c_{2}e_{n}^{2}-c_{3}e_{n}^{3}+O(e_{n}^{4})}. \end{equation}
(5)
Similarly, \begin{equation*} 1 - g^{\prime}(x_{n}) = (1 - g^{\prime}(\alpha)){1 - 2e_{n}c_{2} - 3e_{n}^{2}c_{3} - 4e_{n}^{3}c_{4} + O(e_{n}^{4})}. \end{equation*} Substituting these values in (4) we obtain \begin{eqnarray} y_{n} &=&x_{n}-\frac{(1 - g^{\prime }(\alpha)){e_{n}-c_{2}e_{n}^{2}-c_{3}e_{n}^{3}+O(e_{n}^{4})}}{2{(1 - g^{\prime}(\alpha)){1 - 2e_{n}c_{2} - 3e_{n}^{2}c_{3} - 4e_{n}^{3}c_{4} + O(e_{n}^{4})}}} \notag \\ &=& \alpha + e_{n} - \frac{1}{2}{\frac{e_{n}-c_{2}e_{n}^{2}-c_{3}e_{n}^{3}+O(e_{n}^{4})}{1-(2e_{n}c_{2}+3e_{n}^{2}c_{3}+4e_{n}^{3}c_{2}^{2}+O(e_{n}^{4}))}} .\notag \end{eqnarray} Using the series expansion above, we get \begin{eqnarray*} y_{n} &=& \alpha + e_{n} - \\ && \frac{1}{2}{e_{n}-c_{2}e_{n}^{2}-c_{3}e_{n}^{3}+O(e_{n}^{4})}{1+(2e_{n}c_{2}+3e_{n}^{2}c_{3}+4e_{n}^{3}c_{2}^{2}+O(e_{n}^{4})) + \ldots} \\ &=& \alpha + \frac{1}{2}{e_{n} - c_{2}e_{n}^{2} - 2(c_{2}^{2} + c_{3})e_{n}^{3} + O(e_{n}^{4})}. \end{eqnarray*} This implies that,
\begin{eqnarray*} g^{\prime }(y_{n}) &=& g^{\prime}{\alpha + \frac{1}{2}{e_{n}-c_{2}e_{n}^{2}-2(c_{2}^{2}+c_{3})e_{n}^{3}+O(e_{n}^{4})}} \\ &=& g^{\prime}(\alpha ) + \left[\frac{1}{2} (e_{n} - c_{2}e_{n}^{2} - 2(c_{2}^{2} + c_{3})e_{n}^{3} + O(e_{n}^{4})) \right] g^{^{\prime\prime}}(\alpha) \\ && + \frac{1}{2}\left[\frac{1}{2}(e_{n} - c_{2}e_{n}^{2} - 2(c_{2}^{2} + c_{3})e_{n}^{3} + O(e_{n}^{4}))\right]^{2}g^{^{\prime\prime\prime}}(\alpha ) + \ldots. \end{eqnarray*}
(6)
Thus, we get, \begin{eqnarray}\label{4} && 1 - g^{\prime}(y_{n}) \nonumber \\ &=& {1 - g^{\prime}(\alpha)}\left[1 - c_{2}e_{n} + (c_{2}^{2} - \frac{3}{4}c_{3})e_{n}^{2} + (2c_{2}^{3} + 2c_{2}c_{3} - c_{4})e_{n}^{3} + O(e_{n}^{4}) \right]. \end{eqnarray} Using (5) and (6) in (4), we have, \begin{eqnarray*} e_{n+1} &=& e_{n} - \frac{e_{n} - c_{2}e_{n}^{2} - c_{3}e_{n}^{3} + O(e_{n}^{4})}{1 - {c_{2}e_{n} - (c_{2}^{2} - \frac{3}{4}c_{3})e_{n}^{2} + O(e_{n}^{3})}}. \end{eqnarray*} Using series expansion again, we get, \begin{eqnarray*} e_{n+1} &=& e_{n} - {e_{n} - c_{2}e_{n}^{2} - c_{3}e_{n}^{3} + O(e_{n}^{4})} \left[1 + {c_{2}e_{n} - (c_{2}^{2} - \frac{3}{4}c_{3})e_{n}^{2} + O(e_{n}^{3})} \right. \\ && \left. - {c_{2}e_{n} - (c_{2}^{2} - \frac{3}{4}c_{3})e_{n}^{2} + O(e_{n}^{3})}^{2} + \ldots \right] \\ &=& {3c_{2}^{2} + \frac{1}{4}c_{3}}e_{n}^{3} + O(e_{n}^{4}) \end{eqnarray*}

4. Comparison

\noindent Comparison of Fixed Point Method (FPM), Kang Iteration Method (KIM) and our new iteration method (NIM), is shown in the following table, root corrected up to seventeen decimal places.

Example 4.1 \(f(x)=x^{3}-23x-135\), \(g(x)=23+\frac{135}{x}\)

Table 1. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(24\) \(24\) \(2\) \(2.420536e-15\) \(27.84778272427181476 \)
NIM \(7\) \(14\) \(2\) \(2.781849e-20\) \(27.84778272427181484 \)
KIM \(4\) \(12\) \(2\) \(2.647181e-16\) \(27.84778272427181483 \)

Example 4.2 \(f(x)=x-\cos x,\) \(g(x)=\cos x\)

Table 2. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(91\) \(91\) \(6\) \(1.376330e-16\) \(0.73908513321516064\)
NIM \(10\) \(20\) \(6\) \(1.083243e-29\) \(0.73908513321516064\)
KIM \(5\) \(15\) \(6\) \(1.809632e-36\) \(0.73908513321516064 \)

Example 4.3 \(f(x)=x^{3}+4x^{2}+8x+8,g(x)=-1-1/2x^{2}-1/8x3\)

Table 3. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(50\) \(50\) \(-1.7\) \(1.416263e-15\) \(-1.99999999999999965 \)
NIM \(5\) \(10\) \(-1.7\) \(7.836283e-27\) \(-2.00000000000000000 \)
KIM \(3\) \(9\) \(-1.7\) \(4.983507e-25\) \(-2.00000000000000000 \)

Example 4.4 \(f(x)=\ln (x-2)+x,g(x)=2+e^{-x}\)

Table 4. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(18\) \(18\) \(0.1\) \(1.163802e-15\) \(2.12002823898764110 \)
NIM \(5\) \(10\) \(0.1\) \(5.972968e-22\) \(2.12002823898764123\)
KIM \(3\) \(9\) \(0.1\) \(8.594812e-22\) \(2.12002823898764123 \)

Example 4.5 \(f(x)=x^{2}\sin x-\cos x,g(x)=\sqrt{\frac{1}{\tan x}}\)

Table 5. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(417\) \(247\) \(2\) \(2.668900e-16\) \(0.89520604538423175 \)
NIM \(7\) \(14\) \(2\) \(3.195785e-31\) \(0.89520604538423175 \)
KIM \(4\) \(12\) \(2\) \(1.746045e-23\) \(0.89520604538423175 \)

Example 4.6 \(f(x)=x^{2}-5x-16,g(x)=5+\frac{16}{x}\)

Table 2. Comparison of FPM, NIM, KIM
Methods \(N\) \(N_{f}\) \(x_{0}\) \(x_{n+1}\) \(f(x_{n+1})\)
FPM \(34\) \(34\) \(1\) \(6.417745e-16\) \(7.21699056602830184 \)
NIM \(7\) \(14\) \(1\) \(2.984439e-27\) \(7.21699056602830191 \)
KIM \(4\) \(12\) \(1\) \(2.797394e-26\) \(7.21699056602830191 \)

5. Conclusions

A new third order iteration method for solving nonlinear equations has been introduced. By using some examples, performance of \(NIM\) is also discussed. Its performance is much better, in comparison to the fixed point method and the method presented in [10].

ConclusionsCompeting Interests

The author do not have any competing interests in the manuscript.

References

  1. Biazar, J., & Amirteimoori, A. (2006). An improvement to the fixed point iterative method. Applied mathematics and computation, 182(1), 567-571. [Google Scholor]
  2. Babolian, E., & Biazar, J. (2002). Solution of nonlinear equations by modified Adomian decomposition method. Applied Mathematics and Computation, 132(1), 167-172.[Google Scholor]
  3. Kou, J. (2007). The improvements of modified Newton’s method. Applied Mathematics and Computation, 189(1), 602-609.[Google Scholor]
  4. Gutierrez, J. M., & Hernández, M. A. (2001). An acceleration of Newton's method: Super-Halley method. Applied Mathematics and Computation, 117(2-3), 223-239.[Google Scholor]
  5. Abbasbandy, S. (2003). Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Applied Mathematics and Computation, 145(2-3), 887-893. [Google Scholor]
  6. Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton's method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93.[Google Scholor]
  7. Homeier, H. H. H. (2003). A modified Newton method for rootfinding with cubic convergence. Journal of Computational and Applied Mathematics, 157(1), 227-230.[Google Scholor]
  8. Frontini, M., & Sormani, E. (2003). Some variant of Newton’s method with third-order convergence. Applied Mathematics and Computation, 140(2-3), 419-426.[Google Scholor]
  9. Isaacson, E., & Keller, H. B. (2012). Analysis of numerical methods. Courier Corporation.[Google Scholor]
  10. Kang, S. M., Rafiq, A., & Kwun, Y. C. (2013). A new second-order iteration method for solving nonlinear equations. In Abstract and Applied Analysis (Vol. 2013). Hindawi.[Google Scholor]
]]>