OMS – Vol 1 – 2017 – PISRT https://old.pisrt.org Tue, 05 Feb 2019 15:30:50 +0000 en-US hourly 1 https://wordpress.org/?v=6.7 Computing Sanskruti Index of Titania Nanotubes https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/computing-sanskruti-index-of-titania-nanotubes/ Wed, 27 Dec 2017 20:41:26 +0000 https://old.pisrt.org/?p=1830
OMS-Vol. 1 (2017), Issue 1, pp. 126–131 | Open Access Full-Text PDF
Muhammad Shoaib Sardar, Xiang-Feng Pan, Wei Gao, Mohammad Reza Farahani
Abstract:Let \(G=(V;E)\) be a simple connected graph. The Sanskruti index was introduced by Hosamani and defined as \(S(G)=\sum_{uv \in E(G)}(\frac{S_uS_v}{S_u+S_v-2})^3\) where \(S_u\) is the summation of degrees of all neighbors of vertex \(u\) in \(G\). In this paper, we give explicit formulas for the Sanskruti index of an infinite class of Titania nanotubes \(TiO_2[m, n]\).
]]>

Open Journal of Mathematical Sciences

Computing Sanskruti Index of Titania Nanotubes

Muhammad Shoaib Sardar, Xiang-Feng Pan, Wei Gao, Mohammad Reza Farahani\(^{1}\)
School of Mathematical Sciences, Anhui University, Hefei 230601, China. (M.S.S & X.F.P)
School of Information and Technology, Yunnan Normal University, Kunming, 650500, China. (W.G)
Department of Applied Mathematics, Iran University of Science and Technology(IUST), Narmak, Tehran 16844, Iran. (M.R.F)

\(^{1}\)Corresponding Author: mrfarahani@mathdep.iust.ac.ir, mrfarahani88@gmail.com

Abstract

Let \(G=(V;E)\) be a simple connected graph. The Sanskruti index was introduced by Hosamani and defined as \(S(G)=\sum_{uv \in E(G)}(\frac{S_uS_v}{S_u+S_v-2})^3\) where \(S_u\) is the summation of degrees of all neighbors of vertex \(u\) in \(G\). In this paper, we give explicit formulas for the Sanskruti index of an infinite class of Titania nanotubes \(TiO_2[m, n]\).

Keywords:

topological index, molecular graph, Sanskruti index, Titania nanotube.

1. Introduction

Let \(G=(V;E)\) be a simple connected graph. In chemical graph theory, the sets of vertices and edges of \(G\) are denoted by \(V=V(G)\) and \(E=E(G)\), respectively. A molecular graph is a simple finite graph such that its vertices correspond to the atoms and the edges to the bonds. A general reference for the notation in graph theory is [1, 2, 3].

In chemical graph theory, we have many different topological index of arbitrary molecular graph \(G\). A topological index of a graph is a number related to a graph which is invariant under graph automorphisms. Obviously, every topological index defines a counting polynomial and vice versa.

A graph can be recognized by a numeric number, a polynomial, a sequence of numbers or a matrix which represents the whole graph, and these representations are aimed to be uniquely defined for that graph. A topological index is a numeric quantity associated with a graph which characterizes the topology of the graph and is invariant under graph automorphism. There are some major classes of topological indices such as distance based topological indices, degree based topological indices and counting related polynomials and indices of graphs. Among these classes degree based topological indices are of great importance and play a vital role in chemical graph theory and particularly in chemistry.

Among topological descriptors, connectivity indices are very important and they have a prominent role in chemistry. One of the best known and widely used is the connectivity index \(R(G)=\sum_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}\) introduced in 1975 by Milan Randić (see [4]), who has shown this index to reflect molecular branching.

The Sanskruti index \(S(G)\) of a graph \(G\) is defined as follows (see [5]):

\begin{equation} \label{1} S(G)=\sum_{uv \in E(G)} (\frac{S_uS_v}{S_u+S_v-2})^3. \end{equation}
(1)
where \(S_u\) is the summation of degrees of all neighbors of vertex \(u\) in \(G\). In this paper, we compute the Sanskruti index for an infinite class of Titania nanotubes. For more details about Sanskruti index we refer to the articles [6, 7, 8, 9, 10, 11].

Figure 1. The graph of \(TiO_2[m, n]-\)nanotubes, for \(m=6\) and \(n=4\).

2. Main results and discussion

As a well-known semiconductor with numerous technological applications, Titania is comprehensively studied in materials science. Titania nanotubes were systematically synthesized during the last 10-15 years using different methods and carefully studied as prospective technological materials. Since the growth mechanism for \(TiO_2\) nanotubes is still not well defined, their comprehensive theoretical studies attract enhanced attention. \(TiO_2\) sheets with a thickness of a few atomic layers were found to be remarkably stable [12]. Recently Malik and Imran [13] and some others researchers computed multiple Zagreb index of \(TiO_2\) nanotubes, readers can see the paper series [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

The graph of the Titania nanotube \(TiO_2[m, n]\) is presented in Fig. 1 where \(m\) denotes the number of octagons in a row and \(n\) denotes the number of octagons in a column of the Titania nanotube.

Let us define the partitions for the vertex set and the edge set of the Titania nanotube \(TiO_2\), for \(\delta(G)\leq k\leq \Delta(G)\), \(2\delta(G)\leq i\leq 2\Delta(G)\), and \(\delta(G)^2\leq j\leq \Delta(G)^2\), then we have [28]

$$V_k=\{v\in V(G)|deg(v)=k\},$$ $$E_i=\{e=uv\in E(G)|d(u)+d(v)=i\}.$$ In the molecular graph of \(TiO_2\)-nanotube, we can see that \(2\leq d(G)\leq5\). So, we have the vertex partitions as follows.
\(V_2=\{u\in V(G)|d(u)=2\}\), \(V_3=\{u\in V(G)|d(u)=3\}\).
\(V_4=\{u\in V(G)|d(u)=4\}\), \(V_5=\{u \in V(G)|d(u)=5\}\).
It is easy to see that \(|V_2|=2mn+4n\), \(|V_3|=2mn\), \(|V_4|=2n\), \(|V_5|=2mn\), So we have \(|V(TiO_2)|=6n(m+1)\). Similarly, the edge partitions of the graph \(TiO_2\) are as follows.
\(E_6=\{e=uv\in E(G)|d(u)=2\) and \(d(v)=4\}.\)
\(E_7=\{e=uv\in E(G)|d(u)=2\) and \(d(v)=5\}\)
\(\cup\{e=uv\in E(G)|d(u)=3\) and \(d(v)=4\}\).
\(E_8=\{e=uv\in E(G)|d(u)=3\) and \(d(v)=5\}\).
The vertex partition \(V_k\) and the edge partitions \(E_i\) are collectively exhaustive, that is
$$\bigcup \limits_ {k=\delta(G)}^{\Delta(G)} V_k=V(G), \bigcup \limits_ {i=2\delta(G)}^{2\Delta(G)-2} E_i=E(G).$$
Table 1. The edge partitions based on degrees of end vertices
Edge partition \(E_6\) \(E_7\) \(E_8\)
Cardinality \(6n\) \(4mn+4n\) \(6mn-2n\)
Table 2. The edge partitions based on degree sum of neighbors of end vertices
\((S_u,S_v)\) where \(uv\in E(TiO_2[m,n])\) (10,5) (7,5) (7,9) (8,9) (10,9) (11,9)
Numbers of edges \(2\) \(2\) \(2n\) \(4n\) \(2n\) \(6m\)
Table 3. The edge partitions based on degree sum of neighbors of end vertices
\((S_u,S_v)\) \(\forall uv\in E(TiO_2[m,n])\) (13,9) (7,13) (10,13) (11,13) (13,13)
Numbers of edges \(3m\) \(2n\) \(4mn+2n\) \(2mn-2n\) \(6mn-4n\)

Theorem 2.1. The Sanskruti index \(S(G)\) of Titania nanotube \(G=TiO_2[m,n]\) is given by $$S(G)=\frac{1753571}{8788}-\frac{5732099098294657}{19655694576000}n+\frac{12790839}{8000}m+\frac{8788000}{9261}mn+\frac{6092281}{2304}mn.$$

Proof. To compute the Sanskruti index \(S(G)\) of Titania nanotube \(TiO_2[m, n]\), we need an edge partition of the Titania nanotube \(TiO_2[m, n]\), based on degree sum of neighbors of end vertices of each edge. We presented these partitions with their cardinalities in Tables 2 and 3. Now using Eq. (1) and Tables 2 and 3 we get the required result as follows. \begin{eqnarray*} S(TiO_2[m, n])&=& \sum_{uv \in E(G)} (\frac{S_uS_v}{S_u+S_v-2})^3\\ &=&2(\frac{10\times5}{10+5-2})^3+2(\frac{7\times5}{7+5-2})^3+2n(\frac{7\times9}{7+9-2})^3\\ &&+4n(\frac{8\times9}{8+9-2})^3+2n(\frac{10\times9}{10+9-2})^3+6m(\frac{11\times9}{11+9-2})^3\\ &&+3m(\frac{13\times9}{13+9-2})^3+2n(\frac{7\times13}{7+13-2})^3+(4mn+2n)(\frac{10\times13}{10+13-2})^3\\ &&+(2mn-2n)(\frac{10\times5}{10+5-2})^3+2(\frac{10\times5}{10+5-2})^3\\ &=&\frac{1753571}{8788}-\frac{5732099098294657}{19655694576000}n+\frac{12790839}{8000}m\\ &&+\frac{8788000}{9261}mn+\frac{6092281}{2304}mn. \end{eqnarray*} The proof of theorem is completed.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. West, D.B. (1996). An Introduction to Graph Theory. Prentice-Hall. [Google Scholor]
  2. Trinajstic, N. (1992). Chemical Graph Theory. CRC Press, Bo ca Raton, FL. [Google Scholor]
  3. Todeschini, R., Consonni, V. (2000). Handbook of Molecular Descriptors. Wiley, Weinheim. . [Google Scholor]
  4. Randić, M. (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23), 6609-6615. [Google Scholor]
  5. Hosamani, S. M. (2017). Computing Sanskruti index of certain nanostructures. Journal of Applied Mathematics and Computing, 54(1-2), 425-433. [Google Scholor]
  6. Gao, Y. Y., Sardar, M. S., Hosamani, S. M., & Farahani, M. R. (2017). Computing sanskruti index of \(TURC_{4}C_{8}(s)\) nanotube. International Journal of Pharmaceutical Sciences and Research, 8(10), 4423-4425. [Google Scholor]
  7. Jiang, H., Sardar, M. S., Farahani, M. R., Rezaei, M., & Siddique, M. K. (2017). Computing sanskruti index of v-phenylenic nanotubes and nanotori. Internaional Journal of Pure and Applied Mathematics, 115(4) , 859-865. [Google Scholor]
  8. Zhang, X., Sardar, M. S., Zahid, Z., Rezaei, M., & Farahani, M.R. (2017). Computing sanskruti index of capra-designed planar benzenoid series \(Ca_k(C_6)\). Internaional Journal of Pure and Applied Mathematics, 115(4), 2017, 851-858. [Google Scholor]
  9. Sardar, M. S., Zafar, S., & Farahani, M. R. (2017). Computing Sanskruti index of the Polycyclic Aromatic Hydrocarbons. Geology, Ecology, and Landscapes, 1(1), 37-40. [Google Scholor]
  10. Gao, Y., Sardar, M. S., S. Zafar, & Farahani, M.R. (2017). Computing Sanskruti index of dendrimer nanostars. Internaional Journal of Pure and Applied Mathematics, 115(2), 399-404. [Google Scholor]
  11. Gao, Y., Farahani, M. R., Sardar, M. S., & Zafar, S. (2017). On the Sanskruti Index of Circumcoronene Series of Benzenoid. Applied Mathematics, 8(4), 520-524. [Google Scholor]
  12. Evarestov, R. A., Zhukovskii, Y. F., Bandura, A. V., & Piskunov, S. (2011). Symmetry and models of single-walled \(TiO_{2}\) nanotubes with rectangular morphology. Central European Journal of Physics, 9(2), 492-501. [Google Scholor]
  13. Malik, M. A., & Imran, M. (2015). On multiple Zagreb index of \(TiO_{2}\) nanotubes. Acta Chimica Slovenica, 62(4), 973-976. [Google Scholor]
  14. Farahani, M. R., Jamil, M. K., & Imran, M. (2016). Vertex PIv topological index of Titania Nanotubes. Applied Mathematics and Nonlinear Sciences, 1(1), 170-176. [Google Scholor]
  15. Farahani, M.R., Jamil, M.K., Pradeep Kumar,R., & Rajesh Kanna, M.R. (2016). Computing Edge. Co-Padmakar-Ivan Index of Titania \(TiO_2[m, n]\). Journal of Environmental Science, Computer Science and Engineering & Technology. 5(3), 285-295. [Google Scholor]
  16. Farahani, M. R., Kumar, R. P., Kanna, M. R., & Wang, S. (2016). The vertex szeged index of titania carbon nanotubes \(TiO_2[m, n]\). International Journal of Pharmaceutical Sciences and Research, 7(9), 3734-3741. [Google Scholor]
  17. Gao, W., Jamil, M. K., Farahani, M. R., & Imran, M. (2016). Certain Topological Indices of Titania Carbon Nanotubes \(TiO_2[m, n]\). Journal of Computational and Theoretical Nanoscience, 13(10), 7324-7328. [Google Scholor]
  18. Gao, W., Farahani, M. R., & Imran, M. (2017). About the Randić Connectivity, Modify Randić Connectivity and Sum-connectivity Indices of Titania Nanotubes \(TiO_2[m, n]\). Acta Chimica Slovenica, 64(1), 256-260. [Google Scholor]
  19. Gao, W., Farahani, M. R., Jamil, M. K., & Siddiqui, M. K. (2016). The Redefined First, Second and Third Zagreb Indices of Titania Nanotubes \(TiO_2[m, n]\). The Open Biotechnology Journal, 10(1) 272-277. [Google Scholor]
  20. Huo, Y., Liu, J. B., Imran, M., Saeed, M., Farahani, M. R., Iqbal, M. A., & Malik, M. A. (2016). On Some Degree-Based Topological Indices of Line Graphs of \(TiO_2[m, n]\) Nanotubes. Journal of Computational and Theoretical Nanoscience, 13(12), 9131-9135. [Google Scholor]
  21. Li, Y., Yan, L., Farahani, M. R., Imran, M., & Jamil, M. K. (2017). Computing the Theta Polynomial \(T(G,x)\) and the Theta Index \(T(G)\) of Titania Nanotubes \(TiO_2[m, n]\). Journal of Computational and Theoretical Nanoscience, 14(1), 715-717. [Google Scholor]
  22. Liu, J. B., Gao, W., Siddiqui, M. K., & Farahani, M. R. (2016). Computing three topological indices for Titania nanotubes. AKCE International Journal of Graphs and Combinatorics, 13(3), 255-260. [Google Scholor]
  23. Yan, L., Li, Y., Hayat, S., Siddiqui, H. M. A., Imran, M., Ahmad, S., & Farahani, M. R. (2016). On Degree-Based and Frustration Related Topological Indices of Single-Walled Titania Nanotubes. Journal of Computational and Theoretical Nanoscience, 13(11), 9027-9032. [Google Scholor]
  24. Yan, L., Li, Y., Farahani, M. R., & Imran, M. (2016). Sadhana and Pi polynomials and their indices of an infinite class of the Titania Nanotubes \(TiO_2[m, n]\). Journal of Computational and Theoretical Nanoscience, 13(11), 8772-8775. [Google Scholor]
  25. Yan, L., Li, Y., Farahani, M. R., & Jamil, M. K. (2016). The Edge-Szeged index of the Titania Nanotubes \(TiO_2[m, n]\). International Journal of Biology, Pharmacy and Allied Sciences. 5(6), 1260-1269. [Google Scholor]
  26. Sardar, M. S., Zafar,S., & Farhani, M. R. (2017). The generalized Zagreb index of capra-designed planar benzenoid series \(Ca_k(C_6)\). Open J. Math. Sci. 1(1), 44-51. 2017. [Google Scholor]
  27. Rehman, H.M. Sardar, R. & Raza, A. (2017). Computing topological indices of hex board and its line graph. Open J. Math. Sci. 1(1), 62-71. [Google Scholor]
  28. Farahani, M. R. (2012). Some connectivity indices and Zagreb index of polyhex nanotubes. Acta Chim. Slov, 59, 779-783. [Google Scholor]
]]>
On the viscosity rule for common fixed points of two nonexpansive mappings in Hilbert spaces https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/on-the-viscosity-rule-for-common-fixed-points-of-two-nonexpansive-mappings-in-hilbert-spaces/ Thu, 21 Dec 2017 20:33:02 +0000 https://old.pisrt.org/?p=1826
OMS-Vol. 1 (2017), Issue 1, pp. 111–125 | Open Access Full-Text PDF
Syeed Fakhar Abbas Naqvi, Muhammad Saqib Khan
Abstract:In this paper, we introduce, for the first time, the viscosity rules for common fixed points of two nonexpansive mappings in Hilbert spaces. The strong convergence of this technique is proved under certain assumptions imposed on the sequence of parameters.
]]>

Open Journal of Mathematical Sciences

On the viscosity rule for common fixed points of two nonexpansive mappings in Hilbert spaces

Syeed Fakhar Abbas Naqvi, Muhammad Saqib Khan\(^{1}\)
Department of Mathematics, Lahore Leads University, Lahore 54810, Pakistan. (S.F.A.N & m.S.K)
\(^{1}\)Corresponding Author: khan.saqib@me.com

Abstract

In this paper, we introduce, for the first time, the viscosity rules for common fixed points of two nonexpansive mappings in Hilbert spaces. The strong convergence of this technique is proved under certain assumptions imposed on the sequence of parameters.

Keywords:

Viscosity rule, Hilbert Space, N\non-expansive mappings, Variational inequality.

1. Introduction

In this paper, we shall take \(H\) as a real Hilbert space, \(\langle, \rangle\) as inner product, \(\|.\|\) as the induced norm, and \(C\) as a nonempty closed subset of \(H\).

Definition 1.1. Let \(T : H \to H\) be a mapping. \(T\) is called non-expansive if $$\|T(x) - T(y)\|\leq\|x-y\|, \quad \forall x,y \in H$$

Definition 1.2. A mapping \(f:H\rightarrow H\) is called a contraction if for all \(x,y\in H\) and \(\theta\in[0,1)\) $$\|f(x)-f(y)\|\leq \theta\|x-y\|.$$

Definition 1.3. \(P_c: H\rightarrow C\) is called a metric projection if for every \(x\in H\) there exists a unique nearest point in \(C\), denoted by \(P_cx\), such that $$\|x-P_cx\|\leq \|x-y\|, \quad \forall\,\, y\in C.$$

In order to verify the weak convergence of an algorithm to a fixed point of a non-expansive mapping we need the demiclosedness principle:

Theorem 1.4. [1] (The demiclosedness principle) Let \(C\) be a nonempty closed convex subset of the real Hilbert space \(H\) and \(T:C\rightarrow C\) such that $$x_n\rightharpoonup x^\ast \in C\,\, \mbox{and}\,\, (I-T)x_n \rightarrow 0$$ Then \(x^\ast=Tx^\ast\). Here, \(\rightarrow\) and \(\rightharpoonup\) denotes strong and weak convergence respectively.

Moreover, the following result gives the conditions for the convergence of a nonnegative real sequence.

Theorem 1.5. [2] Assume that \(\{a_n\}\) is a sequence of nonnegative real numbers such that \(a_{n+1}\leq(1-\gamma_n)a_n+\delta_n, \forall n\geq0\), where \(\{\gamma_n\}\) is a sequence in \((0,1)\) and \(\{\delta_n\}\) is a sequence with

  1. \(\sum_{n=0}^\infty\gamma_n=\infty\),
  2. \( \lim_{n\rightarrow\infty}\sup\frac{\delta_n}{\gamma_n}\leq0\) or \(\sum_{n=0}^{\infty}|\delta_n|< \infty\).
Then \(a_n\rightarrow0\).

The following strong convergence theorem, which is also called the viscosity approximation method, for non-expansive mappings in real Hilbert spaces is given by Moudafi, [3], in (2000).

Theorem 1.6. Let \(C\) be a non-empty closed convex subset of the real Hilbert space \(H\). Let \(T\) be a non-expansive mapping of \(C\) into itself such that \(F(T) = \{x \in C : T(x) = x \}\) is nonempty. Let \(f\) be a contraction of \(C\) into itself. Consider the sequence $$x_{n+1} = \frac{\epsilon_n}{1+\epsilon_n}f(x_n)+\frac{1}{1+\epsilon_n}T(x_n), \quad n\geq 0,$$ where the sequence \(\{\epsilon_n\}\in (0,1)\) satisfies

  1. \(\lim_{n\rightarrow\infty} \epsilon_n= 0\),
  2. \(\sum_{n=0}^{\infty}\epsilon_n=\infty\), and
  3. \(\lim_{n\rightarrow\infty}|\frac{1}{\epsilon_{n+1}}- \frac{1}{\epsilon_n}|=0\).
Then \({x_n}\) converges strongly to a fixed point \(x^\ast\) of the non-expansive mapping \(T\), which is also the unique solution of the variational inequality \begin{equation*} \langle(I-f)x, y-x\rangle \geq 0, \quad \forall\in F(T). \end{equation*}

In (2015), Xu et al. [2] applied viscosity method on the midpoint rule for non-expansive mappings and give the generalized viscosity implicit rule (GVIR): $$x_{n+1}=\alpha_nf(x_n)+(1-\alpha_n)T\left(\frac{x_n+x_{n+1}}{2}\right), \quad \forall n \geq 0$$ This, using contraction, regularizes the implicit midpoint rule for nonexpansive mappings. They also proved that the sequence generated by GMIR converges strongly to a fixed point of \(T\). Ke et al. [4], motivated and inspired by the idea of Xu et al. [2], proposed two generalized viscosity implicit rules: \begin{equation*} x_{n+1}=\alpha_nf(x_n)+(1-\alpha_n)T\left(s_nx_n+(1-s_n)x_{n+1}\right), \end{equation*} \begin{equation*} x_{n+1}=\alpha_nx_n+\beta f(x_n)+\gamma_nT(s_nx_n+(1-s_n)x_{n+1}). \end{equation*} Our contribution in this direction is the following viscosity rule for common fixed points of two nonexpansive mappings in Hilbert spaces: \begin{equation*} x_{n+1} = \alpha_n f(x_n) + \beta_n S\left(\frac{x_{n+1} + x_n}{2}\right) + \gamma_n T\left(\frac{x_{n+1}+x_n}{2}\right) \end{equation*}

2. Main Result

Theorem 2.1. Let \(C\) be a nonempty closed convex subset of the real Hilbert space \(H\). Let \(S:C\rightarrow C\) and \(T:C\rightarrow C\) be two nonexpansive mappings with \(U:=F(T)\cap F(S)\neq \phi\) and \(f:C\rightarrow C\) be a contraction with coefficient \(\theta \in [0,1)\). Let \(\{x_n\}\) be a sequence in \(C\) generated by \begin{equation}\label{eq3.1} x_{n+1}=\alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right)+\gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right) , \end{equation} where \(\{\alpha_n\},\{\beta_n\},\{\gamma_n\}\subset(0,1)\), satisfying the following conditions:

  1. \(\alpha_n + \beta_n + \gamma_n = 1\) and \(\lim\limits_{n\rightarrow \infty} \gamma_n = 1\),
  2. \(\sum\limits_{n=0}^\infty |\alpha_{n+1}-\alpha_n|< \infty\) and \(\sum\limits_{n=0}^\infty |\beta_{n+1}-\beta_n|< \infty\),
  3. \(\sum\limits_{n=0}^\infty\alpha_n=\infty\),
  4. \(\lim\limits_{n\rightarrow\infty}||{T\left(\frac{x_{n+1}+x_n}{2}\right)-S\left(\frac{x_{n+1}+x_n}{2}\right)}=0\) and \(\lim\limits_{n\rightarrow \infty}\alpha_n=\lim\limits_{n\rightarrow \infty}\beta_n=0\).
Then \(\{x_n\}\) converges strongly to a common fixed point \(x^\ast\) of the nonexpansive mappings \(T\) and \(S\) which is also the unique solution of the variational inequality $$\langle(I-f)x,y-x\rangle, \quad \forall \quad y\in U$$ In other words, \(x^\ast\) is the unique fixed point of the contraction \(P_Uf\).

Proof. We will prove this theorem into the following five steps:
Step 1. Firstly, we want to show that the sequence \(\{x_n\}\) is bounded. Indeed, take \(p\in U\) arbitrarily, we have \begin{eqnarray*} \|x_{n+1}-p\|&=&\left\|- p + \alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right)+\gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right)\right\|\\ &=&\left\| -(\alpha_n+\beta_n+\gamma_n)p + \alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right) \right. \\ && \left. + \gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right) \right\| \\ &\leq&\alpha_n\|f(x_n)-p\|+\beta_n\left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-p\right\| \\ && + \gamma_n \left\| T\left(\frac{x_{n+1}+x_n}{2}\right) - p \right\| \\ &\leq&\alpha_n\|f(x_n)-f(p)\|+\alpha_n\|f(p)-p\|+\beta_n\left\|\frac{x_{n+1}+x_n}{2}-p\right\| \\ && + \gamma_n\left\|\frac{x_{n+1}+x_n}{2}-p\right\|\\ &\leq&\theta\alpha_n\|x_n-p\|+\alpha_n\|f(p)-p\|+(\beta_n+\gamma_n)\left\|\frac{x_{n+1}+x_n}{2}-p\right\|\\ &=&\theta\alpha_n\|x_n-p\|+\alpha_n\|f(p)-p\|+(1-\alpha_n)\left\|\frac{x_{n+1}+x_n}{2}-p\right\|\\ &\leq&\theta\alpha_n\|x_n-p\|+\alpha_n\|f(p)-p\|+\frac{1-\alpha_n}{2}\|x_{n+1}-p\| \\ && + \frac{1-\alpha_n}{2}\|x_n-p\|. \end{eqnarray*} This is equivalent to \begin{equation*} \left(1-\frac{1-\alpha_n}{2}\right)\|x_{n+1}-p\| \leq \left(\frac{1-\alpha_n}{2}+\alpha_n\theta\right)\|x_n-p\|+\alpha_n\|f(p)-p\| \end{equation*} \(\Rightarrow\) \begin{equation*} (1+\alpha_n)\|x_{n+1}-p\| \leq (1-\alpha_n+2\alpha_n\theta)\|x_n-p\|+2\alpha_n\|f(p)-p\| \end{equation*} \(\Rightarrow\) \begin{eqnarray*} \|x_{n+1}-p\| &\leq& \frac{1+\alpha_n-2\alpha_n+2\alpha_n\theta}{1+\alpha_n}\|x_n-p\| + \frac{2\alpha_n}{1+\alpha_n}\|f(p)-p\| \\ &=&\left(1-\frac{2\alpha_n(1-\theta)}{1+\alpha_n}\right)\|x_n-p\| \\ && + \frac{2\alpha_n(1-\theta)}{1+\alpha_n} \left(\frac{1}{1-\theta} \|f(p) - p\| \right). \end{eqnarray*} Thus, $$\|x_{n+1}-p\|\leq\max\left\{\|x_n-p\|,\frac{1}{1-\theta}\|f(p)-p\|\right\}.$$ Similarly, $$\|x_n-p\|\leq\max\left\{\|x_{n-1}-p\|,\left(\frac{1}{1-\theta}\|f(p)-p\|\right)\right\}.$$ From this, we obtain, \begin{eqnarray*} \|x_{n+1}-p\|&\leq&\max\left\{\|x_n-p\|,\frac{1}{1-\theta}\|f(p)-p\| \right\} \\ &\leq& \max\left\{\|x_{n-1}-p\|, \frac{1}{1-\theta}\|f(p)-p\| \right\} \\ &.&\\ &.&\\ &.&\\ &.&\\ &\leq&\max\left\{\|x_0-p\|, \frac{1}{1-\theta}\|f(p)-p\| \right\}. \end{eqnarray*} Hence, we concluded that \(\{x_n\}\) is a bounded sequence. Consequently, \(\{f(x_n)\}\), \(\big\{S\big(\frac{x_{n+1}+x_n}{2}\big)\big\}\) and \(\big\{T\big(\frac{x_{n+1}+x_n}{2}\big)\big\}\) are bounded.
Step 2. Now, we prove that \(\lim\limits_{n\rightarrow\infty}\|x_{n+1}-x_n\| = 0\). \begin{eqnarray*} &&\|x_{n+1}-x_n\|\\ &=&\left\|\alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right)+\gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right) \right.\\ && - \left. \alpha_{n-1}f(x_{n-1})+\beta_{n-1}S\left(\frac{x_n+x_{n-1}}{2}\right)+\gamma_{n-1}T\left(\frac{x_n+x_{n-1}}{2}\right) \right\|\\ &=& \left\|\alpha_n(f(x_n)-f(x_{n-1}))+(\alpha_n-\alpha_{n-1})f(x_{n-1}) + \beta_n\left(S\left(\frac{x_{n+1}+x_n}{2}\right) \right. \right.\\ && - \left. S\left(\frac{x_n+x_{n-1}}{2}\right)\right) + (\beta_n-\beta_{n-1})S\left(\frac{x_n+x_{n-1}}{2}\right) \\ && + \gamma_n\left(T\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right) \\ && + \left. (\gamma_n-\gamma_{n-1})T\left(\frac{x_n+x_{n-1}}{2}\right)\right\| \\ &=& \left\|\alpha_n(f(x_n)-f(x_{n-1}))+(\alpha_n-\alpha_{n-1})f(x_{n-1}) + \beta_n\left(S\left(\frac{x_{n+1}+x_n}{2}\right) \right. \right. \\ && - \left. S\left(\frac{x_n+x_{n-1}}{2}\right) \right) + (\beta_n-\beta_{n-1})S\left(\frac{x_n+x_{n-1}}{2}\right) \\ && + \gamma_n\left(T\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right)\\ && + \left.(\alpha_n-\alpha_{n-1}+\beta_n-\beta_{n-1})T\left(\frac{x_n+x_{n-1}}{2}\right)\right\| \\ &=& \left\|\alpha_n(f(x_n)-f(x_{n-1}))+(\alpha_n-\alpha_{n-1})\left(f(x_{n-1})-T\left(\frac{x_n+x_{n-1}}{2}\right)\right) \right. \\ && + \beta_n\left(S\left(\frac{x_{n+1}+x_n}{2}\right)-S\left(\frac{x_n+x_{n-1}}{2}\right)\right) \\ && + (\beta_n-\beta_{n-1})\left(S\left(\frac{x_n+x_{n-1}}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right)\\ && + \left. \gamma_n\left(T\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right)\right\| \\ &\leq& \alpha_n \big\|f(x_n)-f(x_{n-1})\big\|+|\alpha_n-\alpha_{n-1}|\left\|f(x_{n-1})-T\left(\frac{x_n+x_{n-1}}{2}\right)\right\| \\ && + \beta_n\left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-S\left(\frac{x_n+x_{n-1}}{2}\right)\right\| \\ && + |\beta_n-\beta_{n-1}| \left\|S\left(\frac{x_n+x_{n-1}}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right\| \\ && + \gamma_n \left\| T\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_n+x_{n-1}}{2}\right)\right\|. \end{eqnarray*} Let \(M_2\) be a number such that \(M_2 \geq \max \left\{\sup\limits_{n\geq0} \left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\|, \right.\) \(\left.\sup\limits_{n\geq0} \left\|f(x_n) - T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \right\}\). Thus, the above is equivalent to \begin{eqnarray*} && \|x_{n+1}-x_n\| \\ &\leq& \alpha_n \theta \left\|x_n - x_{n-1}\right\| + \beta_n \left\|\frac{x_{n+1} + x_n}{2} - \frac{x_n + x_{n-1}}{2}\right\| \\ && + \gamma_n \left\|\frac{x_{n+1} + x_n}{2} - \frac{x_n + x_{n-1}}{2}\right\| + \{|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|\} M_2 \\ &\leq& \alpha_n \theta \left\|x_n - x_{n-1}\right\| \\ &&+ \frac{\beta_n}{2} \left\|x_{n+1} - x_n \right\|+ \frac{\beta_n}{2} \left\|x_n - x_{n-1}\right\| + \frac{\gamma_n}{2} \left\|x_{n+1} - x_n\right\| \\ && + \frac{\gamma_n}{2} \left\|x_n - x_{n-1}\right\| + \{|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|\}M_2 \\ &=&\left(\alpha_n\theta+\frac{\beta_n}{2}+\frac{\gamma_n}{2}\right)\|x_n-x_{n-1}\|+\left(\frac{\beta_n}{2}+\frac{\gamma_n}{2}\right)\|x_{n+1}-x_n\| \\ && + (|\alpha_n-\alpha_{n-1}|+|\beta_n-\beta_{n-1}|)M_2\\ &=&\left(\alpha_n\theta+\frac{1-\alpha_n}{2}\right)\|x_n-x_{n-1}\|+\frac{1-\alpha_n}{2}\|x_{n+1}-x_n\| \\ && + (|\alpha_n-\alpha_{n-1}|+|\beta_n-\beta_{n-1}|)M_2. \end{eqnarray*} Combining the common terms from left and right hand sides, we get, \begin{eqnarray*} \left(1-\frac{1-\alpha_n}{2}\right)\|x_{n+1}-x_n\| &\leq& \left(\alpha_n\theta+\frac{1-\alpha_n}{2}\right)\|x_n-x_{n-1}\| \\ && + (|\alpha_n-\alpha_{n-1}|+|\beta_n-\beta_{n-1}|)M_2. \end{eqnarray*} This implies that \begin{eqnarray*} &&\|x_{n+1}-x_n\| \\ &\leq& \frac{1+\alpha_n-2\alpha_n+2\alpha_n\theta}{1+\alpha_n}\|x_n-x_{n-1}\|\\&& + \{\frac{2(|\alpha_n-\alpha_{n-1}|+|\beta_n-\beta_{n-1}|)}{1+\alpha_n}\} M_2 \\ &=&\left(1-\frac{2\alpha_n(1-\theta)}{1+\alpha_n}\right)\|x_n-x_{n-1}\|\\&& + \{\frac{2(|\alpha_n-\alpha_{n-1}|+|\beta_n-\beta_{n-1}|)}{1+\alpha_n}\} M_2. \end{eqnarray*} Note that \(\sum\limits_{n=0}^\infty \alpha_n = \infty\), \(\sum\limits_{n=0}^\infty |\alpha_{n+1}-\alpha_n| < \infty\) and \(\sum\limits_{n=0}^\infty|\beta_{n+1}-\beta_n| < \infty \). Using Theorem 1.5, we have \(\|x_{n+1}-x_n\|\rightarrow0\) as \(n\rightarrow\infty\).
Step 3. Now, we will show that \(\lim\limits_{n\rightarrow\infty} \|x_n-Sx_n\|=0\) and \(\lim\limits_{n\rightarrow\infty} \|x_n-Tx_n\|=0\). Consider \begin{eqnarray*} && \|x_n-S(x_n)\| \\ &=& \left\|x_n-x_{n+1}+x_{n+1}-T\left(\frac{x_{n+1}+x_n}{2}\right)+T\left(\frac{x_{n+1}+x_n}{2}\right) \right. \\ && - \left. S \left(\frac{x_{n+1}+x_n}{2}\right)+S\left(\frac{x_{n+1}+x_n}{2}\right)-S(x_n) \right\| \\ &\leq& \|x_n-x_{n+1}\|+ \left\|x_{n+1} - T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| + \left\| T\left(\frac{x_{n+1} + x_n}{2}\right) \right. \\ && \left. - S\left(\frac{x_{n+1}+x_n}{2}\right) \right\| + \left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-S(x_n)\right\| \\ &\leq& \|x_n-x_{n+1}\| + \left\| \alpha_n f(x_n) + \beta_n S\left(\frac{x_{n+1} + x_n}{2} \right) + \gamma_n T\left(\frac{x_{n+1} + x_n}{2} \right) \right. \\ && \left. - T\left(\frac{x_{n+1} + x_n}{2}\right) \right\| + \left\|\frac{x_{n+1}+x_n}{2} - x_n\right\| \\ && + \left\|T\left(\frac{x_{n+1}+x_n}{2}\right)-S\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ &\leq& \|x_n-x_{n+1}\| + \alpha_n \left\| f(x_n) - T\left(\frac{x_{n+1}+x_n}{2}\right) \right\| \\ && + \beta_n \left\| S\left(\frac{x_{n+1}+x_n}{2}\right) - T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| + \frac{1}{2}\|x_{n+1}-x_n\|\\ && + \left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ &\leq& \frac{3}{2}\|x_n-x_{n+1}\| + \alpha_n \left\|f(x_n) - T\left(\frac{x_{n+1} + x_n}{2}\right)\right\| \\ && + (1+\beta_n)\left\|S\left(\frac{x_{n+1}+x_n}{2}\right) - T\left(\frac{x_{n+1}+x_n}{2}\right)\right\|. \end{eqnarray*} Since, \(\lim\limits_{n\rightarrow\infty} \alpha_n = \lim\limits_{n\rightarrow\infty} \left\|T\left(\frac{x_{n+1} + x_n}{2}\right) - S\left(\frac{x_{n+1} + x_n}{2}\right)\right\| = 0\) and \(\lim\limits_{n\rightarrow\infty} \|x_{n+1} - x_n\| \rightarrow 0\), we get \(\|x_n-S(x_n)\|\rightarrow0\) as \(n\rightarrow\infty\) Moreover, we have \begin{eqnarray*} \left\|S \left(\frac{x_{n+1} + x_n}{2}\right) - x_n\right\| &=& \left\|S\left(\frac{x_{n+1} + x_n}{2} \right) - S(X_n) + S(x_n) - x_n\right\| \\ &\leq& \left\|S \left(\frac{x_{n+1} + x_n}{2}\right) - S(x_n)\right\| + \left\|S(x_n) - x_n\right\| \\ &\leq& \left\|\frac{x_{n+1} + x_n}{2} - x_n\right\| + \|S(x_n)-x_n\| \\ &=& \frac{1}{2}\|x_{n+1} - x_n\| + \|S(x_n) - x_n\| \\ &\to& 0, \quad \quad \text{ as } (n \to \infty). \end{eqnarray*} Now, consider \begin{eqnarray*} &&\|x_n-T(x_n)\|\\ &=& \left\|x_n-x_{n+1}+x_{n+1}-S\left(\frac{x_{n+1}+x_n}{2}\right)+S\left(\frac{x_{n+1}+x_n}{2}\right) \right.\\ && - \left. T\left(\frac{x_{n+1}+x_n}{2}\right)+T\left(\frac{x_{n+1}+x_n}{2}\right)-T(x_n) \right\| \\ &\leq& \|x_n-x_{n+1}\| + \left\|x_{n+1} - S\left(\frac{x_{n+1}+x_n}{2}\right)\right\| + \left\|T\left(\frac{x_{n+1}+x_n}{2}\right)-T(x_n)\right\| \\ && + \left\|S\left(\frac{x_{n+1}+x_n}{2}\right) - T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ &\leq& \|x_n-x_{n+1}\| + \left\|T\left(\frac{x_{n+1}+x_n}{2}\right) - S\left(\frac{x_{n+1}+x_n}{2}\right)\right\| + \\ && \left\|\alpha_nf(x_n) + \beta_nS\left(\frac{x_{n+1}+x_n}{2}\right) + \gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right) - S\left(\frac{x_{n+1}+x_n}{2}\right) \right\| \\ && + \left\|\frac{x_{n+1}+x_n}{2}-x_n\right\| \\ &\leq& \left\|x_n-x_{n+1}\right\| + \alpha_n\left\|f(x_n)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| +\frac{1}{2}\|x_{n+1}-x_n\| \\ && + \gamma_n\left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ && + \left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ &\leq& \frac{3}{2}\|x_n-x_{n+1}\| + \alpha_n \left\|f(x_n)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| \\ && + (1+\gamma_n)\left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-T\left(\frac{x_{n+1}+x_n}{2}\right)\right\| . \end{eqnarray*} Since, \(\lim\limits_{n \to \infty} \alpha_n = \lim\limits_{n \to \infty} \left\|T\left(\frac{x_{n+1} + x_n}{2}\right) - S\left(\frac{x_{n+1} + x_n}{2}\right)\right\| = 0\) and \(\lim\limits_{n \to \infty} \|x_{n+1}-x_n\| \to 0\), we get \(\|x_n-Tx_n\| \to 0\) as \(n \to \infty\). Also, \begin{eqnarray*} \left\|T\left(\frac{x_{n+1}+x_n}{2}\right)-x_n\right\| &=& \left\|T\left(\frac{x_{n+1}+x_n}{2}\right)-T(X_n)+T(x_n)-x_n\right\| \\ &\leq& \left\|T \left(\frac{x_{n+1} + x_n}{2}\right) - T(x_n)\right\| + \left\|T(x_n) - x_n\right\| \\ &\leq& \left\|\frac{x_{n+1}+x_n}{2}-x_n\right\| + \left\|T(x_n) - x_n\right\| \\ &=& \frac{1}{2}\left\|x_{n+1} - x_n\right\| + \left\|T(x_n) - x_n\right\| \\ &\to& 0 \quad \quad \quad (\text{ as } n \to \infty) \end{eqnarray*} Step 4. In this step, we will show that \(\limsup\limits_{n \to \infty} \langle x^\ast - f(x^\ast), x^\ast - x_n \rangle \leq 0\), where, \(x^\ast = P_Uf(x^\ast)\).
Indeed, we take a subsequence, \(\{x_{n_i}\}\) of \(\{x_n\}\), which converges weakly to a fixed point \(p \in U = F(T) \cap F(S)\). Without loss of generality, we may assume that \(\{x_{n_i}\} \rightharpoonup p\). From \(\lim\limits_{n \to \infty} ||{x_n - S(x_n)} = 0\), \(\lim\limits_{n \to \infty} ||{x_n - T(x_n)} = 0\) and Theorem 1.4, we have \(p = S(p)\) and \(p = T(p)\). This together with the property of the metric projection implies that \begin{equation*} \limsup\limits_{n \to \infty} \langle x^\ast - f(x^\ast), x^\ast - x_n \rangle = \langle x^\ast - f(x^\ast), x^\ast - p \rangle \leq 0. \end{equation*} Step 5. Finally, we show that \(x_n \rightarrow x^\ast\) as \(n\rightarrow\infty\). Again, take \)x^\ast \in U\) to be the unique fixed point of the contraction \(P_Uf\). Consider \begin{eqnarray*} &&\|x_{n+1}-x_n\|^2 \nonumber \\ &=& \left\|\alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right)+\gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast\right\| ^2\nonumber\\ &=& \left\|\alpha_nf(x_n)+\beta_nS\left(\frac{x_{n+1}+x_n}{2}\right)+\gamma_nT\left(\frac{x_{n+1}+x_n}{2}\right)-(\alpha_n+\beta_n+\gamma_n)x^\ast\right\|^2\nonumber\\ &=& \left\|\alpha_n(f(x_n)-x^\ast)+\beta_n \{S\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast\} + \gamma_n \{T\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast\}\right\|^2 \nonumber\\ &=& \alpha^2_n \left\|f(x_n) - x^\ast\right\|^2 + \beta^2_n \left\|S\left(\frac{x_{n+1}+x_n}{2}\right) - x^\ast\right\|^2 \\ &&+ \gamma^2_n \left\|T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast\right\|^2\nonumber\\ && + 2\alpha_n \beta_n \left\langle f(x_n) - x^\ast, S\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast \right\rangle \nonumber \\ && + 2\alpha_n \gamma_n \left\langle f(x_n)-x^\ast,T\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast \right\rangle \nonumber \\ && + 2\beta_n \gamma_n \left\langle S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast, T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ &\leq& \alpha^2_n \|f(x_n) - x^\ast\|^2 + \beta^2_n \left\|\frac{x_{n+1} + x_n}{2} - x^\ast\right\|^2 + \gamma^2_n \left\|\frac{x_{n+1} + x_n}{2} - x^\ast\right\|^2 \nonumber \\ && + 2\alpha_n \beta_n \left\langle f(x_n) - f(x^\ast), S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ && + 2\alpha_n \beta_n \left\langle f(x^\ast) - x^\ast, S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ && + 2 \alpha_n \gamma_n \left\langle f(x_n) - f(x^\ast), T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ && + 2 \alpha_n \gamma_n \left\langle f(x^\ast) - x^\ast, T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ && + 2\beta_n \gamma_n \left\langle S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast, T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \nonumber \\ &\leq& \{\beta^2_n + \gamma^2_n\} \left\|\frac{x_{n+1} + x_n}{2} - x^\ast\right\|^2 + 2\alpha_n\beta_n\| f(x_n) - f(x^\ast)\|.\nonumber\\ &&\left\|S\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast\right\|\nonumber\\ && + 2\alpha_n \gamma_n \|f(x_n) - f(x^\ast)\|.\left\|T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast\right\| \nonumber \\ && + 2\beta_n \gamma_n \left\|S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast\right\|.\left\|T\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast\right\| + K_n, \nonumber \end{eqnarray*} where, \begin{eqnarray*} K_n &=& \alpha^2_n \|f(x_n)-x^\ast\|^2 + 2\alpha_n\beta_n \left\langle f(x^\ast) - x^\ast, S\left(\frac{x_{n+1} + x_n}{2}\right) - x^\ast \right\rangle \\ && + 2\alpha_n\gamma_n \left\langle f(x^\ast)-x^\ast,T\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast \right\rangle \end{eqnarray*} This implies that \begin{eqnarray*} &&\|x_{n+1}-x_n\|^2 \nonumber \\ &\leq& (\beta^2_n + \gamma^2_n) \left\|\frac{x_{n+1} + x_n}{2} - x^\ast\right\|^2 + 2\alpha_n\beta_n \theta \left\|x_n - x^\ast\right\|.\left\|\frac{x_{n+1} + x_n}{2} - x^\ast\right\| \nonumber \\ && + 2\alpha_n\gamma_n\theta\left\|x_n - x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\| \nonumber \\ && + 2\beta_n\gamma_n\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\| + K_n \nonumber \\ &=&(\beta^2_n+\gamma^2_n+2\beta_n\gamma_n)\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|^2 \\ && + 2 \alpha_n\theta(\beta_n+\gamma_n)\left\|x_n-x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\| + K_n \nonumber\\ &=&(\beta_n+\gamma_n)^2 \left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|^2 \\ && + 2\alpha_n\theta(\beta_n+\gamma_n)\left\|x_n-x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\| + K_n\nonumber\\ &=& (1-\alpha_n)^2\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|^2 \\ && + 2\alpha_n\theta(1-\alpha_n)\left\|x_n-x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|+K_n. \end{eqnarray*} The above calculation shows that \begin{eqnarray*} 0 &\leq& 2\alpha_n\theta(1-\alpha_n)\left\|x_n-x^\ast\right\|.\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\| \\ && + (1-\alpha_n)^2\left\|\frac{x_{n+1}+x_n}{2}-x^\ast\right\|^2 - \left\|x_{n+1}-x^\ast\right\|^2 + K_n, \end{eqnarray*} which is a quadratic inequality in \(||{\frac{x_{n+1}+x_n}{2}-x^\ast}\). Solving the above inequality for \(||{\frac{x_{n+1}+x_n}{2}-x^\ast}\), we have, \begin{eqnarray*} ||{\frac{x_{n+1}+x_n}{2}-x^\ast} &\geq& \frac{-2\theta\alpha_n(1-\alpha_n)\|x_n-x^\ast\|}{2(1-\alpha_n)^2} \end{eqnarray*} \begin{eqnarray*} && + \frac{\sqrt{4\theta^2\alpha^2_n(1-\alpha_n)^2\|x_n-x^\ast\|^2-4(1-\alpha_n)^2(K_n-\|x_{n+1}-x^\ast\|^2 )}}{2(1-\alpha_n)^2} \\ &=& \frac{-\theta\alpha_n\|x_n-x^\ast\|+\sqrt{\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2 }}{1-\alpha_n}. \end{eqnarray*} This will give \begin{eqnarray*} && \frac{1}{2}\left(\|x_{n+1}-x^\ast\|+\|x_n-x^\ast\|\right) \\ &\geq& \frac{-\theta\alpha_n\|x_n-x^\ast\|+\sqrt{\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2 }}{1-\alpha_n} \end{eqnarray*} \(\Rightarrow\) \begin{eqnarray*} && \frac{1}{2}\left((1-\alpha_n)||{x_{n+1}-x^\ast} + (1 + (2\theta - 1) \alpha_n) ||{x_n-x^\ast} \right) \\ &\geq&\sqrt{\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2} \end{eqnarray*} \(\Rightarrow\) \begin{eqnarray*} && \frac{1}{4}\left((1-\alpha_n)\|x_{n+1}-x^\ast\|+(1+(2\theta-1)\alpha_n)\|x_n-x^\ast\|\right)^2 \\ &\geq&\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2, \end{eqnarray*} which is reduced to \begin{eqnarray*} &&\frac{1}{4}(1-\alpha_n)^2\|x_{n+1}-x^\ast\|^2+\frac{1}{4}(1+(2\theta-1)\alpha_n)^2\|x_n-x^\ast\|^2\\ &+&\frac{1}{2}(1-\alpha_n)(1+(2\theta-1)\alpha_n)\|x_{n+1}-x^\ast\|\|x_n-x^\ast\|\\ &\geq&\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2. \end{eqnarray*} This inequality is further reduced by using the elementary inequality \begin{eqnarray*} 2\|x_{n+1}-x^\ast\|\|x_n-x^\ast\|&\leq&\|x_{n+1}-x^\ast\|^2+\|x_n-x^\ast\|^2, \end{eqnarray*} to the following inequality \begin{eqnarray*} &&\frac{1}{4}(1-\alpha_n)^2\|x_{n+1}-x^\ast\|^2+\frac{1}{4}(1+(2\theta-1)\alpha_n)^2\|x_n-x^\ast\|^2\\ &+&\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)(\|x_{n+1}-x^\ast\|^2+\|x_n-x^\ast\|^2)\\ &\geq&\theta^2\alpha^2_n\|x_n-x^\ast\|^2-K_n+\|x_{n+1}-x^\ast\|^2. \end{eqnarray*} This implies that \begin{eqnarray*} &&\left(1-\frac{1}{4}(1-\alpha_n)^2-\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)\right)\|x_{n+1}-x^\ast\|^2\\ &\leq&\left(\frac{1}{4}(1+(2\theta-1)\alpha_n)^2+\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)-\theta^2\alpha^2_n\right)\|x_n-x^\ast\|^2 \\ && + K_n, \end{eqnarray*} or \begin{eqnarray} \|x_{n+1}-x^\ast\|^2 &\leq& \frac{\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)-\theta^2\alpha^2_n}{1-\frac{1}{4}(1-\alpha_n)^2-\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)}\|x_n-x^\ast\|^2 \nonumber\\ && + \frac{\frac{1}{4}(1+(2\theta-1)\alpha_n)^2}{1-\frac{1}{4}(1-\alpha_n)^2-\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)} + K'_n,\label{a} \end{eqnarray} where, \begin{eqnarray*} K'_n &=& \frac{K_n}{1-\frac{1}{4}(1-\alpha_n)^2-\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)}. \end{eqnarray*} Note that, \begin{eqnarray*} && 1-\frac{1}{4}(1-\alpha_n)^2-\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n) \\ &=&1-\frac{1}{4}(1-\alpha_n)(1-\alpha_n+1+(2\theta-1)\alpha_n)\\ &=&1-\frac{1}{4}(1-\alpha_n)(1-\alpha_n+1+2\theta\alpha_n-\alpha_n)\\ &=&1-\frac{1}{4}(1-\alpha_n)(2-2\alpha_n+2\theta\alpha_n)\\ &=&1-\frac{1}{2}(1-\alpha_n)(1-\alpha_n+\theta\alpha_n)\\ &=&1-\frac{1}{2}(1-\alpha_n)(1-\alpha_n(1-\theta)), \end{eqnarray*} and \begin{eqnarray*} &&\frac{1}{4}(1+(2\theta-1)\alpha_n)^2+\frac{1}{4}(1-\alpha_n)(1+(2\theta-1)\alpha_n)-\theta^2\alpha^2_n\\ &=&\frac{1}{4}(1+(2\theta-1)\alpha_n)(1+(2\theta-1)\alpha_n+1-\alpha_n)-\theta^2\alpha^2_n\\ &=&\frac{1}{4}(1+(2\theta-1)\alpha_n)(2+2\theta\alpha_n-2\alpha_n)-\theta^2\alpha^2_n\\ &=&\frac{1}{2}(1+(2\theta-1)\alpha_n)(1+\theta\alpha_n-\alpha_n)-\theta^2\alpha^2_n\\ &=&\frac{1}{2}(1+(2\theta-1)\alpha_n)(1-(1-\theta)\alpha_n)-\theta^2\alpha^2_n. \end{eqnarray*} Now from (2), \begin{eqnarray} && \|x_{n+1}-x^\ast\|^2 \nonumber\\ &\leq& \frac{\frac{1}{2}(1 + (2\theta - 1)\alpha_n)(1 - (1 - \theta)\alpha_n) - \theta^2 \alpha^2_n}{1 - \frac{1}{2}(1 - \alpha_n)(1 - \alpha_n(1 - \theta))}\|x_n - x^\ast\|^2 + K'_n.\label{b} \end{eqnarray} Consider the following function, for \(t > 0\). $$g(t):=\frac{1}{t}\left\{1-\frac{\frac{1}{2}(1+(2\theta-1)t)(1-(1-\theta)t)-\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}$$ \begin{eqnarray*} g(t)&=&\frac{1}{t}\left\{\frac{1-\frac{1}{2}(1-t)(1-t(1-\theta))-\frac{1}{2}(1+(2\theta-1)t)(1-(1-\theta)t)+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{1}{t}\left\{\frac{1-\frac{1}{2}(1-t(1-\theta))(1-t+1+2\theta t-t)+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{1}{t}\left\{\frac{1-\frac{1}{2}(1-t(1-\theta))(2-2t+2\theta t)+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{1}{t}\left\{\frac{1-(1-t+\theta t))(1-t+\theta t ))+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{1}{t}\left\{\frac{1-(1+t^2+\theta^2 t^2-2t-2\theta t^2+2\theta t)+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{1}{t}\left\{\frac{1-1-t^2-\theta^2 t^2+2t+2\theta t^2-2\theta t+\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\}\\ &=&\frac{-t+2+2\theta t-2\theta }{1-\frac{1}{2}(1-t)(1-t(1-\theta))}. \end{eqnarray*} By applying limit \(t\rightarrow0\), we have \begin{eqnarray*} \lim_{t\rightarrow0}g(t)=4(1-\theta)>0. \end{eqnarray*} Let \(\delta>0\) be such that for all \(0< t < \delta \), \(g(t) > \epsilon := 4(1-\theta) > 0\). This is equivalent to \begin{eqnarray*} \frac{1}{t}\left\{1-\frac{\frac{1}{2}(1+(2\theta-1)t)(1-(1-\theta)t)-\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}\right\} &>& \epsilon \end{eqnarray*} This implies, \begin{eqnarray*} 1-t\epsilon>\frac{\frac{1}{2}(1+(2\theta-1)t)(1-(1-\theta)t)-\theta^2t^2}{1-\frac{1}{2}(1-t)(1-t(1-\theta))}. \end{eqnarray*} Since \(\alpha_n\rightarrow0\) as \(n\rightarrow\infty\), there exist some integer \(N\), such that \(\alpha_n< \delta\), \(\forall\) \(n\geq N\). From (3), we have \begin{equation*} \|x_{n+1}-x^\ast\|^2\leq(1-\alpha_n\epsilon)\|x_n-x^\ast\|^2+K'_n \end{equation*} On the other hand, we have \begin{eqnarray*} \limsup\limits_{n \to \infty} \frac{K_n}{\alpha_n} &=& \limsup\limits_{n \to \infty} \left\{ 2\beta_n \left\langle f(x^\ast)-x^\ast,S\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast \right\rangle \right. \\ && \hspace{11.5mm} + 2\gamma_n \left\langle f(x^\ast)-x^\ast,T\left(\frac{x_{n+1}+x_n}{2}\right)-x^\ast \right\rangle \\ && \left. \hspace{11.5mm} + \alpha_n\|f(x_n)-x^\ast\|^2\right\}\leq 0. \end{eqnarray*} The above inequality implies that \begin{eqnarray*} \limsup\limits_{n\rightarrow\infty}\frac{K'_n}{\alpha_n} &\leq& 0. \end{eqnarray*} From the above two inequalities and Theorem 1.4 we have $$\lim_{n\rightarrow\infty}\|x_{n+1}-x^\ast\|^2=0,$$ which implies that \(x_n\rightarrow x^\ast\) as \(n\rightarrow\infty\). This completes the proof.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Goebel, K., & Kirk, W. A. (1990). Topics in metric fixed point theory (Vol. 28). Cambridge University Press. [Google Scholor]
  2. Xu, H. K., Alghamdi, M. A., & Shahzad, N. (2015). The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory and Applications, 2015(1), 41. [Google Scholor]
  3. Moudafi, A. (2000). Viscosity approximation methods for fixed-points problems. Journal of Mathematical Analysis and Applications, 241(1), 46-55.[Google Scholor]
  4. Ke, Y., & Ma, C. (2015). The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory and Applications, 2015(1), 190. [Google Scholor]
]]>
Ostrowski Type Fractional Integral Inequalities for S -Godunova-Levin Functions via Katugampola Fractional Integrals https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/ostrowski-type-fractional-integral-inequalities-for-s-godunova-levin-functions-via-katugampola-fractional-integrals/ Mon, 04 Dec 2017 20:20:43 +0000 https://old.pisrt.org/?p=1821
OMS-Vol. 1 (2017), Issue 1, pp. 97–110 | Open Access Full-Text PDF
Ghulam Farid, Udita N. Katugampola, Muhammad Usman
Abstract:In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Katugampola fractional integrals. We also deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals.
]]>

Open Journal of Mathematical Sciences

Ostrowski Type Fractional Integral Inequalities for S-Godunova-Levin Functions via Katugampola Fractional Integrals

Ghulam Farid\(^1\), Udita N. Katugampola, Muhammad Usman
COMSATS Institute of Information Technology, Attock Campus, Pakistan.(G.F & M.U)
Department of Mathematics, University of Delaware, Newark, DE 19716, USA. (U.N.K)

\(^{1}\)Corresponding Author: faridphdsms@hotmail.com, ghlmfarid@ciit-attock.edu.pk

Abstract

In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Katugampola fractional integrals. We also deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals.

Keywords:

Ostrowski inequality, Fractional integral, s-Godunova-Levin functions.

1. Introduction

In 1938 Ostrowski [1] proved an inequality stated in the following result (see also [2, p.468]).

Theorem 1.1. Let \( f:I \rightarrow \mathbb{R} \) where \(I\) is interval in \( \mathbb{R} \), be a mapping differentiable in \( I^{\circ} \) the interior of \(I\) and \(a, b \in I^{\circ}\), \(a < b \). If \( \big|f^{'}(t) \big| \leq M \), for all \(t \in [a , b] \), then we have \begin{equation*} \bigg| f(x)-\dfrac{1}{b-a}\int_{a} ^{b}f(t)dt \bigg|\leq \left[\frac{1}{4}+\frac{(x-\frac{a+b}{2})^{2}}{(b-a)^{2}}\right](b-a)M, x\in[a,b]. \end{equation*}

Ostrowski inequality gives bounds of integral average of a function \(f\) over an interval \([a,b]\) to its value \(f(x)\) at point \(x\in [a,b].\) Ostrowski and Ostrowski type inequalities have great importance in numerical analysis as they provide the error bound of many quaderature rules [3]. Therefore in recent years, so many such type of inequalities have been obtained and generalized (see [4, 5]).

As fractional calculus is a generalization of classical calculus concerned with operations of integration and differentiation of fractional order so in this research article we will use Katugampola fractional integrals to generalize the Ostrowski type inequalities given in [4].

In [6] Laurent give definition of Riemann-Liouville fractional integrals.

Definition 1.2. [6] Let \(f\in L_{1}[a,b]. \) The Riemann-Liouville fractional integrals \(J_{a+}^{\alpha}f\) and \(J_{b-}^{\alpha}f\) of order \(\alpha>0 \) with \(a\geq0\) are defined by \begin{equation*} J_{a+}^{\alpha}f(x)=\dfrac{1}{\Gamma(\alpha)}\int_{a}^{x}(x-t)^{\alpha-1}f(t)dt, x>a \end{equation*} and \begin{equation*} J_{b-}^{\alpha}f(x)=\dfrac{1}{\Gamma(\alpha)}\int_{x}^{b}(t-x)^{\alpha-1}f(t)dt, x< b, \end{equation*} respectively, where \( \Gamma(\alpha)=\int_{0}^{\infty}e^{-u}u^{\alpha-1}du.\) Here \(\Gamma(\alpha+1)=\alpha\Gamma(\alpha)\),
\( J_{a+}^{0}f(x)=J_{b-}^{0}f(x)=f(x).\) In case of \( \alpha=1 \), the fractional integral reduces to the classical integral.

Definition 1.3. J. Hadamard introduced the Hadamard fractional integral in [7], and is given by \begin{equation*} I_{a^{+}}^{\alpha}f(x)=\dfrac{1}{\Gamma(\alpha)}\int_{a}^{x}\left(log\dfrac{x}{\tau}\right)^{\alpha-1}f(\tau)\dfrac{d\tau}{\tau}, \end{equation*} for \(Re(\alpha)>0,\,x>a\geq0 \).

Recently Katugampola generalized Riemann-Liouville and Hadamard fractional integrals into a single form called Katugampola fractional integrals.

Definition 1.4. [8] Let \([a,b]\) be a finite interval in \( \mathbb{R}\). Then Katugampola fractional integrals of order \(\alpha>0\) for a real valued function \(f\) are defined by \begin{equation*} ^{\rho}I_{a+}^{\alpha}f\left(x\right)=\frac{\rho^{1-\alpha}}{\Gamma\left(\alpha\right)}\int_{a}^{x}t^{\rho-1} \left(x^{\rho}-t^{\rho}\right)^{\alpha-1}f\left(t\right)dt \end{equation*} and \begin{equation*} ^{\rho}I_{b-}^{\alpha}f\left(x\right)=\frac{\rho^{1-\alpha}}{\Gamma\left(\alpha\right)} \int_{x}^{b}t^{\rho-1}\left(t^{\rho}-x^{\rho}\right)^{\alpha-1}f\left(t\right)dt \end{equation*} with \(a< x< b\) and \(\rho >0 \).
Where \(\Gamma\left(\alpha\right)\) is the Euler gamma function. For \(\rho=1\), Katugampola fractional integrals give Riemann-Liouville fractional integrals, while \(\rho \rightarrow 0^+\) produces the Hadamard fractional integral. For its proof one can check [8].

The \(\rho \)-Gamma function [9] for any two positive numbers \(x, y\) denoted by \( ^{\rho}\Gamma(x,y)\), is defined by \begin{equation*} ^{\rho}\Gamma(\alpha)=\int_{0}^{\infty}e^{-t^{\rho}}(t^{\rho})^{\alpha-\frac{1}{\rho}}dt. \end{equation*} We can have the following relation
\begin{equation} ^{\rho}\beta(x,y)=\dfrac{^{\rho}\Gamma(x)\,\,^{\rho}\Gamma(y)}{^{\rho}\Gamma(x,y)}. \end{equation}
(1)

Definition 1.5. [10] A non-negative function \(f:I\rightarrow \mathbb{R}\) is said to be \(p\)-function, if for any two points \(x,y \in I\) and \(t \in [0,1]\) \begin{align*} f\left(tx+(1-t)y\right)\leq f(x)+f(y). \end{align*}

Definition 1.6. [11] A function \(f:I\rightarrow \mathbb{R}\) is said to be Godunova-Levin function, if for any two points \(x,y \in I\) and \(t \in (0,1)\) \begin{align*} f\left(tx+(1-t)y\right)\leq \dfrac{f(x)}{t}+\dfrac{f(y)}{1-t}. \end{align*}

Definition 1.7. [12] A function \(f:I\rightarrow \mathbb{R}\) is said to be \(s\)-Godunova-Levin function of first kind, if \( s\in(0,1] \), for all \(x,y \in I\) and \(t \in (0,1)\) then we have \begin{align*} f\left(tx+(1-t)y\right)\leq \dfrac{f(x)}{t^{s}}+\dfrac{f(y)}{1-t^{s}}. \end{align*}

Definition 1.8. [13] A function \(f:I\rightarrow \mathbb{R}\) is said to be \(s\)-Godunova-Levin function of second kind, if \(s\in[0,1]\), for all \(x,y \in I\) and \(t \in (0,1)\) then we have \begin{align*} f\left(tx+(1-t)y\right)\leq \dfrac{f(x)}{t^{s}}+\dfrac{f(y)}{(1-t)^{s}}. \end{align*}

We organize the paper in such a way that in the following section we prove some Ostrowski type fractional integral inequalities for \(s\)-Godunova-Levin functions of second kind via Katugampola fractional integrals. Also we will obtain some corollaries for \(p\)-functions and Godunova-Levin functions and deduce some known results of [14].

2. Ostrowski type fractional integral inequalities for mappings whose derivatives are s-Godunova-Levin of second kind via Katugampola fractional integrals

The following lemma (given and also proved in [9]) is very useful to obtain our results.

Lemma 2.1. Let \(f:[a^{\rho},b^{\rho}] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a^{\rho},b^{\rho})\) with \( a< b \) such that \(f^{'} \in L_{1}[a,b]\), where \(\rho>0 \). Then we have the following equality

\begin{align} \label{11} &\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber\\&=\dfrac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}t^{\alpha\rho+\rho-1}f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})dt\nonumber\\&-\dfrac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}t^{\alpha\rho+\rho-1}f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})dt;\,x\in[a,b]. \end{align}
(2)

Theorem 2.2. Let \(f:[a^{\rho},\,b^{\rho}]\rightarrow \mathbb{R} \), \( a,b\geq 0 \), \( a< b \) be a differentiable function on \((a^{\rho},b^{\rho})\) and \(f^{'} \in L_{1}[a,b]\). If \( \big|f^{'}\big| \) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), \(x \in [a,b],\) then the following inequality holds

\begin{align}\label{2.1} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\leq M\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\times\nonumber\\&\left[\dfrac{1}{\alpha+1-s}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\,\,^{\rho}\Gamma(\alpha+2-s)}\right];\,x\in[a,b]. \end{align}
(3)

Proof. Using Lemma 2.1 and the fact that \(\big|f^{'}\big| \) is \(s\)-Godunova-Levin function of second kind, we have \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt \\&+\frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt \\& \leq \frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|\right]dt \\&+\frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(b^{\rho})\big|\right]dt \\& \leq \frac{M\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \\&+\frac{M\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \\&=M\rho\left[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{2(b-a)}\right]\times\nonumber\\&\int_{0}^{1}\left[t^{\alpha\rho-\rho s+\rho-1}+t^{\alpha\rho+\rho-1}(1-t^{\rho})^{-s}\right]dt. \\&=M\rho\left[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{2(b-a)}\right]\times\nonumber\\&\left[\dfrac{1}{\rho(\alpha+1-s)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha+2-s)}\right] \\&= M\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\times\nonumber\\&\left[\dfrac{1}{\alpha+1-s}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\,\,^{\rho}\Gamma(\alpha+2-s)}\right]. \end{align*} Here we use (1). The proof is completed.

Lemma 2.3. (i) If we put \( \rho=1 \) in (3), then we get [4, Theorem 3.1].
(ii) If we put \( \rho=1\) and \( \alpha=1 \) in (3), then we get [4, Corollary 3.1].

Corollary 2.4. In Theorem 2.2 , if we take \(s=0\), which means that \( \big|f^{'}\big| \) is \(p\)-function, then (3) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\ &\leq \dfrac{2M}{\alpha+1}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg];\,x\in[a,b]. \end{align*}

Corollary 2.5. In Theorem 2.2, if we take \(s=1\), which means that \(\big|f^{'}\big|\) is Godunova-Levin function, then (3) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\ &\leq \dfrac{M(\alpha+1)}{\alpha}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg];\,x\in[a,b]. \end{align*}

Theorem 2.6. Let \(f:[a^{\rho},b^{\rho}]\rightarrow \mathbb{R}\), \(a,b\geq 0\), \(a< b\) be a differentiable function on \((a^{\rho},b^{\rho})\) and \(f^{'} \in L_{1}[a,b]\). If \(\big|f^{'}\big|^{q},\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), \(x \in [a,b]\) then the following inequality for Katugampola fractional integrals holds

\begin{align} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\&\leq M\rho\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{(b-a)(1+p(\alpha\rho+\rho-1))^{\frac{1}{p}}}\bigg]\left[\dfrac{1}{1-\rho s}\right]^{\frac{1}{q}};\,x\in[a,b], \end{align}
(4)
with \(\frac{1}{p}+\frac{1}{q}=1\) where \(q>1\).

Proof. Using Lemma 2.1 and then Holder's inequality, we have

\begin{align}\label{th2.3} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt\nonumber\\ & +\frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt\nonumber\\ &\leq\frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\left(\int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}\nonumber\\ &+\frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\left(\int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt\right)^{\frac{1}{p}}\left(\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}. \end{align}
(5)
Since \(\big|f^{'}\big|^{q}\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), we get
\begin{align}\label{th2.31} &\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt \times\nonumber\\&\leq\int_{0}^{1}\left[\frac{1}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|^{q}+\frac{1}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|^{q}\right]dt\nonumber \\&\leq M^{q}\int_{0}^{1}\left[\frac{1}{(t^{\rho})^{s}}+\frac{1}{(1-t^{\rho})^{s}}\right]dt=\dfrac{1}{1-\rho s} \end{align}
(6)
similarly
\begin{equation} \int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt \leq\dfrac{1}{1-\rho s}. \end{equation}
(7)
We also have
\begin{equation} \int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt=\dfrac{1}{1+p(\alpha\rho+\rho-1)}. \end{equation}
(8)
Using (6), (7) and (8) in (5) we can get (4).

Remark 2.7. (i) If we put \(\rho=1\) in (4), then we get [4, Theorem 3.2].
(ii) If we put \(\rho=1\) and \(\alpha=1\) in (4), then we get [4, Corollary 3.2].

Corollary 2.8. In Theorem 2.6, if we take \(s=0\), which means that \(\big|f^{'}\big|\) is \(p\)-function, then (4) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\ &\leq \dfrac{M}{\left(1+p(\alpha\rho+\rho-1)\right)^{\frac{1}{p}}}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg];\,x\in[a,b]. \end{align*}

Corollary 2.9. In Theorem 2.6, if we take \(s=1\), which means that \(\big|f^{'}\big|\) is Godunova-Levin function, then (4) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\leq \dfrac{M\rho}{\left(1+p(\alpha\rho+\rho-1)\right)^{\frac{1}{p}}}\times\nonumber\\&\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\left[\dfrac{1+\alpha}{\alpha\rho}\right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

Theorem 2.10. Let \(f:[a^{\rho},b^{\rho}]\rightarrow \mathbb{R}\), \( a,b\geq 0 \), \( a< b \) be a differentiable function on \((a^{\rho},b^{\rho}) \) and \(f^{'} \in L_{1}[a,b]\). If \( \big|f^{'}\big|^{q} \) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\) , \( x \in [a,b] \) \(,q\geq 1,\) then the following inequality for Katugampola fractional integrals holds

\begin{align} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\&\leq \dfrac{M\rho}{(\alpha\rho+\rho)^{1-\frac{1}{q}}}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\times\nonumber\\&\left(\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right)^{\frac{1}{q}};\,x\in[a,b]. \end{align}
(9)

Proof. Using Lemma 2.1` and power mean inequality, we have

\begin{align} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt\nonumber\\ & +\frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt\nonumber \\& \leq \frac{\rho(x^{\rho}-a^{\rho})^{\alpha+1}}{b-a}\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}dt\right)^{1-\frac{1}{q}}\times\nonumber\\&\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}\nonumber \\&+ \frac{\rho(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}dt\right)^{1-\frac{1}{q}}\times\nonumber\\&\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}. \end{align}
(10)
Since \(\big|f^{'}\big|^{q}\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), we get
\begin{align} &\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\nonumber \\& \leq \int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|^{q}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|^{q}\right]dt\nonumber \\& \leq M^{q}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \times\nonumber\\&=M^{q}\left[\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right] \end{align}
(11)
similarly
\begin{align}\label{2.52} &\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\times\nonumber\\&\leq M^{q}\left[\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right]. \end{align}
(12)
Using (11) and (12) in (10) we can attain (9).

Remarks 2.11. (i) If we put \(\rho=1\) in (9), then we get [4, Theorem 3.3].
(ii) If we put \(\rho=1\) and \(\alpha=1\) in (9), then we get [4, Corollary 3.3].

Corollary 2.12. In Theorem 2.10, if we take \(s=0\), which means that \(\big|f^{'}\big|\) is \(p\)-function, then (9) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\ &\leq \dfrac{M\rho}{(\alpha\rho+\rho)^{1-\frac{1}{q}}}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\left[\dfrac{2}{\rho(\alpha+1)}\right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

Corollary 2.13. In Theorem 2.10, if we take \(s=1\), which means that \(\big|f^{'}\big|\) is Godunova-Levin function, then (9) becomes the following inequality \begin{align*} &\bigg|\left(\dfrac{(x^{\rho}-a^{\rho})^{\alpha}+(b^{\rho}-x^{\rho})^{\alpha}}{b-a}\right)f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}(b-a)}\times\nonumber\\&\left[^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})+\,\,^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})\right] \nonumber \bigg|\nonumber\\ &\leq \dfrac{M\rho}{(\alpha\rho+\rho)^{1-\frac{1}{q}}}\bigg[\frac{(x^{\rho}-a^{\rho})^{\alpha+1}+(b^{\rho}-x^{\rho})^{\alpha+1}}{b-a}\bigg]\left[\dfrac{1+\alpha}{\alpha\rho}\right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

We use the following lemma to establish some new results. Its proof is similar to Lemma 2.1.

Lemma 2.14. Let \(f:[a^{\rho},b^{\rho}] \rightarrow \mathbb{R}\) be a differentiable mapping on \((a^{\rho},b^{\rho})\) with \( a^{\rho}< b^{\rho}\) such that \(f^{'} \in L_{1}[a^{\rho},b^{\rho}]\), where \(\rho>0\). Then we have the following equality

\begin{align} &f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \nonumber\\&=\dfrac{\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}t^{\alpha\rho+\rho-1}f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})dt\nonumber\\&-\dfrac{(b^{\rho}-x^{\rho})}{2}\int_{0}^{1}t^{\alpha\rho+\rho-1}f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})dt;\,x\in[a,b]. \end{align}
(13)

Theorem 2.15. Let \(f:[a^{\rho},b^{\rho}]\rightarrow \mathbb{R}\), \(a,b\geq 0\), \(a< b\) be a differentiable function on \((a^{\rho},b^{\rho})\) and \(f^{'} \in L_{1}[a,b]\). If \(\big|f^{'}\big|\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), \(x \in [a,b],\) then the following inequality holds

\begin{align} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \frac{M(b^{\rho}-a^{\rho})}{2}\left[\dfrac{1}{\alpha-s+1}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{^{\rho}\Gamma(\alpha-s+2)}\right];\,x\in[a,b]. \end{align}
(14)

Proof. Using Corollary 2.8 and \(s\)-Godunova-Levin function of second kind of \(\big|f^{'}\big|\) we proceed as follows \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt \\&+\frac{\rho(b^{\rho}-x^{\rho})}{2}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt \\& \leq \frac{\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|\right]dt \\&+\frac{\rho(b^{\rho}-x^{\rho})}{2}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(b^{\rho})\big|\right]dt \\& \leq \frac{M\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \\&+\frac{M\rho(b^{\rho}-x^{\rho})}{2}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \\&=M\rho\left[\frac{(x^{\rho}-a^{\rho})+(b^{\rho}-x^{\rho})}{2}\right]\int_{0}^{1}\left[t^{\alpha\rho-\rho s+\rho-1}+t^{\alpha\rho+\rho-1}(1-t^{\rho})^{-s}\right]dt. \\&=M\rho\left[\frac{(x^{\rho}-a^{\rho})+(b^{\rho}-x^{\rho})}{2}\right]\left[\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right] \\&= \frac{M(b^{\rho}-a^{\rho})}{2}\left[\dfrac{1}{\alpha-s+1}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{^{\rho}\Gamma(\alpha-s+2)}\right]. \end{align*} Here we use (1). The proof is completed.

Corollary 2.16. In Theorem 2.15, if we take \(s=0\), which means that \( \big|f^{'}\big|\) is \(p\)-function, then (14) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M(b^{\rho}-a^{\rho})}{\alpha+1};\,x\in[a,b]. \end{align*}

Corollary 2.17. In Theorem 2.15, if we take \(s=1\), which means that \( \big|f^{'}\big| \) is Godunova-Levin function, then (14) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M(\alpha+1)(b^{\rho}-a^{\rho})}{2\alpha};\,x\in[a,b]. \end{align*}

Theorem 2.18. Let \(f:[a^{\rho},b^{\rho}]\rightarrow \mathbb{R}\), \(a,b\geq 0\), \(a< b\) be a differentiable function on \((a^{\rho},b^{\rho})\)) and \(f^{'} \in L_{1}[a,b]\). If \( \big|f^{'}\big|^{q},\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), \(x \in [a,b]\) then the following inequality for Katugampola fractional integrals holds

\begin{align}\label{3100} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\&\leq \frac{M\rho(b^{\rho}-a^{\rho})}{2(1+p(\alpha\rho+\rho-1))^{\frac{1}{p}}}\left[\dfrac{1}{1-\rho s}\right]^{\frac{1}{q}};\,x\in[a,b], \end{align}
(15)
with \(\frac{1}{p}+\frac{1}{q}=1\) where \(q>1\).

Proof. Using Corollary 2.8 and then Holder's inequality, we have

\begin{align} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt\nonumber\\ & +\frac{\rho(b^{\rho}-x^{\rho})}{2}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt\nonumber\\ &\leq\frac{\rho(x^{\rho}-a^{\rho})}{2}\left(\int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt\right)^{\frac{1}{p}}\times\nonumber\\&\left(\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}\nonumber\\ &+\frac{\rho(b^{\rho}-x^{\rho})}{2}\left(\int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt\right)^{\frac{1}{p}}\times\nonumber\\&\left(\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}. \end{align}
(16)
Since \( \big|f^{'}\big|^{q}\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), we get
\begin{align}\label{th2.312} &\int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\nonumber \\&\leq\int_{0}^{1}\left[\frac{1}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|^{q}+\frac{1}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|^{q}\right]dt\nonumber \\&\leq M^{q}\int_{0}^{1}\left[\frac{1}{(t^{\rho})^{s}}+\frac{1}{(1-t^{\rho})^{s}}\right]dt=\dfrac{M^{q}}{1-\rho s} \end{align}
(17)
similarly
\begin{equation}\label{th2.323} \int_{0}^{1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt \leq\dfrac{M^{q}}{1-\rho s}. \end{equation}
(18)
We also have
\begin{equation}\label{th2.334} \int_{0}^{1}t^{p(\alpha\rho+\rho-1)}dt=\dfrac{1}{1+p(\alpha\rho+\rho-1)}. \end{equation}
(19)
Using (17), (18) and (19) in (16) we can get (15).

Corollary 2.19. In Theorem 2.18, if we take \(s=0\), which means that \(\big|f^{'}\big|\) is \(p\)-function, then (15) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M\rho(b^{\rho}-a^{\rho})}{2(p(\alpha\rho+\rho-1)+1)^{\frac{1}{p}}};\,x\in[a,b]. \end{align*}

Corollary 2.20. In Theorem 2.18, if we take \(s=1\), which means that \(\big|f^{'}\big|\) is Godunova-Levin function, then (15) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M\rho(b^{\rho}-a^{\rho})}{2(p(\alpha\rho+\rho-1)+1)^{\frac{1}{p}}}\left[\dfrac{1}{1-\rho}\right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

Theorem 2.21. Let \(f:[a^{\rho},b^{\rho}]\rightarrow \mathbb{R}\), \(a,b\geq 0\), \(a< b\) be a differentiable function on \((a^{\rho},b^{\rho})\) and \(f^{'} \in L_{1}[a,b]\). If \(\big|f^{'}\big|^{q}\) is \(s\)-Godunova-Levin function of second kind and \(\big|f^{'}(x^{\rho})\big|\leq M\), \( x \in [a,b]\)\(,q\geq 1,\) then the following inequality for Katugampola fractional integrals holds

\begin{align} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\&\leq \dfrac{M\rho(b^{\rho}-a^{\rho})}{2(\alpha\rho+\rho)^{1-\frac{1}{q}}}\left(\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right)^{\frac{1}{q}};\,x\in[a,b]. \end{align}
(20)

Proof. Using Corollary 2.8 and power mean inequality, we have

\begin{align} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber \\&\leq \frac{\rho(x^{\rho}-a^{\rho})}{2}\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|dt\nonumber\\ & +\frac{\rho(b^{\rho}-x^{\rho})}{2}\int_{0} ^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|dt\nonumber \\& \leq \frac{\rho(x^{\rho}-a^{\rho})}{2}\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}dt\right)^{1-\frac{1}{q}}\times\nonumber\\&\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}\nonumber \\&+ \frac{\rho(b^{\rho}-x^{\rho})}{2}\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}dt\right)^{1-\frac{1}{q}}\times\nonumber\\&\left(\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\right)^{\frac{1}{q}}. \end{align}
(21)
Since \( \big|f^{'}\big|^{q}\) is \(s\)-Godunova-Levin function of second kind on \([a^{\rho},b^{\rho}]\) and \(\big|f^{'}(x^{\rho})\big|\leq M\), we get
\begin{align}\label{2.510} &\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})a^{\rho})\big|^{q}dt\nonumber \\& \leq \int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}\big|f^{'}(x^{\rho})\big|^{q}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\big|f^{'}(a^{\rho})\big|^{q}\right]dt\nonumber \\& \leq M^{q}\int_{0}^{1}\left[\frac{t^{\alpha \rho+\rho-1}}{(t^{\rho})^{s}}+\frac{t^{\alpha \rho+\rho-1}}{(1-t^{\rho})^{s}}\right]dt \nonumber\\&=M^{q}\left[\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right] \end{align}
(22)
similarly
\begin{align}\label{2.520} &\int_{0}^{1}t^{\alpha \rho+\rho-1}\big|f^{'}(t^{\rho}x^{\rho}+(1-t^{\rho})b^{\rho})\big|^{q}dt\nonumber\\&\leq M^{q}\left[\dfrac{1}{\rho(\alpha-s+1)}+\dfrac{^{\rho}\Gamma(\alpha+1)\,\,^{\rho}\Gamma(1-s)}{\rho\,\,^{\rho}\Gamma(\alpha-s+2)}\right]. \end{align}
(23)
Using (22) and (23) in (21) we can attain (20).

Corollary 2.22. In Theorem 2.21, if we take \(s=0\), which means that \(\big|f^{'}\big|\) is \(p\)-function, then (20) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M\rho(b^{\rho}-a^{\rho})}{2(\rho(\alpha+1))^{1-\frac{1}{q}}}\left[\dfrac{2}{\rho(\alpha+1)} \right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

Corollary 2.23. In Theorem 2.21, if we take \(s=1\), which means that \(\big|f^{'}\big|\) is Godunova-Levin function, then (20) becomes the following inequality \begin{align*} &\bigg|f(x^{\rho})-\dfrac{(\alpha \rho+\rho-1)\Gamma(\alpha)}{\rho^{1-\alpha}}\left[\dfrac{^{\rho}I_{x^{-}}^{\alpha}f(a^{\rho})}{2(x^{\rho}-a^{\rho})^{\alpha}}+\dfrac{^{\rho}I_{x^{+}}^{\alpha}f(b^{\rho})}{2(b^{\rho}-x^{\rho})^{\alpha}}\right] \bigg|\nonumber\\ &\leq \dfrac{M\rho(b^{\rho}-a^{\rho})}{2(\rho(\alpha+1))^{1-\frac{1}{q}}}\left[\dfrac{1+\alpha}{\rho\alpha} \right]^{\frac{1}{q}};\,x\in[a,b]. \end{align*}

Conclusion

All results proved in this research paper can also be deduced for Hadamard fractional integrals just by taking limits when parameter \(\rho \rightarrow 0^{+} \).

Acknowledgement

The research work of Ghulam Farid is supported by Higher Education Commission of Pakistan under NRPU 2016, Project No. 5421.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Ostrowski, A. (1937). Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Commentarii Mathematici Helvetici, 10(1), 226-227. [Google Scholor]
  2. Mitrinovic, D. S., Pecaric, J., & Fink, A. M. (2012). Inequalities involving functions and their integrals and derivatives (Vol. 53). Springer Science & Business Media.[Google Scholor]
  3. Dragomir, S. S. (2017). Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl, 14(1), 1-287. [Google Scholor]
  4. Noor, M. A., Noor, K. I., & Awan, M. U. (2014). Fractional Ostrowski inequalities for s-Godunova-Levin functions. International Journal of Analysis and Applications, 5(2), 167-173. [Google Scholor]
  5. Farid, G. (2017). Some new Ostrowski type inequalities via fractional integrals. International Journal of Analysis and Applications, 14(1), 64-68.[Google Scholor]
  6. Laurent, H. (1884). Sur le calcul des dérivées à indices quelconques. Nouvelles annales de mathématiques: journal des candidats aux écoles polytechnique et normale, 3, 240-252.[Google Scholor]
  7. Hadamard, J. (1892). Essai sur l'etude des fonctions, donnees par leur developpement de Taylor. Gauthier-Villars. [Google Scholor]
  8. Katugampola, U. N. (2014). A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl, 6(4), 1-15. [Google Scholor]
  9. Farid, G., Katugampola, U. N. & Usman M. (2017). Ostrowski type fractional integral inequalities for mapping whose derivatives are h-convex via Katugampola fractional integrals. (Submitted). [Google Scholor]
  10. Dragomir, S. S., Pecaric, J., & Persson, L. E. (1995). Some inequalities of Hadamard type. Soochow J. Math, 21(3), 335-341. [Google Scholor]
  11. Godunova, E. K., & Levin, V. I. (1985). Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. Numerical mathematics and mathematical physics (Russian), 166, 138-142.[Google Scholor]
  12. Noor, M. A., Noor, K. I., Awan, M. U., & Khan, S. (2014). Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions. Applied Mathematics & Information Sciences, 8(6), 2865.[Google Scholor]
  13. Dragomir, S. S. (2015). Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta), 34(4), 323-341. [Google Scholor]
]]>
Analytical Solution for the Flow of a Generalized Oldroyd-B Fluid in a Circular Cylinder https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/analytical-solution-for-the-flow-of-a-generalized-oldroyd-b-fluid-in-a-circular-cylinder/ Fri, 01 Dec 2017 00:21:21 +0000 https://old.pisrt.org/?p=1818
OMS-Vol. 1 (2017), Issue 1, pp. 85–96 | Open Access Full-Text PDF
Haitao Qi, Nida Fatima, Hassan Waqas, Junaid Saeed
Abstract:The tangential stress and velocity field corresponding to the flow of a generalized Oldroyd-B fluid in an infinite circular cylinder will be determined by mean of Laplace and finite Hankel transform. The motion is produced by the cylinder, that after \(t=0^{+}\), begins to rotate about its axis, under the action of oscillating shear stress \(\Omega R \sin(\omega t)\) given on boundary. The solutions are based on an important remark regarding the governing equation for the non- trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions. The obtained solution will be presented under series form in term of generalized G-function. The similar solutions for the ordinary Oldroyd-B fluid, Maxwell, ordinary Maxwell and Newtonian fluids performing the same motion will be obtained as special cases of our general solutions.
]]>

Open Journal of Mathematical Sciences

Analytical Solution for the Flow of a Generalized Oldroyd-B Fluid in a Circular Cylinder

Haitao Qi, Nida Fatima\(^1\), Hassan Waqas, Junaid Saeed
School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China. (H.Q)
Division of Science and Technology, University of Education, Lahore-54590, Pakistan. (N.F)
Department of Mathematics, Government College University, Faisalabad, Pakistan. (H.W & J.S)

\(^{1}\)Corresponding Author: nidanasar714@gmail.com

Abstract

The tangential stress and velocity field corresponding to the flow of a generalized Oldroyd-B fluid in an infinite circular cylinder will be determined by mean of Laplace and finite Hankel transform. The motion is produced by the cylinder, that after \(t=0^{+}\), begins to rotate about its axis, under the action of oscillating shear stress \(\Omega R \sin(\omega t)\) given on boundary. The solutions are based on an important remark regarding the governing equation for the non- trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions. The obtained solution will be presented under series form in term of generalized G-function. The similar solutions for the ordinary Oldroyd-B fluid, Maxwell, ordinary Maxwell and Newtonian fluids performing the same motion will be obtained as special cases of our general solutions.

Keywords:

fractional oldroyd-B fluid, cylindrical Domain, unsteady rotating flow, Velocity field, shear stress; laplace and finite Hankel transforms.

1. Introduction

The Oldroyd-B fluid models is very important among the fluids of rate type due to its special behavior. Also, this model contains the Newtonian fluid model and Maxwell fluid model as special cases. The Oldroyd-B fluid model [1, 2] considered the memory effects and elastic effects exhibited by a large class of fluids such as the biological and polymeric liquids. The motion of a fluid in the neighborhood of a moving body is of great interest for industry. The flow between cylinders or through a rotating cylinder has applications in the food industry and being one of the most important and interesting problem of motion near rotating bodies. Exact solutions for some simple flows of Oldroyd-B fluids were presented by many authors, see for example, Rajagopal and Bhatnagar [3], Hayat et al. [4, 5]. The velocity distriution for different motions of Newtonian fluids through a circular cylinder is given in [6]. Wood [7] has considered the general case of helical flow of an Oldroyd-B fluid, due to the combined action of rotating cylinders(with constant angular velocities) and a constant axial pressure gradient. Accurate solutions regarding motions of Non-Newtonian fluids in cylindrical domains appear to be those of Ting [2], Srivastava [8] and Water and King [9] for second grade, Maxwell and Oldroyd-B fluids respectively. The most general solution corresponding to the helical flow of a second grade fluid seem to be those of Fetecau and Cornia Fetecau [10], in which the cylinder is rotating around its axis and sliding along the same axis with time-dependent velocities. There is a vast literature dealing with such fluids, but we shall recall here only a few of the most recent papers [12, 13, 14, 15, 16]. Most existing solutions in the literature correspond to problems with boundary conditions on the velocity. Though, all above mentioned papers incorporate motion problem in which velocity is given on the boundary. In [16], Renardy explained how well posed boundary value problems can be formulated using boundary conditions on stress. Water and King [17] were among the first specialists who used the shear stress on boundary to find exact solution for motions of rate type fluids. Our goal is to investigate analytical solution for the flow of a generalized Oldroyd-B fluid in a circular cylinder. We considered the boundary conditions on the shear stress. The flow of fluid is due to rotation of the cyliner around its axis, under the action of oscillating shear stress \(\Omega R \sin(\omega t)\) given on boundary. These solutions are obtained by mean of integral transforms. The obtained solution satisfy the all imposed initial and boundary conditions. Finally, solution of the ordinary Oldroyd-B fluid, Maxwell, ordinary Maxwell and Newtonian fluid flows are obtained as particular cases of our general results.

2. Mathematical formulation of the problem

For an Oldroyd-B fluid constitutive equations is $$T=-p \textbf{I}+\textbf{S}\,\,\ ; \,\,\ S+\lambda\bigg({\frac{d \textbf{S}}{d t}}-\textbf{LS}-\textbf{S} \textbf{L}^{T}\bigg),$$
\begin{eqnarray} T=\mu{\textbf{A}+\mu\lambda_{r}\bigg(\frac{d\textbf{A}}{dt}-\textbf{LA}-\textbf{AL}^{T}\bigg)}, \end{eqnarray}
(1)
where T (Cauchy stress tensor), -pI (indeterminate spherical stress), S (stress tensor), L (velocity gradient), \(\mu\) (dynamic viscosity), \(\textbf{A}=\textbf{L}+\textbf{L}^{T}\) (first the Rivilin-Erickson tensor,) \(\lambda\) and \(\lambda_{r}\) \((0\leqslant\lambda_{r}< \lambda)\) are relaxation and retardation time. Assume an infinite circular cylinder rotate along z-axis with radius R. Cylinder is filled with an Oldroyd-B fluid which is at rest at time \(t=0\). After \(t=0^{+}\) the cylinder applies an oscillating rotational shear stress \(\Omega R \sin(\omega t)\) to the fluid, where \(\omega\) is the angular frequency. We assumed that velocity field and the extra shear stress are of the form
\begin{eqnarray} \textbf{V}=\textbf{V} (r,t)=W(r,t)e_{\theta} \,\,\,\,\,\,\,\,\ ; \,\,\,\,\,\,\,\ \textbf{S}=\textbf{S}(r,t), \end{eqnarray}
(2)
where \(e_{\theta}\) is unit vector in the \(\theta\)-direction of the cylindrical coordinate system.We assume that \(\textbf{S}\) and \(\textbf{V}\) is a function of time and radius only. At \(t=0\) there is no motion in fluid i.e; fluid is at rest then
\begin{eqnarray} \textbf{V}(r,0)=0 \,\,\,\,\,\,\,\,\,\,\ ; \,\,\,\,\,\,\,\,\,\ \textbf{S}(r,0)=0. \end{eqnarray}
(3)
Introducing Eqs.(2) in(1) and using (3) we get \(S_{rr}=S_{rz}=S_{z\theta}=S_{zz}=0\) and the meaning partial differential equation.
\begin{eqnarray} \bigg(1+\lambda\frac{\partial}{\partial t}\bigg) \tau(r,t) = \mu\bigg(1+\lambda_{r}\frac{\partial}{\partial t}\bigg) \bigg(\frac{\partial}{\partial r}-\frac{1}{r}\bigg) \omega(r,t), \end{eqnarray}
(4)
where \(\tau(r,t)=S_{r\theta}(r,t)\) is non-zero component of extra stress tensor. If we neglect the body force, then due to rotation symmetry the balance of linear momentum leads to the relevant equations.
\begin{eqnarray} \rho\frac{\partial }{\partial t}\omega(r,t) = \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau(r,t), \end{eqnarray}
(5)
where \(\rho\) is the constant density of the field. In order to obtained the governing equations for shear stress on boundary we eliminate \(\omega(r,t)\) between equation (4) and (5) after elimination \(\omega(r,t)\) we get,
\begin{eqnarray} \bigg(1+\lambda\frac{\partial}{\partial t}\bigg)\frac{\partial }{\partial t}\tau (r,t)=\nu\bigg(1+\lambda_{r}\frac{\partial}{\partial t}\bigg)\bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}}\bigg)\tau(r,t), \end{eqnarray}
(6)
where \(\nu=\frac{\mu}{\rho}\) is the Kinematic viscosity of the fluid. The governing model by using fractional derivative is shown as;
\begin{eqnarray} \bigg(1+ \lambda D_t^{\alpha}\bigg)\tau(r,t)=\mu\bigg(1+ \lambda_{r} D_t^{\beta}\bigg)\bigg(\frac{\partial}{\partial r}-\frac{1}{r}\bigg)\omega(r,t), \end{eqnarray}
(7)
\begin{eqnarray} \rho D_t^{\alpha} \omega(r,t) = \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau(r,t), \end{eqnarray}
(8)
\begin{eqnarray} \bigg(1+ \lambda D_t^{\alpha}\bigg)\frac{\partial}{\partial t}\tau (r,t)=\nu\bigg(1+ \lambda_{r} D_t^{\beta}\bigg)\bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}}\bigg)\tau(r,t). \end{eqnarray}
(9)
Where $$D_{t}^{\alpha}f(t)=\frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int\limits_0^{t}\frac{f(\tau)}{(t-\tau)^{\alpha}}d\tau \,\,\,\ ; \,\,\,\ 0\leqslant\alpha< 1$$ is Caputo fractional derivative operator and $\Gamma(.)$ is the Euler integral of second kind or Gamma function.
At \(t=0\) fluid is at rest because there is no rotation in the cylinder, at \(t=0^{+}\) cylinder starts its rotation along its axis and boundary of cylinder applies shear stress on fluid and radius of cylinder is \(R\). Appropriate conditions i.e; initial and boundary conditions are,
\begin{eqnarray} \tau(r,t)|_{t=0}=\frac{\partial \tau(r,t)}{\partial t}|_{t=0} =0; \,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\,\, r\epsilon[0,R] \end{eqnarray}
(10)
\begin{eqnarray} \tau(R,t)=\Omega R \sin(\omega t),: \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, t\geqslant0, \end{eqnarray}
(11)
where \(\Omega\) is constant.

3. Calculation Of Shear Stress

We shall use the Laplace transform and Finite Hankel transform to determine the exact analytical solution. Taking the Laplace transform of the equations (9) and (11) we have
\begin{eqnarray} q(1+ \lambda q^{\alpha})\overline{\tau}(r,q)=\nu(1+ \lambda_{r}q^{\beta})\bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}}\bigg)\overline{\tau}(r,q), \end{eqnarray}
(12)
\begin{eqnarray} \overline{\tau}(R,q)=\Omega R \frac{\omega}{q^{2}+\omega^{2}}, \end{eqnarray}
(13)
where \(\overline{\tau}(r,q)\) represent the Laplace transform of the function \(\tau(r,t)\). We can write equation (12) as,
\begin{eqnarray} \overline{\tau}(r,q)=\frac{\nu(1+\lambda_{r}q^{\beta})}{q+\lambda q^{\alpha +1}} \bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}}\bigg)\overline{\tau}(r,q). \end{eqnarray}
(14)
Finite Hankel transform of the function \(\overline{\tau}(r,q)\) defined as,
\begin{eqnarray} \overline{\tau}_{H}(r_{n},q)=\int\limits_0^{R} r J_{2}(rr_{n})\overline{\tau}(r,q)dr, \end{eqnarray}
(15)
identity which we used here is,
\begin{multline} \int\limits_0^{R} r J_{2}(rr_{n})\bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}} J_{2}(rr_{n})\bigg)\overline{\tau}(r,q)dr = -R\overline{\tau}(R,q)J'_{2}(Rr_{n})r_{n} -r^{2}_{n}\overline{\tau}_{H}(r_{n},q). \end{multline}
(16)
Multiplying equation (14) by \(rJ_{2}(rr_{n})\) then integrate from \(0\) to R with respect to r, we get $$\int\limits_0^{R} rJ_{2}(rr_{n})\overline{\tau}(r,q)dr=\frac{\nu (1+\lambda_{r}q^{\beta})}{q+\lambda q^{\alpha+1}}\int\limits_0^{R} r\bigg(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}-\frac{4}{r^{2}}\bigg)J_{2}(rr_{n})\overline{\tau}(r,q)dr.$$ using equations (13), (15) and (16) we get, $$\overline{\tau}_{H}(r_{n},q)=\frac{\nu (1+\lambda_{r} q^{\beta})}{q+\lambda q^{\alpha +1}}[-Rr_{n}J'_{2}(Rr_{n})\overline{\tau}(R,q)-r^{2}_{n}\overline{\tau}_{H}(r_{n},q)].$$ Now simplification for \(\overline{\tau}_{H}(r_{n},q)\) we get
\begin{eqnarray} \overline{\tau}_{H}(r_{n},q) = \frac{-R^{2}\Omega \omega J'_{2}(Rr_{n})}{(q^{2}+\omega^{2})}\frac{\nu r_{n}(1+\lambda_{r}q^{\beta})}{(q+\nu r^{2}_{n} +\lambda q^{\alpha+1}+\nu \lambda _{r} q^{\beta} r^{2}_{n})}. \end{eqnarray}
(17)
Separating the function in suitable form as, $$\overline{\tau}_{H}(r_{n},q) = \frac{-R^{2}\Omega \omega J'_{2}(Rr_{n})}{(q^{2}+\omega^{2}) r_{n}}+\frac{R^{2}\Omega \omega J'_{2}(Rr_{n})}{(q^{2}+\omega^{2})}\frac{q+\lambda q^{\alpha +1}}{r_{n}(q+\lambda q^{\alpha+1}+\nu r^{2}_{n}+\nu \lambda _{r} q^{\beta} r^{2}_{n})},$$
\begin{eqnarray} \overline{\tau}_{H}(r_{n},q)=\overline{\tau}_{1H}(r_{n},q)+\overline{\tau}_{2H}(r_{n},q), \end{eqnarray}
(18)
where,
\begin{eqnarray} \overline{\tau}_{1H}(r_{n},q)=\frac{-R^{2}\Omega \omega J'_{2}(Rr_{n})}{r_{n}(q^{2}+\omega^{2})}=-R^{2}\Omega J_{1}(Rr_{n})\frac{\omega}{q^{2}+\omega^{2}}, \end{eqnarray}
(19)
$$\overline{\tau}_{2H}(r_{n},q)=\frac{R^{2}\Omega \omega J'_{2}(Rr_{n})}{r_{n}(q^{2}+\omega^{2})}\frac{q+\lambda q^{\alpha +1}}{(q+\lambda q^{\alpha+1}+\nu r^{2}_{n}+\nu \lambda _{r} q^{\beta} r^{2}_{n})},$$
\begin{eqnarray} \overline{\tau}_{2H}(r_{n},q)=\frac{R^{2}\Omega \omega J_{1}(Rr_{n})}{q^{2}+\omega^{2}}\frac{q+\lambda q^{\alpha +1}}{(q+\lambda q^{\alpha+1}+\nu r^{2}_{n}+\nu \lambda_{r} q^{\beta} r^{2}_{n})}. \end{eqnarray}
(20)
Using the identity i.e; \begin{align*} &\frac{1}{q+\nu r^{2}_{n}+\lambda q^{\beta+1}+\nu r^{2}_{n}\lambda_{r}q^{\gamma}} \\&=\frac{1}{\lambda}\sum^{\infty}_{k=0} \sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \lambda_{r}^{m}\frac{q^{\gamma m-k-1}}{(q^{\beta}+\frac{1}{\lambda})^{k+1}}.\end{align*} Now equation (20) becomes,
\begin{multline} \overline{\tau}_{2H}(r_{n},q)=R^{2}\Omega J_{1}(Rr_{n})\frac{1}{\lambda}\sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!} \lambda_{r}^{m}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \frac{\omega}{q^{2}+\omega^{2}} \bigg[\frac{q^{\beta m-k}}{(q^{\alpha}+\frac{1}{\lambda})^{k+1}}+ \lambda \frac{q^{\alpha+\beta m-k}}{(q^{\alpha}+\frac{1}{\lambda})^{k+1}}\bigg]. \end{multline}
(21)
Taking the inverse Laplace transform of equation (19)
\begin{eqnarray} \tau_{1H}(r_{n},t)=-R^{2}\Omega J_{1}(Rr_{n})\sin(\omega t). \end{eqnarray}
(22)
Take the inverse Laplace transform and use convolution theorem of equation (21) we get
\begin{multline} \tau_{2H}(r_{n},t)=R^{2}\Omega J_{1}(Rr_{n})\frac{1}{\lambda}\sum^{\infty}_{k=0} \sum^{k}_{m=0}\frac{k!}{m!(k-m)!}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k}\lambda_{r}^{m}\bigg[\int\limits_0^{t}\sin\omega(t-s) G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{multline}
(23)
Where \(G_{a,b,c}(.,t)\) is the generalized G-function with \(£^{-1} \{\frac{q^{b}}{(q^{a}-d)^{c}}\} =G_{a,b,c}(d,t)\) , \(Re(ac-b)>0\) , \(Re(q)>0\) , \(\mid\frac{d}{q^{a}}\mid< 1\) and \(G_{a,b,c}(d,t)=\sum^{\infty}_{j=0}\frac{t^{(c+j)a-b-1}}{\Gamma ((c+j)a-b))}\frac{d^{j} \Gamma (c+j)}{\Gamma (c) \Gamma (j+1)}\) Taking inverse Laplace transform of equation (18) and using equation (22) and (23)
\begin{multline} \tau_{H}(r_{n},t)=-R^{2}\Omega J_{1}(Rr_{n})\sin(\omega t)+\frac{ R^{2}\Omega J_{1}(Rr_{n})}{\lambda}\sum^{\infty}_{k=0} \sum^{k}_{m=0}\frac{k!}{m!(k-m)!} \times \lambda_{r}^{m} \bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds +\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{multline}
(24)
Apply the inverse Hankel transform to equation (24) and using the known formulae $$H(r^{2})=\int\limits_{0}^{R}r^{3}J_{2}(rr_{n})dr=\frac{-R^{3}J_1{Rr_{n}}}{r_{n}}$$ $$\tau(r,t)=2\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})}{[J'_{2}(r_{n})]^{2}}\tau_{H}(r_{n},t)$$
\begin{align} \tau(r,t)&=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}+2R^{2}\Omega\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})}\frac{1}{\lambda}\nonumber \\ \times&\sum^{\infty}_{k=0} \sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\lambda_{r}^{m}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k}\bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds\nonumber \\&+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg] \end{align}
(25)

4. Calculation for Velocity Field

Rewrite equation (8) and used equation (25) we get the non-integer order differential equation for velocity. $$\rho D_t^{\alpha} \omega(r,t) = \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau(r,t)$$ where $$\tau(r,t)=\tau_{1}(r,t)+\tau_{2}(r,t)$$ So above equation becomes;
\begin{eqnarray} \rho D_t^{\alpha} \omega(r,t) = \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau_{1}(r,t)+\bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau_{2}(r,t) \end{eqnarray}
(26)
where $$\tau_{1}(r,t)=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}$$ $$\tau_{2}(r,t)=2R^{2}\Omega\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})}\frac{1}{\lambda}\sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\lambda_{r}^{m}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k}$$ \begin{eqnarray*}\times\bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds\\+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{eqnarray*} So,
\begin{eqnarray} \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau_{1}(r,t)=\frac{4rr_{n}\Omega\sin(\omega t)}{R}, \end{eqnarray}
(27)
and
\begin{multline} \bigg(\frac{\partial}{\partial r}+\frac{2}{r}\bigg)\tau_{2}(r,t)=\frac{2 R^{2}\Omega}{\lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})}\sum^{\infty}_{k=0}\sum^{k}_{m=0} \frac{k!}{(k-m)!m!}\\\times\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k}\lambda_{r}^{m} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{multline}
(28)
Use equation (27) and (28) in equation (26) we get,
\begin{multline} \rho D_t^{\alpha} \omega(r,t) =\frac{4rr_{n}\Omega\sin(\omega t)}{R}+\frac{2 R^{2}\Omega}{\lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \\ \times\sum^{\infty}_{k=0} \sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\lambda_{r}^{m}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha+\beta m-k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{multline}
(29)
The Laplace transform of equation (29) is
\begin{multline} \varpi(r,q)=\frac{4rr_{n}\Omega}{\rho R}\frac{1}{q^{\alpha}}\frac{\omega}{q^{2}+\omega^{2}}+\frac{2 R^{2}\Omega}{\rho\lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \lambda_{r}^{m}\bigg[\frac{\omega}{q^{2}+\omega^{2}}\frac{q^{\beta m-\alpha-k}}{(q^{\alpha}+\frac{1}{\lambda})^{k+1}} +\lambda\frac{\omega}{q^{2}+\omega^{2}}\frac{q^{\beta m-k}}{(q^{\alpha}+\frac{1}{\lambda})^{k+1}}\bigg]. \end{multline}
(30)
Now Apply inverse Laplace transform to equation (30) and using the Convolution theorem
\begin{multline} \omega(r,t)=\frac{4rr_{n}\Omega}{\rho R}\int\limits_{0}^{t}\sin\omega(t-\tau)\frac{t^{\alpha-1}}{\Gamma(\alpha)}d\tau+\frac{2R^{2}\Omega}{\rho \lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \\ \times\sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \lambda_{r}^{m}\bigg[\int\limits_{0}^{t}\sin\omega(t-s)G_{\alpha,\beta m-\alpha-k,k+1}(-\lambda^{-1},s)ds + \lambda\int\limits_{0}^{t}\sin\omega(t-s)G_{\alpha,\beta m-k,k+1}(-\lambda^{-1},s)ds \bigg]. \end{multline}
(31)

5. Limiting case

5.1. Ordinary Oldroyd-B fluid

Letting \(\alpha\rightarrow1\) , \(\beta\rightarrow1\) into equations (25) and (31)we get the result of shear stress and velocity field respectively for ordinary Oldroyd-B fluid.
\begin{multline} \tau_{OB}(r,t)=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}+2R^{2}\Omega\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})} \frac{1}{\lambda}\sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!} \times \bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k}\lambda_{r}^{m} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{1,m-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{1,1+ m-k,k+1}(-\lambda^{-1},s)ds\bigg], \end{multline}
(32)
\begin{multline} \omega_{OB}(r,t)=\frac{4rr_{n}\Omega}{\rho R}\int\limits_{0}^{t}\sin\omega(t-\tau)d\tau+\frac{2R^{2}\Omega}{\rho \lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \times \sum^{\infty}_{k=0}\sum^{k}_{m=0}\frac{k!}{(k-m)!m!}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \lambda_{r}^{m}\bigg[\int\limits_{0}^{t}\sin\omega(t-s)G_{1, m-k-1,k+1}(-\lambda^{-1},s)ds\\+\lambda\int\limits_{0}^{t}\sin\omega(t-s)G_{1,m-k,k+1 }(-\lambda^{-1},s)ds \bigg]. \end{multline}
(33)

5.2. Generalized Maxwell Fluid

By placing \(\lambda_{r}\rightarrow0\) , \(\beta\rightarrow0\) into equations (25) and (31)we get the results of shear stress and velocity field for generalized Maxwell fluid respectively.
\begin{multline} \tau_{GM}(r,t)=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}+2R^{2}\Omega\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})}\frac{1}{\lambda}\sum^{\infty}_{k=0}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,-k,k+1}(-\lambda^{-1},s)ds +\lambda\int\limits_0^{t}\sin\omega(t-s)G_{\alpha,\alpha -k,k+1}(-\lambda^{-1},s)ds\bigg], \end{multline}
(34)
\begin{multline} \omega_{GM}(r,t)=\frac{4rr_{n}\Omega}{\rho R}\int\limits_{0}^{t}\sin\omega(t-\tau)\frac{t^{\alpha-1}}{\Gamma(\alpha)}d\tau+\frac{2R^{2}\Omega}{\rho \lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \times \sum^{\infty}_{k=0}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_{0}^{t}\sin\omega(t-s)G_{\alpha,-\alpha-k,k+1}(-\lambda^{-1},s)ds\\+\lambda\int\limits_{0}^{t}\sin\omega(t-s)G_{\alpha, -k,k+1}(-\lambda^{-1},s)ds \bigg]. \end{multline}
(35)

5.3. Ordinary Maxwell Fluid

By putting \(\alpha\rightarrow1\) in equation (34) and (35) we get expressing for the shear stress and velocity field for ordinary Maxwell fluid respectively.
\begin{multline} \tau_{OM}(r,t)=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}+2R^{2}\Omega\sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})}\frac{1}{\lambda}\sum^{\infty}_{k=0}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_0^{t}\sin\omega(t-s)G_{1,-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_0^{t}\sin\omega(t-s)G_{1,1 -k,k+1}(-\lambda^{-1},s)ds\bigg], \end{multline}
(36)
\begin{multline} \omega_{OM}(r,t)=\frac{4rr_{n}\Omega}{\rho R}\int\limits_{0}^{t}\sin\omega(t-\tau)d\tau+\frac{2R^{2}\Omega}{\rho \lambda}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})}\sum^{\infty}_{k=0}\bigg(\frac{-\nu r^{2}_{n}}{\lambda}\bigg)^{k} \bigg[\int\limits_{0}^{t}\sin\omega(t-s)G_{1,-1-k,k+1}(-\lambda^{-1},s)ds+\lambda\int\limits_{0}^{t}\sin\omega(t-s)G_{1, -k,k+1}(-\lambda^{-1},s)ds\bigg]. \end{multline}
(37)

5.4. Newtonian Fluid

Let \(\lambda_{r}\rightarrow0\) and using the limit, i.e; $${\lim_{\lambda\rightarrow 0}}\frac{1}{\lambda^{k}}G_{1,b,k}\bigg(\frac{-1}{\lambda},t\bigg)=\frac{t^{-b-1}}{\Gamma(-b)},$$ \(b< 0\) in (25) and (31) we can get results for Newtonian fluid as,
\begin{multline} \tau_{NF}(r,t)=\frac{r^{2}r_{n}\Omega\sin(\omega t)}{R}+\frac{2R^{2}\Omega}{\omega^{2}+\nu^{2}r^{4}_{n}} \sum^{\infty}_{n=1}\frac{J_{2}(rr_{n})J_{1}(Rr_{n})}{J_{1}^{2}(r_{n})}\{\omega^{2}\sin(\omega t)+ \nu r^{2}_{n}\omega\cos(\omega t)-\omega \nu r^{2}_{n} e^{-\nu r^{2}_{n} t}\}, \end{multline}
(38)
\begin{multline} \omega_{NF}(r,t)=\frac{4rr_{n}\Omega}{\rho R}\int\limits_{0}^{t}\sin\omega(t-\tau)\frac{t^{\alpha-1}}{\Gamma(\alpha)}d\tau+\frac{2R^{2}\Omega}{\rho (\omega^{2}+\nu^{2}r^{4}_{n})}\sum^{\infty}_{n=1}\frac{J_{1}(rr_{n})J_{1}(Rr_{n})r_{n}}{J_{1}^{2}(r_{n})} \bigg[-\omega \nu r^{2}_{n}\int\limits_{0}^{t} e ^{-\nu r^{2}_{n}(t-s)}\frac{\tau^{\alpha-1}}{\Gamma(\alpha)}ds +\omega^{2}\int\limits_{0}^{t}\sin\omega(t-s)\frac{\tau^{\alpha-1}}{\Gamma(\alpha)}ds +\nu r^{2}_{n} \omega \int\limits_{0}^{t}\cos\omega(t-s)\frac{\tau^{\alpha-1}}{\Gamma(\alpha)}ds \bigg]. \end{multline}
(39)

6. Conclusion

The idea presented in this paper is to find a formula which is useful to find out exact solutions for shear stress and velocity field of any Oldroyd-B fluid which is present in rotationally oscillating cylinders. We used two transformation i.e; Hankel transform and Laplace transform. At time \(t=0^{+}\), cylinder starts its rotation about its axis. To obtain the solutions we used the finite Hankel and Laplace transforms. We express our results in the form of generalized G-function, which satisfy the governing equations and fulfilled all imposed initial and boundary conditions. Furthermore, the results for Ordinary Oldroyd-B fluid, fractional Maxwell fluid, ordinary Maxwell fluid and classical Newtonian fluid are obtained as limiting cases.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Batchelor, C. K., & Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge university press. [Google Scholor]
  2. Ting, T. W. (1963). Certain non-steady flows of second-order fluids. Archive for Rational Mechanics and Analysis, 14(1), 1-26. [Google Scholor]
  3. Rajagopal, K. R., & Bhatnagar, R. K. (1995). Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mechanica, 113(1-4), 233-239. [Google Scholor]
  4. Hayat, T., Siddiqui, A. M., & Asghar, S. (2001). Some simple flows of an Oldroyd-B fluid. International Journal of Engineering Science, 39(2), 135-147. [Google Scholor]
  5. Hayat, T., Khan, M., & Ayub, M. (2004). Exact solutions of flow problems of an Oldroyd-B fluid. Applied Mathematics and Computation, 151(1), 105-119.[Google Scholor]
  6. Jamil, M., Fetecau, C., & Imran, M. (2011). Unsteady helical flows of Oldroyd-B fluids. Communications in Nonlinear Science and Numerical Simulation, 16(3), 1378-1386. [Google Scholor]
  7. Wood, W. P. (2001). Transient viscoelastic helical flows in pipes of circular and annular cross-section. Journal of non-newtonian fluid mechanics, 100(1-3), 115-126. [Google Scholor]
  8. Srivastava, P. N. (1966). Non-steady helical flow of a visco-elastic liquid(Nonsteady helical flow of viscoelastic liquid contained in circular cylinder, noting occurrence of oscillations in fluid decaying exponentially with time). Archiwum Mechaniki Stosowanej, 18(2), 145-150. [Google Scholor]
  9. Waters, N. D., & King, M. J. (1971). The unsteady flow of an elastico-viscous liquid in a straight pipe of circular cross section. Journal of Physics D: Applied Physics, 4(2), 204-211. [Google Scholor]
  10. Fetecau, C., & Fetecau, C. (1985). On the uniqueness of some helical flows of a second grade fluid. Acta mechanica, 57(3-4), 247-252. [Google Scholor]
  11. Hayat, T., Nadeem, S., & Asghar, S. (2004). Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Applied Mathematics and Computation, 151(1), 153-161.[Google Scholor]
  12. Khan, M., Nadeem, S., Hayat, T., & Siddiqui, A. M. (2005). Unsteady motions of a generalized second-grade fluid. Mathematical and Computer Modelling, 41(6-7), 629-637. [Google Scholor]
  13. Shaowei, W., & Mingyu, X. (2006). Exact solution on unsteady Couette flow of generalized Maxwell fluid with fractional derivative. Acta mechanica, 187(1-4), 103-112. [Google Scholor]
  14. Mahmood, A., Parveen, S., Ara, A., & Khan, N. A. (2009). Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3309-3319. [Google Scholor]
  15. Vieru, D., Akhtar, W., Fetecau, C., & Fetecau, C. (2007). Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains. Meccanica, 42(6), 573-583. [Google Scholor]
  16. Renardy, M. (1990). An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions. Journal of Non-Newtonian Fluid Mechanics, 36, 419-425. [Google Scholor]
  17. Waters, N. D., & King, M. J. (1970). Unsteady flow of an elastico-viscous liquid. Rheologica Acta, 9(3), 345-355. [Google Scholor]
]]>
Kauffman Bracket of 2- and 3-Strand Braid Links https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/kauffman-bracket-of-2-and-3-strand-braid-links/ Sun, 01 Oct 2017 00:10:48 +0000 https://old.pisrt.org/?p=1814
OMS-Vol. 1 (2017), Issue 1, pp. 72–84 | Open Access Full-Text PDF
Abdul Rauf Nizami
Abstract:In this paper we give explicit formulas of the Kauffman bracket of the 2-strand braid link \(\widehat{x_{1}^{n}}\) and the 3-strand braid link \(\widehat{x_{1}^{b}x_{2}^{m}}\). We also show that the Kauffman bracket of the 3-strand braid link \(\widehat{x_{1}^{b}x_{2}^{m}}\) is actually the product of the Kauffman brackets of the 2-strand braid links \(\widehat{x_{1}^{b}}\) and \(\widehat{x_{1}^{m}}\).
]]>

Open Journal of Mathematical Sciences

Kauffman Bracket of 2- and 3-Strand Braid Links

Abdul Rauf Nizami\(^1\)
Abdus Salam School of Mathematical Sciences, Government College University, Pakistan. (A.R.N)

\(^{1}\)Corresponding Author: arnizami@sms.edu.pk

Abstract

In this paper we give explicit formulas of the Kauffman bracket of the 2-strand braid link \(\widehat{x_{1}^{n}}\) and the 3-strand braid link \(\widehat{x_{1}^{b}x_{2}^{m}}\). We also show that the Kauffman bracket of the 3-strand braid link \(\widehat{x_{1}^{b}x_{2}^{m}}\) is actually the product of the Kauffman brackets of the 2-strand braid links \(\widehat{x_{1}^{b}}\) and \(\widehat{x_{1}^{m}}\).

Keywords:

Kauffman bracket, Braid link.

1. Introduction

The Kauffman bracket was introduced by L. H. Kauffman in 1987 in [1]. The Kauffman bracket (polynomial) is actually not a knot invariant because it is not invariant under the first Reidemeister move. However, it has many applications and it can be extended to the popular Jones polynomial, which is invariant under all three Reidemeister moves. In the present work we shall confine ourselves to the Kauffman bracket to avoid from unnecessary length and to leave it for applications. In [2] Nizami et al, computed Khavanov Homology of Braid Links and in [3] gave recursive form of Kauffman Bracket. This paper is organized as follows: In Section 2 we shall give the basic ideas about knots, braids, and the Kauffman bracket. In Section 3 we shall present the main results.

2. Preliminary Notions

2.1. Links. A link is a disjoint union of circles embedded in \(\mathbb{R}^{3}\). A one-component link is called a knot. Links are usually studied via projecting them on a plan; a projection with extra information of overcrossing and undercrossing is called the link diagram.
Two links are isotopic iff one of them can be transformed to the other by a diffeomorphism of the ambient space onto itself. A fundamental result by Reidemeister [4] about the isotopic link diagrams is:
Two unoriented links \(L_{1}\) and \(L_{2}\) are equivalent if and only if a diagram of \(L_{1}\) can be transformed into a diagram of \(L_{2}\) by a finite sequence of ambient isotopies of the plane and the local (Reidemeister) moves of the following three types:
The set of all links that are equivalent to a link \(L\) is called a class of \(L\). By a link \(L\) we shall always mean the class of \(L\). The main question of knot theory is Which two links are equivalent and which are not? To address this question one needs a knot invariant, a function that gives one value on all links that belong to a single class and gives different values (but not always) on knots that belong to different classes. The present work is basically concerned with this question.
2.2 Braids. Braids were first studied by Emil Artin in 1925 [5, 6], which play an important role in knot theory, see [7, 8] for detail. An \(n\)-strand braid is a set of \(n\) non intersecting smooth paths connecting \(n\) points on a horizontal plane to \(n\) points exactly below them on another horizontal plane in an arbitrary order. The smooth paths are called strands of the braid.
The product \(ab\) of two \(n\)-strand braids is defined by putting \(b\) above \(a\) and gluing their end points. A braid with only one crossing is called elementary braid. The ith elementary braid \(x_{i}\) on \(n\) strands is:
A useful property of elementary braids is that every braid can be written as a product of elementary braids. For instance, the above 2-strand braid is \(x_{i}^{-3}=(x_{i}^{-1})(x_{i}^{-1})(x_{i}^{-1})\). The closure of a braid \(b\) is the link \(\widehat{b}\) obtained by connecting the lower ends of \(b\) with the corresponding upper ends.
An important result by Alexander [9] connecting knots and braids is: Each link can be represented as the closure of a braid.

Remark 2.1. In the last section we shall present all the links as closures of products of elementary braids.

2.3. The Kauffman Bracket The Kauffman bracket was introduced by Kauffman in [10]. Before the definition it is better to understand the two types of splitting of a crossing, the \(A\)-type and the \(B\)-type splittings:
In the following, the symbols \(\bigcirc\) and \(\bigsqcup\) represent respectively the unknot and the disconnected sum.

Definition 2.1 The Kauffman bracket is the function \(\langle \cdot\rangle: \mbox{Links}\rightarrow \mathbb{Z}[a,a^{-1}]\) defined by the axioms: \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle L\rangle &=& a\langle L_{A} \rangle + a^{-1} \langle L_{B} \rangle \\ \langle L \sqcup \bigcirc\rangle &=& (-a^{2} - a^{-2} )\langle L \rangle \\ \langle \bigcirc\rangle &=& 1 \end{eqnarray*} Here \(L\), \(L_{A}\), and \(L_{B}\) are three links which are isotopic everywhere except at one crossing where the look as in the figure:

Proposition 2.2. The Kauffman polynomial is invariant under second and third Reidemeister moves but not under the first Reidemeister move.

3. Main Results

In this section we shall give the Kauffman bracket of the links \(\widehat{x_{1}^{n}}\) and \(\widehat{x_{1}^{b}x_{2}^{m}}\), and show that \(\langle\widehat{x_{1}^{b}x_{2}^{m}}\rangle=\langle\widehat{x_{1}^{b}}\rangle\langle\widehat{x_{2}^{m}}\rangle\).

The links \(\widehat{x_{1}^{n}}\) fall into two categories, the two-component links when \(n\) is even and the one-component links (means knots) when \(n\) is odd. When \(n\) is even, we have:

Proposition 3.1. The Kauffman bracket of the link \(\widehat{x_{1}^{n}}\), when \(n\geq2\) is even, is

\begin{equation}\label{eq3.1} < \widehat{x_{1}^{n}}> = -a^{3n-2}+a^{3n-6}-a^{3n-10}+a^{3n-14}-\cdots-a^{-n+6}-a^{-n-2}. \end{equation}
(1)

Proof. We prove it by induction on \(n\).
When \(n = 2\),

Similarly, we have
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber \langle \widehat{x_{1}^{4}} \rangle &=& -a^{10}+a^{6}-a^{2}-a^{-6} \\ &=& -a^{3(4)-2} + a^{3(4)-6} + a^{-2}\langle \widehat{x_{1}^{2}} \rangle \end{eqnarray}
(3)
and
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{6}} \rangle &=& -a^{16}+a^{12}-a^{8}+a^{4}-a^{0}-a^{-8} \\ &=& -a^{3(6)-2} + a^{3(6)-6} + a^{-2}\langle \widehat{x_{1}^{4}} \rangle. \end{eqnarray}
(4)
We now assume the result holds for \(n = k\), that is
\begin{equation}\label{eq3.5} \langle \widehat{x_{1}^{k}} \rangle = -a^{3k-2}+a^{3k-6}-a^{3k-10}+a^{3k-14}-\cdots-a^{6-k}-a^{-k-2}. \end{equation}
(5)
Now for \(n=k+1\), we, following Equations (3) and (4), write \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{k+2}} \rangle &=& -a^{3(k+2)-2} + a^{3(k+2)-6} + a^{-2}\langle \widehat{x_{1}^{k}} \rangle \\ &=& -a^{3(k+2)-2} + a^{3(k+2)-6}+ a^{-2}\Big[-a^{3k-2}+a^{3k-6}-a^{3k-10}\\ && +a^{3k-14}-\cdots-a^{6-k}-a^{-k-2}\Big]\\ &=& -a^{3(k+2)-2} + a^{3(k+2)-6}-a^{3k-4}+a^{3k-8}-a^{3k-12}+a^{3k-16}\\ &&-\cdots-a^{4-k}-a^{-k-4}\\ &=& -a^{3(k+2)-2} + a^{3(k+2)-6}-a^{3(k+2)-10}+a^{3(k+2)-14}-a^{3(k+2)-18}\\ &&+a^{3(k+2)-22}-\cdots-a^{6-(k+2)}-a^{-(k+2)-2} \end{eqnarray*} This completes the proof.

Proposition 3.2. The Kauffman bracket of the knots \(\widehat{x_{1}^{n}}\), when \(n\) is odd, is

\begin{equation}\label{eq3.6} \langle \widehat{x_{1}^{n}} \rangle = -a^{3n-2}+a^{3n-6}-a^{3n-10}+a^{3n-14}-\cdots-a^{-n+6}-a^{-n-2}. \end{equation}
(6)

Proof. Similar to the proof of Proposition 3.1.

Proposition 3.3. The Kauffman bracket of the braid link \(\widehat{x_{1}^{b} x_{2}^{b}}\), when \(b\) is even, is \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& \sum_{i=1}^{b-1}i(-1)^{i+1}a^{6b-4i}+\sum_{i=1}^{b}(-1)^{i+1}(b-i)a^{2b-4i}-(b-2)a^{2b}\\ &&+a^{4-2b}+a^{-2b-4}. \end{eqnarray*}

Proof. We prove it by induction on \(b\).
When \(b = 2\), we have

as required.
Similarly, we get
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& a^{20}-2a^{16}+3a^{12}-2a^{8}+3a^{4}-2+2a^{-4}+a^{-12} \\ \nonumber&=& \big[a^{20}-2a^{16}+3a^{12}\big]+\big[3a^{4}-2+a^{-4}\big]-2a^{8}+\big[a^{-4}+a^{-12}\big] \\ \nonumber&=& \sum_{i=1}^{3}i(-1)^{i+1}a^{24-4i}+\sum_{i=1}^{4}(-1)^{i+1}(4-i)a^{8-4i}-2a^{8}\\ \nonumber &&+a^{-4}+a^{-12}. \end{eqnarray}
(7)
In order to manage the proof, we reorganize (7):
\begin{eqnarray} %% \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& \big[a^{4}+2a^{-4}+a^{-12}\big]-[a^{4}]+[a^{20}]-2+\big[-2a^{16}+3a^{12}\big]\\ \nonumber&&+\big[-2a^{8}+3a^{4}\big]\\ \nonumber &=& a^{-4}\big[\langle \widehat{x_{1}^{2} x_{2}^{2}}\rangle\big]-\sum_{i=1}^{1}i(-1)^{i+1}a^{8-4i}+\sum_{i=1}^{1}i(-1)^{i+1}a^{24-4i}-2\\ &&+\sum_{i=2}^{3}i(-1)^{i+1}a^{24-4i}-2a^{8}+3a^{4} \end{eqnarray}
(8)
Similarly,
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber \langle \widehat{x_{1}^{6} x_{2}^{6}} \rangle &=& a^{32}-2a^{28}+3a^{24}-4a^{20}+5a^{16}-4a^{12}+5a^{8}-4a^{4}+3-2a^{-4}\\ \nonumber&&+2a^{-8}+a^{-16} \\ \nonumber &=& a^{-4}\big[\langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle\big]-\sum_{i=1}^{3}i(-1)^{i+1}a^{20-4i}+\sum_{i=1}^{3}i(-1)^{i+1}a^{36-4i}-2a^{4}\\ &&+\sum_{i=4}^{5}i(-1)^{i+1}a^{36-4i}-4a^{12}+5a^{8} \end{eqnarray}
(9)
Deducting from Equations (9) and (10), we can write \begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{b-2} x_{2}^{b-2}} \rangle\big]-\sum_{i=1}^{b-3}i(-1)^{i+1}a^{6b-4i-16}+\sum_{i=1}^{b-3}i(-1)^{i+1}a^{6b-4i}\\ \nonumber&&-2a^{2b-8}+\sum_{i=b-2}^{b-1}i(-1)^{i+1}a^{6b-4i}-(b-2)a^{2b}+(b-1)a^{2b-4}. \end{eqnarray} We now assume the result holds for \(b=k\), that is
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber \langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle &=& \sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i}+\sum_{i=1}^{k}(-1)^{i+1}(k-i)a^{2k-4i}-(k-2)a^{2k}\\ &&+a^{4-2k}+a^{-2k-4}. \end{eqnarray}
(10)
Now for \(b=k+2\), we have \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{k+2} x_{2}^{k+2}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle\big]-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}\\ &&-2a^{2k-4}+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\ &=&\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k}(-1)^{i+1}(k-i)a^{2k-4i-4}\\ &&-(k-2)a^{2k-4}+a^{-2k}+a^{-2k-8}\\ &&-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}-2a^{2k-4}\\ &&+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\ &=&\sum_{i=1}^{k+1}i(-1)^{i+1}a^{6k-4i+12}+\sum_{i=-1}^{k}(-1)^{i+1}(k-i)a^{2k-4i-4}\\ &&+a^{-2k}+a^{-2k-8}-ka^{2k+4}\\ &=&\sum_{i=1}^{k+1}i(-1)^{i+1}a^{6k-4i+12}+\sum_{i=1}^{k+2}(-1)^{i+1}(k+2-i)a^{2k-4i+4}\\ &&+a^{-2k}+a^{-2k-8}-ka^{2k+4}, \end{eqnarray*} and the induction is completed.

Proposition 3.4. The Kauffman bracket of the braid link \(\widehat{x_{1}^{b} x_{2}^{b}}\), when \(b\) is odd, is \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{b} x_{2}^{b}} \rangle &=& \sum_{i=1}^{b-1}i(-1)^{i+1}a^{6b-4i}+\sum_{i=1}^{b}(-1)^{i}(b-i)a^{2b-4i}+(b-2)a^{2b}\\ &&+a^{4-2b}+a^{-2b-4}. \end{eqnarray*}

Proof. Similar to the proof of proposition 3.3.

Proposition 3.5. The Kauffman bracket of \(\widehat{x_{1}^{b} x_{2}^{m}}\), when \(b>m\geq2\), is \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle &=& \sum_{i=1}^{m-1}(-1)^{b+m+1-i}(i)a^{3(b+m)-4i}+(-1)^{b+1}(m-1)a^{3b-m}\\ &&+m\sum_{i=1}^{b-m-1}(-1)^{b+1-i}a^{3b-m-4i}+(-1)^{m+1}(m-1)a^{-b+3m}\\ &&+\sum_{i=1}^{m-2}(-1)^{m+1-i}(m-i)a^{-b+3m-4i}+2a^{-b-m+4}+a^{-b-m-4}. \end{eqnarray*}

Proof. We first verify the result for arbitrary \(b\) and \(m=2\):
Resolving all \(2^{3+2}\) crossings as were resolved for \(\langle \widehat{x_{1}^{2} x_{2}^{2}} \rangle\) in Proposition 3.3, we get \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{3} x_{2}^{2}} \rangle &=& -a^{11}+a^{7}-a^{3}+2a^{-1}+a^{-9} \end{eqnarray*} Similarly, we get

\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{4} x_{2}^{2}} \rangle &=& a^{14}-a^{10}+2a^{6}-a^{2}+2a^{-2}+a^{-10} \\ &=& -a^{3}\langle \widehat{x_{1}^{3} x_{2}^{2}} \rangle+a^{6}+a^{2}+2a^{-2}+a^{-10}+a^{-6}\\ \end{eqnarray}
(11)
\begin{eqnarray} \nonumber\langle \widehat{x_{1}^{5} x_{2}^{2}} \rangle &=& -a^{17}+a^{13}-2a^{9}+2a^{5}-a+2a^{-3}+a^{-11}\\ &=& -a^{3}\langle \widehat{x_{1}^{4} x_{2}^{2}} \rangle+a^{5}+a+2a^{-3}+a^{-11}+a^{-7} \end{eqnarray}
(12)
\begin{eqnarray} \nonumber\langle \widehat{x_{1}^{6} x_{2}^{2}} \rangle &=& a^{20}-a^{16}+2a^{12}-2a^{8}+2a^{4}-1+2a^{-4}+a^{-12}\\ &=& -a^{3}\langle \widehat{x_{1}^{5} x_{2}^{2}} \rangle+a^{4}+1+2a^{-4}+a^{-8}+a^{-12} \end{eqnarray}
(13)
It follows from (11), (12), and (13) that \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \nonumber \langle \widehat{x_{1}^{b} x_{2}^{2}} \rangle &=& -a^{3}\langle\widehat{x_{1}^{b-1} x_{2}^{2}}\rangle+a^{-b+10}+a^{-b+6}+2a^{-b+2}+a^{-b-2}+a^{-b-6}. \end{eqnarray*} Now suppose the result is true for \(b=t\) and \(m=2\), that is
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{t} x_{2}^{2}} \rangle &=& (-1)^{-t+2}a^{3t+2}+(-1)^{t+1}a^{3t-2}+2\sum_{i=1}^{t-3}(-1)^{t+1-i}a^{3t-2-4i}\\ &&-a^{-t+6}+2a^{-t+2}+a^{-t-6}. \end{eqnarray}
(14)
For \(b=t+1\), we have \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{t+1} x_{2}^{2}} \rangle &=& -a^{3}\langle\widehat{x_{1}^{t} x_{2}^{2}}\rangle+a^{-t+9}+a^{-t+5}+2a^{-t+1}+a^{-t-3}+a^{-t-7}\\ &=&-a^{3}\Big[(-1)^{-t+2}a^{3t+2}+(-1)^{t+1}a^{3t-2}+2\sum_{i=1}^{t-3}(-1)^{t+1-i}a^{3t-2-4i}\\ &&-a^{-t+6}+2a^{-t+2}+a^{-t-6}\Big]+a^{-t+9}+a^{-t+5}+2a^{-t+1}\\ &&+a^{-t-3}+a^{-t-7}\\ &=&(-1)^{t+3}a^{3t+5}+(-1)^{t+2}a^{3t+1}+2\sum_{i=1}^{t-3}(-1)^{t+2-i}a^{3t+1-4i}\\ &&+a^{-t+9}-2a^{-t+5}-a^{-t-3}+a^{-t+9}+a^{-t+5}+2a^{-t+1}\\ &&+a^{-t-3}+a^{-t-7}\\ &=&(-1)^{t+3}a^{3t+5}+(-1)^{t+2}a^{3t+1}\\ &&+\Big[2\sum_{i=1}^{t-3}(-1)^{t+2-i}a^{3t+1-4i}+2a^{-t+9}\Big]\\ &&-a^{-t+5}+2a^{-t+1}+a^{-t-7}\\ &=&(-1)^{(t+1)+2}a^{3(t+1)+2}+(-1)^{(t+1)+1}a^{3(t+1)-2}\\ &&+2\sum_{i=1}^{(t+1)-3}(-1)^{(t+1)+1-i}a^{3(t+1)-2-4i}\\ &&-a^{-(t+1)+6}+2a^{-(t+1)+2}+a^{-(t+1)-6}. \end{eqnarray*} Similarly, we get \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{b} x_{2}^{3}} \rangle &=& \sum_{i=1}^{2}(-1)^{b+4-i}(i)a^{3b+9-4i}+(-1)^{b+1}2a^{3b-3}\\ &&+3\sum_{i=1}^{b-4}(-1)^{b+1-i}a^{3b-3-4i}+2a^{-b+9}\\ &&-a^{-b+5}+2a^{-b+1}+a^{-b-7} \end{eqnarray*} and \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{b} x_{2}^{4}} \rangle &=& \sum_{i=1}^{3}(-1)^{b+5-i}(i)a^{3b+12-4i}+(-1)^{b+1}3a^{3b-4}\\ &&+4\sum_{i=1}^{b-5}(-1)^{b+1-i}a^{3b-4-4i}-3a^{-b+12}\\ &&+\sum_{i=1}^{2}(-1)^{5-i}(4-i)a^{-b+12-4i}+2a^{-b}+a^{-b-8}. \end{eqnarray*} Now with the assumption that the result is true for an arbitrary \(m\), we have \begin{eqnarray*} &&\\ &&\langle \widehat{x_{1}^{b} x_{2}^{m+1}} \rangle\\ =&& -a^3\langle \widehat{x_{1}^{b} x_{2}^{m}}\rangle+(-1)^{b}a^{3b-(m+1)+4}+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}\\ &&+2a^{-b-(m+1)+4}+a^{-b-(m+1)}+a^{-b-(m+1)-4} \end{eqnarray*} \begin{eqnarray*}=&&\sum_{i=1}^{m-1}(-1)^{b+m+2-i}(i)a^{3(b+m)+3-4i}+(-1)^{b+2}(m-1)a^{3b-m+3}\\ &&+m\sum_{i=1}^{b-m-1}(-1)^{b+2-i}a^{3b-m+3-4i}+(-1)^{m+2}(m-1)a^{-b+3m+3}\\ &&+\sum_{i=1}^{m-2}(-1)^{m+2-i}(m-i)a^{-b+3m+3-4i}-2a^{-b-m+7}-a^{-b-m-1} \end{eqnarray*} \begin{eqnarray*}&&+(-1)^{b}a^{3b-(m+1)+4}+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}\\ &&+2a^{-b-(m+1)+4}+a^{-b-(m+1)}+a^{-b-(m+1)-4} \end{eqnarray*} \begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}\\ &&+m\sum_{i=1}^{b-m-1}(-1)^{b+2-i}a^{3b-m+3-4i}+(-1)^{m+2}(m-1)a^{-b+3m+3}\\ &&+\sum_{i=1}^{m-2}(-1)^{m+2-i}(m-i)a^{-b+3m+3-4i}-2a^{-b-m+7} \end{eqnarray*} \begin{eqnarray*}&&+\sum_{i=1}^{b-3}(-1)^{b+1-i}(i)a^{3b-(m+1)-4i}+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4} \end{eqnarray*} \begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}\\ &&+\Big[(-1)^{b+1}m a^{3b-m-1}+(-1)^{b}m a^{3b-m-5}+(-1)^{b-1}m a^{3b-m-9}\\ &&+\cdots+(-1)^{m+3}m a^{-b+3m+7}+\Big]+(-1)^{m+2}(m-1)a^{-b+3m+3}\\ &&+\Big[(-1)^{m+1}(m-1) a^{-b+3m-1}+(-1)^{m}(m-1) a^{-b+3m-5}\\ &&+(-1)^{m-1}(m-3) a^{-b+3m-9}+\cdots+(-1)^{4}2 a^{-b-m+11}+\Big]\\ &&-2a^{-b-m+7} \end{eqnarray*} \begin{eqnarray*}&&+\Big[\Big((-1)^{b}a^{3b-m-5}+(-1)^{b-1}a^{3b-m-9}+\cdots+(-1)^{m+3}a^{-b+3m+7}\Big)\\ &&+\Big((-1)^{m+2}a^{-b+3m+3}+(-1)^{m+1}a^{-b+3m-1}+(-1)^{m}a^{-b+3m-5}\\ &&+\cdots+(-1)^{4}a^{-b-m+11}\Big)\Big]+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4} \end{eqnarray*} Now collecting terms of same exponents, we get \begin{eqnarray*}=&&\sum_{i=1}^{(m+1)-1}(-1)^{b+(m+1)+1-i}(i)a^{3(b+(m+1))-4i}+(-1)^{b+1}m a^{3b-m-1}\\ &&+\Big[+(-1)^{b}(m+1) a^{3b-m-5}+(-1)^{b-1}(m+1)a^{3b-m-9}\\ &&+\cdots+(-1)^{m+3}(m+1)a^{-b+3m+7}+\Big]+(-1)^{m+2}(m)a^{-b+3m+3}\\ &&+\Big[(-1)^{m+1}(m)a^{-b+3m-1}+(-1)^{m}(m-1)a^{-b+3m-5}\\ &&+\cdots+(-1)^{4}3 a^{-b-m+11}-2a^{-b-m+7}\Big]\\ &&+2a^{-b-(m+1)+4}+a^{-b-(m+1)-4} \end{eqnarray*} which finally, in terms of summation form, is the required result.

Theorem 3.6. For any \(b,m\geq2\), $$\langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle = \langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}} \rangle.$$

Proof. Depending on \(b\) and \(m\), the proof is divided into three cases: when \(b,m\) are even and equal, when \(b,m\) are odd and equal, and when \(b,m\) are distinct.
Case I. (When \(b\) and \(m\) are even and equal.)
In this case, letting \(m=b\), we show that \(\langle \widehat{x_{1}^{b} x_{2}^{m}} \rangle = \langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}} \rangle.\) So, we proceed as follows: \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{2} x_{2}^{2}} \rangle &=& a^{8} + 2 + a^{-8}= (-a^{4}-a^{-4})(-a^{4}-a^{-4})=\langle \widehat{x_{1}^{2}} \rangle \langle \widehat{x_{1}^{2}} \rangle. \end{eqnarray*} Also, we have \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{4} x_{2}^{4}} \rangle &=& a^{20}-2a^{16}+3a^{12}-2a^{8}+3a^{4}-2+2a^{-4}+a^{-12} \\ &=& (-a^{10}+a^{6}-a^{2}-a^{-6})(-a^{10}+a^{6}-a^{2}-a^{-6})\\ &=& \langle \widehat{x_{1}^{4}} \rangle \langle \widehat{x_{1}^{4}} \rangle \end{eqnarray*} and \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \langle \widehat{x_{1}^{6} x_{2}^{6}} \rangle &=& a^{32}-2a^{28}+3a^{24}-4a^{20}+5a^{16}-4a^{12}+5a^{8}-4a^{4}\\ &&+3-2a^{-4}+2a^{-8}+a^{-16} \\ &=& (-a^{16}+a^{12}-a^{8}+a^{4}-a^{0}-a^{-8})(-a^{16}+a^{12}-a^{8}\\ &&+a^{4}-a^{0}-a^{-8})=\langle \widehat{x_{1}^{6}} \rangle \langle \widehat{x_{1}^{6}} \rangle. \end{eqnarray*} Now we assume that the result is true for \(b=k\), that is $$\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle = \langle \widehat{x_{1}^{k}} \rangle \langle \widehat{x_{1}^{k}} \rangle.$$ Since \(\langle \widehat{x_{1}^{n}} \rangle = -a^{3(n)-2} + a^{3(n)-6} + a^{-2}(\langle \widehat{x_{1}^{n-2}} \rangle)\), we have

\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{k+2}} \rangle \langle \widehat{x_{1}^{k+2}} \rangle &=&\big[-a^{3k+4}+a^{3k}+a^{-2}(\langle \widehat{x_{1}^{k}} \rangle)\big]\big[-a^{3k+4}+a^{3k}\\ \nonumber&&+a^{-2}(\langle \widehat{x_{1}^{k}} \rangle)\big]\\ \nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+a^{6k}-2a^{3k+2}\langle \widehat{x_{1}^{k}} \rangle\\ \nonumber&&+2a^{3k-2}\langle \widehat{x_{1}^{k}} \rangle\\ \nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+a^{6k}+2a^{6k}-2a^{6k-4}\\ \nonumber&&+2a^{6k-8}-2a^{6k-12}+\cdots-2a^{2k+12}+2a^{2k+8}+2a^{2k}\\ \nonumber&&-2a^{6k-4}+2a^{6k-8}-2a^{6k-12}+2a^{6k-16}-\cdots+2a^{2k+8}\\ \nonumber &&-2a^{2k+4}-2a^{2k-4}\\ \nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}+4a^{6k-8}\\ \nonumber&&-4a^{6k-12}+4a^{6k-16}-\cdots+4a^{2k+8}-2a^{2k+4}+2a^{2k}\\ &&-2a^{2k-4}. \end{eqnarray}
(15)
Also
\begin{eqnarray} % \nonumber to remove numbering (before each equation) \nonumber\langle \widehat{x_{1}^{k+2} x_{2}^{k+2}} \rangle &=& a^{-4}\big[\langle \widehat{x_{1}^{k} x_{2}^{k}} \rangle\big]-\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i-4}\\ \nonumber &&+\sum_{i=1}^{k-1}i(-1)^{i+1}a^{6k-4i+12}-2a^{2k-4}\\ \nonumber&&+\sum_{i=k}^{k+1}i(-1)^{i+1}a^{6k-4i+12}-ka^{2k+4}+(k+1)a^{2k}\\ \nonumber&=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}-a^{6k-8}+2a^{6k-12}-3a^{6k-16}+4a^{6k-20}\\ \nonumber&&-\cdots-(k-3)(-1)^{k-2}a^{2k+8}-(k-2)(-1)^{k-1}a^{2k+4}\\ \nonumber &&-(k-1)(-1)^{k}a^{2k}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}\\ \nonumber&&+5a^{6k-8}-6a^{6k-12}+7a^{6k-16}-8a^{6k-20}+\cdots\\ \nonumber&&+(k-3)(-1)^{k-2}a^{2k+24}+(k-2)(-1)^{k-1}a^{2k+20}\\ \nonumber&&+(k-1)(-1)^{k}a^{2k+16}-2a^{2k-4}+k(-1)^{k+1}a^{2k+12}\\ \nonumber &&+(k+1)(-1)^{k+2}a^{2k+8}-ka^{2k+4}+(k+1)a^{2k}\\ \nonumber &=&a^{-4}\big[\langle \widehat{x_{1}^{k}} \rangle\big]^{2}+a^{6k+8}-2a^{6k+4}+3a^{6k}-4a^{6k-4}+4a^{6k-8}\\ \nonumber&&-4a^{6k-12}+4a^{6k-16}-\cdots+4a^{2k+8}-2a^{2k+4}+2a^{2k}\\ &&-2a^{2k-4}. \end{eqnarray}
(16)
The result now follows from (15) and (16).
Case II. (When \(b\) and \(m\) are odd and equal.) Similar to Case I.
Case III. (When \(b\) and \(m\) are distinct.)
In order to prove this part let us agree on the terminology: \begin{eqnarray*} % \nonumber to remove numbering (before each equation) \overline{x}_{n} &=& (-1)^{m+n}a^{3m-(4n-2)}, n=1,2,\ldots,m-1, \overline{x}_{m}=-a^{-m-2}\\ \overline{y}_{l} &=& (-1)^{b+l}a^{3b-(4l-2)}, l=1,2,\ldots,b-1, \overline{y}_{b}=-a^{-b-2}\\ i&=&1,2,\ldots,m, j=1,2,\ldots,b; b\geq2\\ \end{eqnarray*} \begin{eqnarray*} % \nonumber to remove numbering (before each equation) &&\langle \widehat{x_{1}^{b}} \rangle \langle \widehat{x_{1}^{m}}\rangle \\ &=&\sum_{i+j=2}^{m}\overline{x}_{i}\overline{y}_{j}+\sum_{i+j=m+1, i\neq m}\overline{x}_{i}\overline{y}_{j}+\Big[\sum_{i+j=m+2, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{1}\\ &&+\sum_{i+j=m+3, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{2}+\cdots+\sum_{i+j=b, i\neq m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m-1}\Big]\\ &&+\Big[\sum_{i+j=b+1, i\neq 1,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m}\Big]+ \Big[\Big(\sum_{i+j=b+2, i\neq 2,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m+1}+\overline{x}_{1}\overline{y}_{b}\Big)\\ &&+\Big(\sum_{i+j=b+3, i\neq 3,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-m+2}+\overline{x}_{2}\overline{y}_{b}\Big)+\cdots\\ &&+\Big(\sum_{i+j=b+m-3, i\neq m-3,m}\overline{x}_{i}\overline{y}_{j}+\overline{x}_{m}\overline{y}_{b-4}+\overline{x}_{m-4}\overline{y}_{b}\Big)\\ &&+\Big(\overline{x}_{m-1}\overline{y}_{b-1}+\overline{x}_{m}\overline{y}_{b-3}+\overline{x}_{m-3}\overline{y}_{b}\Big) +\Big(\overline{x}_{m}\overline{y}_{b-2}+\overline{x}_{m-2}\overline{y}_{b}\Big)\Big]\\ &&+\Big(\overline{x}_{m}\overline{y}_{b-1}+\overline{x}_{m-1}\overline{y}_{b}\Big)+\overline{x}_{m}\overline{y}_{b} \end{eqnarray*} Since this agrees with the result of Proposition 3.5, the proof is finished.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Kauffman, L. H. (1987). State models and the Jones polynomial. Topology, 26(3), 395-407. [Google Scholor]
  2. Nizami, A. R., Munir, M., Sohail, T., & Usman, A. (2016). On the Khovanov Homology of 2-and 3-Strand Braid Links. Advances in Pure Mathematics, 6(06), 481-491. [Google Scholor]
  3. Nizami, A. R., Munir, M., Saleem, U., & Ramzan, A. (2014). A Recursive Approach to the Kauffman Bracket. Applied Mathematics, 5(17), 2746-2755.
  4. Reidemeister, K. (1948). Knot theory, Chelsea Publ. Co., New York.
  5. Artin, E. (1925, December). Theorie der z\(\ddot{o}\)pfe. In Abhandlungen aus dem Mathematischen Seminar der Universitt Hamburg (Vol. 4, No. 1, pp. 47-72). Springer Berlin/Heidelberg.
  6. Artin, E. (1947). Theory of braids. Annals of Mathematics, 101-126. [Google Scholor]
  7. Birman, J. S. (2016). Braids, Links, and Mapping Class Groups.(AM-82) (Vol. 82). Princeton University Press. [Google Scholor]
  8. Murasugi, K. (2007). Knot theory and its applications. Springer Science & Business Media. [Google Scholor]
  9. Alexander, J. W. (1923). A lemma on systems of knotted curves. Proceedings of the National Academy of Sciences, 9(3), 93-95. [Google Scholor]
  10. Kauffman, L. H. (1990). An invariant of regular isotopy. Transactions of the American Mathematical Society, 318(2), 417-471. [Google Scholor]
]]>
Computing topological indices of Hex Board and its line graph https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/computing-topological-indices-of-hex-board-and-its-line-graph/ Sun, 01 Oct 2017 00:00:59 +0000 https://old.pisrt.org/?p=1812
OMS-Vol. 1 (2017), Issue 1, pp. 62–71 | Open Access Full-Text PDF
Hafiz Mutee ur Rehman, Riffat Sardar, Ali Raza
Abstract:A topological index is a real number related to a molecular graph, which is a graph invariant. Uptill now there are several topological indices are defined. Some of them are distance based while the others are degree based, all have found numerous applications in pharmacy, theoretical chemistry and especially in QSPR/QSAR research. In this paper, we compute some degree based topological indices i.e some versions of Zagreb indices, Randic index, General sum connectivity index and GA index of Hex board and of its line graph.
]]>

Open Journal of Mathematical Sciences

Computing topological indices of Hex Board and its line graph

Hafiz Mutee ur Rehman\(^1\), Riffat Sardar, Ali Raza
Division of Science and Technology, University of Education, Lahore Pakistan. (M.R)
Department of Mathematics, University of Sargodha, Lahore Pakistan. (R.S)
Department of Mathematics, The University of Lahore, Lahore Pakistan.(A.R)

\(^{1}\)Corresponding Author: rehman.mutee@yahoo.com

Abstract

A topological index is a real number related to a molecular graph, which is a graph invariant. Uptill now there are several topological indices are defined. Some of them are distance based while the others are degree based, all have found numerous applications in pharmacy, theoretical chemistry and especially in QSPR/QSAR research. In this paper, we compute some degree based topological indices i.e some versions of Zagreb indices, Randic index, General sum connectivity index and GA index of Hex board and of its line graph.

Keywords:

Degree, Topological Index, Zagreb Index.

1. Introduction and Preliminaries

Mathematical chemistry is the branch of theoretical chemistry in which we discuss and predict the behavior of mathematical structure by using mathematical tools. There is lot of research which is done in this area in the last few decades. This theory contributes a major role in the field of chemical sciences.

Let \(G\) be the molecular graph in which \(V(G)\) represents the set of vertices corresponds the atoms and \(E(G)\) the set of edges to the chemical bonds. A line graph \(L(G)\) of a simple graph \(G\) is obtained by associating a vertex with each edge of the graph and connecting two vertices with an edge if and only if the corresponding edges of \(G\) have a vertex in common.

The very first topological Index Randić index introduced by Milan Randić in 1975 (see [1]). and is defined as: \[R(G)=\sum_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}\].

Later, this index was generalized by Bollobás and Erdős( see [2]) to the following form for any real number \(\alpha\), and named the general Randić index: \begin{equation*} R(G)=\sum_{uv \in E(G)} [{d_ud_v}]^\alpha . \end{equation*} The Zagreb indices were first introduced by Gutman in [3], they are important molecular descriptors and have been closely correlated with many chemical properties (see [4]) and defined as: \begin{align*}\label{F1} M_1(G) &=\sum_{u \in V(G)} d_u^2 \hspace{10mm} \mbox{and} \\ M_2(G) &= \sum_{uv \in E(G)} d_{u}d_{v}. \end{align*} The third Zagreb index, introduced by Fath-Tabar in [5]. This index is defined as follows: \begin{eqnarray*} M_3(G) = \sum_{uv \in E(G)} |d_u- d_v|. \end{eqnarray*} The hyper-Zagreb index was first introduced in [6]. This index is defined as follows: \begin{eqnarray*} HM(G) &=& \sum_{uv \in E(G)} (d_u+d_v)^{2}. \end{eqnarray*} The Atom-Bond Connectivity index (ABC), introduced by Estrda et al. in [7] and applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. The ABC index of \(G\) is defined as: \begin{equation*}\label{f4*} ABC(G)=\sum_{uv \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_ud_v}}. \end{equation*} For more details see the article [8]. In 2010, the general sum-connectivity index \(\chi(G)\) has been introduced in [9]. For more detail on sum connectivity we refer the articles [9, 10]. This index is defined as follows: \begin{equation*} \chi(G)=\sum_{uv \in E(G)} \frac{1}{\sqrt{d_u+d_v}}. \end{equation*} Vukicevic and Furtula introduced the geometric arithmetic (GA) index in [11]. The GA index for \(G\) is defined by \begin{equation*} GA(G)=\sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u+d_v}. \end{equation*} Inspired by the work on the ABC index, Furtula et al. proposed the following modified version of the ABC index and called it as Zagreb index (AZI) in [12]. This index is defined as follows: \begin{equation*}\label{F2} AZI(G)=\sum_{uv \in E(G)} (\frac{d_ud_v}{d_u+d_v-2})^3. \end{equation*} The hexagonal and honeycomb networks have also been recognized as crucial evolutionary biology, in particular for the evolution of cooperation, where the overlapping triangles are vital for the propagation of cooperation in social dilemmas. Relevant research that applies this theory and which could benefit further from the insights of the new research in (see [13]). The following lemma is helpful for computing the degree of a vertex of line graph.

Lemma 1.1. Let \(G\) be a graph with \(u,v\in V(G)\) and \(e=uv \in E(G).\) Then: $$d_e=d_u+d_v-2.$$

Lemma 1.2.[14] Let \(G\) be a graph of order \(p\) and size \(q\), then the line graph \(L(G)\) of \(G\) is a graph of order \(p\) and size \(\frac{1}{2}M_{1}(G) -q\).

2. Topological indices of Hex board

In this section we will compute the topological indices of Hex board.

Figure 1. Line graph of hex board with center dots.

Theorem 2.1. Let \(G\) be the Hex board \(H_n\). Then

  1. \(M_{1}(G) = 36n^2-80n+42;\)
  2. \(M_{2}(G) = 108n^2-320n+232;\)
  3. \(M_{3}(G) = -16n+22;\)
  4. \(HM(G) = 432n^2-1248n+886;\)
  5. \(R(G) = \frac{1}{2}n^2+\frac{1}{12}(8n-20)\sqrt{6}-\frac{5}{3}n+\frac{4}{3}\sqrt{2}+\frac{2}{3}\sqrt{3}+1\);
  6. \(ABC(G)=\frac{1}{6}(3n^2-16n+21)\sqrt{10}+\frac{1}{3}(8n-20)\sqrt{3}+\frac{1}{4}(4n-10)\sqrt{6}+\frac{1}{3}\sqrt{14}+\frac{2}{3}\sqrt{15}+2\sqrt{2} ;\)
  7. \(\chi(G) = \frac{1}{6}(3n^2-16n+21)\sqrt{3}+\frac{1}{10}(8n-20)\sqrt{10}+\frac{1}{4}(4n-10)\sqrt{2}+\frac{2}{3}\sqrt{6}+\frac{4}{7}\sqrt{7}+\frac{2}{3}\);
  8. \(GA(G) = 3n^2+\frac{2}{5}(8n-20)\sqrt{6}-12n+4\sqrt{2}+\frac{16}{7}\sqrt{3}+11\);
  9. \(AZI(G) = \frac{17496}{125}n^2-\frac{1534424}{3375}n+\frac{429997724}{1157625}\).

Proof. The graph \(G\) for \(n=4\) is shown in Figure 1. It is easy to see that the order of \(G\) is \(n^2\) out of which \(2\) vertices are of degree \(2\), \(2\) vertices are of degree \(3\), \(4(n-2)\) vertices are of degree \(4\) and \(n^2-4(n-1)\) vertices are of degree \(6\) and \(G\) has size \(3n^2-4n+1\). We partition the size of \(G\) into edges of the type \(E_{(d_u,d_v)}\) where \(uv\) is an edge. In \(G\), we get edges of the type \(E_{(2,4)}\), \(E_{(3,4)}\), \(E_{(3,6)}\), \(E_{(4,4)}\), \(E_{(4,6)}\) and \(E_{(6,6)}\). The number of edges of these types are given in the Table 1. Then we obtain the required results by using Table 1 as follows:

    1. \begin{eqnarray*} M_1(G) &=& \sum_{uv \in E(G)} \big[ d_u +d_v \big]\\ &=& 4(2+4)+4(3+4)+2(3+6)+(4n-10)(4+4)+(8n-20)(4+6)+(3n^2-16n+21)(6+6)\\ &=& 36n^2-80n+42. \end{eqnarray*} 2.\begin{eqnarray*} M_2(G)&=& \sum_{uv \in E(G)} d_{u}d_{v}\\ &=& 4(2\times4)+4(3\times4)+2(3\times6)+(4n-10)(4\times4)+(8n-20)(4\times6)+(3n^2-16n+21)(6\times6)\\ &=& 108n^2-320n+232. \end{eqnarray*} 3.\begin{eqnarray*} M_3(G) &=& \sum_{uv \in E(G)} |d_u- d_v|\\ &=& 4(2-4)+4(3-4)+2(3-6)+(4n-10)(4-4)+(8n-20)(4-6)+(3n^2-16n+21)(6-6).\\ &=& -16n+22. \end{eqnarray*} 4. \begin{eqnarray*} HM(G) &=& \sum_{uv \in E(G)} (d_u+d_v)^{2}\\ &=& 4(2+4)^2+4(3+4)^2+2(3+6)^2+(4n-10)(4+4)^2+(8n-20)(4+6)^2+(3n^2-16n+21)(6+6)^2.\\ &=& 432n^2-1248n+886. \end{eqnarray*} 5. \begin{eqnarray*} R(G)&=& \sum_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}$\\ &=& 4(\frac{1}{\sqrt{2\times4}})+4(\frac{1}{\sqrt{3\times4}})+2(\frac{1}{\sqrt{3\times6}})\\&&+(4n-10)(\frac{1}{\sqrt{4\times4}})+(8n-20)(\frac{1}{\sqrt{4\times6}})+(3n^2-16n+21)(\frac{1}{\sqrt{6\times6}}).\\ &=&\frac{1}{2}n^2+\frac{1}{12}(8n-20)\sqrt{6}-\frac{5}{3}n+\frac{4}{3}\sqrt{2}+\frac{2}{3}\sqrt{3}+1. \end{eqnarray*} 6. \begin{eqnarray*} ABC(G)&=& \sum_{uv \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_ud_v}}\\ &=& 4\sqrt{\frac{2+4-2}{2\times4}} +4\sqrt{\frac{3+4-2}{3\times4}}+2\sqrt{\frac{3+6-2}{3\times6}}+(4n-10)\sqrt{\frac{4+4-2}{4\times4}}\\ &&+(8n-20)\sqrt{\frac{4+6-2}{4\times6}}+(3n^2-16n+21)\sqrt{\frac{6+6-2}{6\times6}}.\\ &=&\frac{1}{6}(3n^2-16n+21)\sqrt{10}+\frac{1}{3}(8n-20)\sqrt{3}+\frac{1}{4}(4n-10)\sqrt{6}+\frac{1}{3}\sqrt{14}+\frac{2}{3}\sqrt{15}+2\sqrt{2}. \end{eqnarray*} 7. \begin{eqnarray*} \chi(G)&=& \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u+d_v}}\\ &=& 4(\frac{1}{\sqrt{2+4}})+4(\frac{1}{\sqrt{3+4}})+2(\frac{1}{\sqrt{3+6}})+(4n-10)(\frac{1}{\sqrt{4+4}})\\ &&+(8n-20)(\frac{1}{\sqrt{4+6}})+(3n^2-16n+21)(\frac{1}{\sqrt{6+6}}).\\ &=& \frac{1}{6}(3n^2-16n+21)\sqrt{3}+\frac{1}{10}(8n-20)\sqrt{10}+\frac{1}{4}(4n-10)\sqrt{2}+\frac{2}{3}\sqrt{6}+\frac{4}{7}\sqrt{7}+\frac{2}{3}. \end{eqnarray*} 8. \begin{eqnarray*} GA(G)&=& \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u+d_v}\\ &=& 4(\frac{2\sqrt{2\times4}}{2+4})+4(\frac{2\sqrt{3\times4}}{3+4})+2(\frac{2\sqrt{3\times6}}{3+6})\\ &&+(4n-10)(\frac{2\sqrt{4\times4}}{4+4})+(8n-20)(\frac{2\sqrt{4\times6}}{4+6})+(3n^2-16n+21)(\frac{2\sqrt{6\times6}}{6+6}).\\ &=& 3n^2+\frac{2}{5}(8n-20)\sqrt{6}-12n+4\sqrt{2}+\frac{16}{7}\sqrt{3}+11. \end{eqnarray*} 9. \begin{eqnarray*} AZI(G)&=& \sum_{uv \in E(G)} \left(\frac{d_ud_v}{d_u+d_v-2}\right)^3\\ &=&4(\frac{2\times4}{2+4-2})^3+4(\frac{3\times4}{3+4-2})^3+2(\frac{3\times6}{3+6-2})^3\\ &&+(4n-10)(\frac{4\times4}{4+4-2})^3+(8n-20)(\frac{4\times6}{4+6-2})^3+(3n^2-16n+21)(\frac{6\times6}{6+6-2})^3.\\ &=& \frac{17496}{125}n^2-\frac{1534424}{3375}n+\frac{429997724}{1157625}. \end{eqnarray*}
Table 1. The size partition of \(G\)
\((d_u,d_v)\) where \(uv\in E(G)\) (2,4) (3,4) (3,6)
Number of edges 4 4 2
\((d_u,d_v)\) where \(uv\in E(G)\)
(4, 4) (4, 6) (6, 6)
Number of edges 4n 10 8n 20 \(3n^2-16n+21\)

3. Topological indices of line graph of Hex board

In this section we will compute the topological indices of the line graph of Hex board.

Figure 2. Line graph of hex board with center dots.

Theorem 3.1. Let \(G\) be the line graph of the Hex board \(H_n\). Then

  1. \(M_{1}(G) = 300n^2-944n+722;\)
  2. \(M_{2}(G) = 1500n^2-5616n+5194;\)
  3. \(M_{3}(G) = -96n+206;\)
  4. \(HM(G) = 6000n^2-22272n+20430;\)
  5. \(R(G) = \frac{3}{2}n^2-\frac{119}{15}n+\frac{1}{20}(32n-100)\sqrt{5}+\frac{3}{35}\sqrt{100}+\frac{1}{7}\sqrt{14}+\frac{1}{12}(16n-48)\sqrt{3}+\frac{2}{5}\sqrt{10}+\frac{4}{35}\sqrt{35}+\frac{2}{15}\sqrt{30}+\frac{1}{2}\sqrt{2}+\frac{2}{3}\sqrt{6}+\frac{247}{20}\);
  6. \(ABC(G) =\frac{3}{10}(15n^2-96n+152)\sqrt{2}+\frac{1}{5}(32n-100)\sqrt{5}+\frac{1}{6}(4n-12)\sqrt{10}+8n+\frac{1}{8}(8n-14)\sqrt{14}+\frac{3}{7}\sqrt{42}+\frac{1}{7}\sqrt{82}+\frac{2}{5}\sqrt{110}+\frac{4}{7}\sqrt{14}+\frac{2}{5}\sqrt{30}+\frac{4}{5}\sqrt{2}+\sqrt{5}+\frac{8}{3}\sqrt{3}+\frac{1}{2}\sqrt{6}-24;\)
  7. \(\chi(G) = \frac{1}{10}(15n^2-96n+152)\sqrt{5}+\frac{1}{6}(32n-100)\sqrt{2}+\frac{1}{14}(16n-48)\sqrt{14}+\frac{1}{6}(4n-12)\sqrt{3}+2n-\frac{7}{2}+\frac{6}{17}\sqrt{17}+\frac{4}{15}\sqrt{15}+\frac{8}{13}\sqrt{13}+\frac{4}{11}\sqrt{11}+\frac{4}{3}\sqrt{3}+\sqrt{10}+\frac{1}{2}\sqrt{2}\);
  8. \(GA(G) = 15n^2+\frac{4}{9}(32n-100)\sqrt{5}+\frac{4}{7}(16n-48)\sqrt{3}-84n+\frac{12}{17}\sqrt{70}+\frac{16}{15}\sqrt{14}+\frac{32}{13}\sqrt{10}+\frac{2}{3}\sqrt{35}+\frac{8}{11}\sqrt{30}+\frac{8}{3}\sqrt{2}+\frac{16}{5}\sqrt{6}+130\);
  9. \(AZI(G) = \frac{625000}{243}n^2-\frac{109249838528}{10418625}n+\frac{1427097955303080667}{133703165756160}\).

Proof. The graph \(G\) for \(n=4\) is shown in Figure 2. By using Lemma 1.1, It is easy to see that the order of \(G\) is \(3n^2-4n+1\) out of which \(4\) vertices are of degree \(4\), \(4\) vertices are of degree \(5\), \(2\) vertices are of degree \(7\), \(4n-10\) vertices are of degree \(6\), \(8n-20\) vertices are of degree \(8\) and \(3n^2-16n+21\) vertices are of degree \(10\). Therefore by using Lemma 1.2, \(G\) has size \(15n^2-36n+20\). We partition the size of \(G\) into edges of the type \(E_{(d_u,d_v)}\) where \(uv\) is an edge. In \(G\), we get edges of the type \(E_{(4,4)}\), \(E_{(4,6)}\), \(E_{(4,8)}\), \(E_{(5,5)}\), \(E_{(5,6)}\), \(E_{(5,7)}\), \(E_{(5,8)}\), \(E_{(6,6)}\), \(E_{(6,8)}\), \(E_{(7,8)}\), \(E_{(7,10)}\), \(E_{(8,8)}\), \(E_{(8,10)}\) and \(E_{(10,10)}\). The number of edges of these types are given in the Table 2. Then we obtain the required results by using Table 2 as follows:

    1. \begin{eqnarray*} M_1(G)&=&\sum_{uv \in E(G)} \big[ d_u +d_v \big]\\ &=&2(4+4)+8(4+6)+4(4+8)+2(5+5)+4(5+6)+4(5+7)+8(5+8)+(4n-12)(6+6)\\ &&+(16n-48)(6+8)+4(7+8)+6(7+10)+(8n-14)(8+8)+(32n-100)(8+10)+(15n^2-96n+152)(10+10).\\ &=& 300n^2-944n+722. \end{eqnarray*} 2. \begin{eqnarray*} M_2(G) &=&\sum_{uv \in E(G)} d_{u}d_{v}\\ &=& 2(4\times4)+8(4\times6)+4(4\times8)+2(5\times5)+4(5\times6)+4(5\times7)+8(5\times8)+(4n-12)(6\times6)\\ && +(16n-48)(6\times8)+4(7\times8)+6(7\times10)+(8n-14)(8\times8)+(32n-100)(8\times10)+(15n^2-96n+152)(10\times10).\\ &=& 1500n^2-5616n+5194. \end{eqnarray*} 3. \begin{eqnarray*} M_3(G) &=& \sum_{uv \in E(G)} |d_u- d_v|\\ &=& 2(4-4)+8(4-6)+4(4-8)+2(5-5)+4(5-6)+4(5-7)+8(5-8)+(4n-12)(6-6)\\ &&+(16n-48)(6-8)+4(7-8)+6(7-10)+(8n-14)(8-8)+(32n-100)(8-10)+(15n^2-96n+152)(10-10).\\ &=& -96n+206. \end{eqnarray*} 4. \begin{eqnarray*} HM(G)&=& \sum_{uv \in E(G)} (d_u+d_v)^{2}\\ &=& 2(4+4)^2+8(4+6)^2+4(4+8)^2+2(5+5)^2+4(5+6)^2+4(5+7)^2+8(5+8)^2+(4n-12)(6+6)^2+(16n-48)(6+8)^2\\ &&+4(7+8)^2+6(7+10)^2+(8n-14)(8+8)^2+(32n-100)(8+10)^2+(15n^2-96n+152)(10+10)^2.\\ &=& 6000n^2-22272n+20430. \end{eqnarray*} 5. \begin{eqnarray*} R(G)&=& \sum_{uv \in E(G)} \frac{1}{\sqrt{d_ud_v}}\\ &=& 2(\frac{1}{\sqrt{4\times4}})+8(\frac{1}{\sqrt{4\times6}})+4(\frac{1}{\sqrt{4\times8}})+2(\frac{1}{\sqrt{5\times5}})\\ && +4(\frac{1}{\sqrt{5\times6}})+4(\frac{1}{\sqrt{5\times7}})+8(\frac{1}{\sqrt{5\times8}})+(4n-12)(\frac{1}{\sqrt{6\times6}})\\ && +(16n-48)(\frac{1}{\sqrt{6\times8}})+4(\frac{1}{\sqrt{7\times8}})+6(\frac{1}{\sqrt{7\times10}})+(8n-14)(\frac{1}{\sqrt{8\times8}})\\ && +(32n-100)(\frac{1}{\sqrt{8\times10}})+(15n^2-96n+152)(\frac{1}{\sqrt{10\times10}}).\\ &=& \frac{3}{2}n^2-\frac{119}{15}n+\frac{1}{20}(32n-100)\sqrt{5}+\frac{3}{35}\sqrt{100}+\frac{1}{7}\sqrt{14}\\ &&+ \frac{1}{12}(16n-48)\sqrt{3}+\frac{2}{5}\sqrt{10}+\frac{4}{35}\sqrt{35}+\frac{2}{15}\sqrt{30}\\ &&+ \frac{1}{2}\sqrt{2}+\frac{2}{3}\sqrt{6}+\frac{247}{20}. \end{eqnarray*} 6. \begin{eqnarray*} ABC(G)&=&\sum_{uv \in E(G)} \sqrt{\frac{d_u+d_v-2}{d_ud_v}}\\ &=& 2(\sqrt{\frac{4+4-2}{4\times4}})+8(\sqrt{\frac{4+6-2}{4\times6}})+4(\sqrt{\frac{4+8-2}{4\times8}})\\ && +2(\sqrt{\frac{5+5-2}{5\times5}})+4(\sqrt{\frac{5+6-2}{5\times6}})+4(\sqrt{\frac{5+7-2}{5\times7}})\\ && +8(\sqrt{\frac{5+8-2}{5\times8}})+(4n-12)(\sqrt{\frac{6+6-2}{6\times6}})+(16n-48)(\sqrt{\frac{6+8-2}{6\times8}})\\ && +4(\sqrt{\frac{7+8-2}{7\times8}})+6(\sqrt{\frac{7+10-2}{7\times10}})+(8n-14)(\sqrt{\frac{8+18-2}{8\times8}})\\ && +(32n-100)(\sqrt{\frac{8+10-2}{8\times10}})+(15n^2-96n+152)(\sqrt{\frac{10+10-2}{10\times10}}).\\ &=& \frac{3}{10}(15n^2-96n+152)\sqrt{2}+\frac{1}{5}(32n-100)\sqrt{5}+\frac{1}{6}(4n-12)\sqrt{10}+8n\\ && +\frac{1}{8}(8n-14)\sqrt{14}+\frac{3}{7}\sqrt{42}+\frac{1}{7}\sqrt{82}+\frac{2}{5}\sqrt{110}+\frac{4}{7}\sqrt{14}\\ && +\frac{2}{5}\sqrt{30}+\frac{4}{5}\sqrt{2}+\sqrt{5}+\frac{8}{3}\sqrt{3}+\frac{1}{2}\sqrt{6}-24; \end{eqnarray*} 7. \begin{eqnarray*} \chi(G)&=& \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u+d_v}}\\ &=& 2(\frac{1}{\sqrt{4+4}})+8(\frac{1}{\sqrt{4+6}})+4(\frac{1}{\sqrt{4+8}})+2(\frac{1}{\sqrt{5+5}})\\ && +4(\frac{1}{\sqrt{5+6}})+4(\frac{1}{\sqrt{5+7}})+8(\frac{1}{\sqrt{5+8}})+(4n-12)(\frac{1}{\sqrt{6+6}})\\ && +(16n-48)(\frac{1}{\sqrt{6+8}})+4(\frac{1}{\sqrt{7+8}})+6(\frac{1}{\sqrt{7+10}})+(8n-14)(\frac{1}{\sqrt{8+8}})\\ && +(32n-100)(\frac{1}{\sqrt{8+10}})+(15n^2-96n+152)(\frac{1}{\sqrt{10+10}}).\\ &=&\frac{1}{10}(15n^2-96n+152)\sqrt{5}+\frac{1}{6}(32n-100)\sqrt{2}+\frac{1}{14}(16n-48)\sqrt{14}\\ && +\frac{1}{6}(4n-12)\sqrt{3}+2n-\frac{7}{2}+\frac{6}{17}\sqrt{17}+\frac{4}{15}\sqrt{15}+\frac{8}{13}\sqrt{13}\\ && +\frac{4}{11}\sqrt{11}+\frac{4}{3}\sqrt{3}+\sqrt{10}+\frac{1}{2}\sqrt{2}. \end{eqnarray*} 8. \begin{eqnarray*} GA(G)&=& \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u+d_v}\\ &=& 2 \frac{2\sqrt{4\times4}}{4+4}+8 \frac{2\sqrt{4\times6}}{4+6}+4 \frac{2\sqrt{4\times8}}{4+8}\\ && +2 \frac{2\sqrt{5\times5}}{5+5}+4 \frac{2\sqrt{5\times6}}{5+6}+4 \frac{2\sqrt{5\times7}}{5+7}+8 \frac{2\sqrt{5\times8}}{5+8}\\ && +(4n-12) \frac{2\sqrt{6\times6}}{6+6}+(16n-48) \frac{2\sqrt{6\times8}}{6+8}+4 \frac{2\sqrt{7\times8}}{7+8}\\ &&+6 \frac{2\sqrt{7\times10}}{7+10}+(8n-14) \frac{2\sqrt{8\times8}}{8+8}+(32n-100) \frac{2\sqrt{8\times10}}{8+10}+(15n^2-96n+152) \frac{2\sqrt{10\times4}}{10+10}.\\ &=& 15n^2+\frac{4}{9}(32n-100)\sqrt{5}+\frac{4}{7}(16n-48)\sqrt{3}-84n+\frac{12}{17}\sqrt{70}\\ && +\frac{16}{15}\sqrt{14}+\frac{32}{13}\sqrt{10}+\frac{2}{3}\sqrt{35}+\frac{8}{11}\sqrt{30}+\frac{8}{3}\sqrt{2}+\frac{16}{5}\sqrt{6}+130. \end{eqnarray*} 9. \begin{eqnarray*} AZI(G)&=& \sum_{uv \in E(G)} (\frac{d_ud_v}{d_u+d_v-2})^3\\ &=& 2(\frac{4\times4}{4+4-2})^3+8(\frac{4\times6}{4+6-2})^3+4(\frac{4\times8}{4+8-2})^3\\ &&+2(\frac{5\times5}{5+5-2})^3+4(\frac{5\times6}{5+6-2})^3+4(\frac{5\times7}{5+7-2})^3+ 8(\frac{5\times8}{5+8-2})^3+(4n-12)(\frac{6\times6}{6+6-2})^3+(16n-48)(\frac{6\times8}{6+8-2})^3\\ && +4(\frac{7\times8}{7+8-2})^3+6(\frac{7\times10}{7+10-2})^3+(8n-14)(\frac{8\times8}{8+8-2})^3\\ && +(32n-100)(\frac{8\times10}{8+10-2})^3+(15n^2-96n+152)(\frac{10\times10}{10+10-2})^3$\\ &=& \frac{625000}{243}n^2-\frac{109249838528}{10418625}n+\frac{1427097955303080667}{133703165756160}$. \end{eqnarray*}
Table 2. The size partition of \(G\)
\((d_u,d_v)\) where \(uv\in E(G)\) (4, 4) (4, 6) (4, 8) (5,5) (5, 6)
Number of edges 2 8 4 2 4
\((d_u,d_v)\) where \(uv\in E(G)\) (5, 7) (5, 8) (6, 6) (6, 8) (7, 8)
Number of edges 4 8 4n - 12 16n - 48 4
\((d_u,d_v)\) where \(uv\in E(G)\) (7, 10) (8, 8) (8, 10) (10, 10)
Number of edges 6 8n - 14 32n - 100 15\(n^2\) - 96n + 152

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Rendić , M. (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23), 6609-6615. [Google Scholor]
  2. Bollobás, B., & Erdös, P. (1998). Graphs of extremal weights. Ars Combinatoria, 50, 225-233. [Google Scholor]
  3. Gutman, I., & Trinajstić, N. (1972). Graph theory and molecular orbitals. Total \(\varphi\)-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4), 535-538.[Google Scholor]
  4. Todeschini, R., & Consonni, V. (2008). <>iHandbook of molecular descriptors (Vol. 11). John Wiley & Sons. [Google Scholor]
  5. Fath-Tabar, G. H. (2011). Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem, 65, 79-84.[Google Scholor]
  6. Shirdel, G. H., Rezapour, H., & Sayadi, A. M. (2013). The hyper-Zagreb index of graph operations. Iranian Journal of Mathematical Chemistry, 4(2), 213-220. [Google Scholor]
  7. Estrada, E., Torres, L. Rodriguez, L., & Gutman, I. (1998) An atom-bond connectivity index, Modelling the enthalpy of formation of alkanes. \emph{Indian J. Chem. 37}, 849-855. [Google Scholor]
  8. Furtula, B., Graovac, A., & Vukicevic, D. (2009). Atom–bond connectivity index of trees. Discrete Applied Mathematics, 157(13), 2828-2835. [Google Scholor]
  9. Zhou, B., & Trinajstic, N. (2010). On general sum-connectivity index. Journal of mathematical chemistry, 47(1), 210-218. [Google Scholor]
  10. Zhou, B., & Trinajstic, N. (2009). On a novel connectivity index. Journal of mathematical chemistry, 46(4), 1252-1270. [Google Scholor]
  11. Vukicevic, D., & Furtula, B. (2009). Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. Journal of mathematical chemistry, 46(4), 1369-1376.[Google Scholor]
  12. Furtula, B., Graovac, A. & Vukičević, D. (2010). Augmented Zagreb index. J. Math. Chem. 48, 370-380.
  13. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M., & Moreno, Y. (2013). Evolutionary dynamics of group interactions on structured populations: a review. Journal of the royal society interface, 10(80), 20120997.[Google Scholor]
  14. Gutman, I., & Das, K. C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50, 83-92. [Google Scholor]
]]>
Exact Solutions of Fractional Maxwell Fluid between two cylinders https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/exact-solutions-of-fractional-maxwell-fluid-between-two-cylinders/ Sun, 01 Oct 2017 00:00:02 +0000 https://old.pisrt.org/?p=1810
OMS-Vol. 1 (2017), Issue 1, pp. 52–61 | Open Access Full-Text PDF
Sannia Afzal, Haitao Qi, Muhammad Athar, Maria Javaid, Muhammad Imran
Abstract:In this paper the velocity field and the adequate shear stress corresponding to the rotational flow of a fractional Maxwell fluid, between two infinite coaxial circular cylinders with inner cylinder is at rest and outer is moving, are determined by applying the Laplace and finite Hankel transforms. The solutions that have been obtained are presented in terms of generalized G functions. The expressions for the velocity field and the shear stress are in the most simplified form. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. The corresponding solutions for ordinary Maxwell and Newtonian fluids are recovered as limiting cases of general solutions.
]]>

Open Journal of Mathematical Sciences

Exact Solutions of Fractional Maxwell Fluid between two cylinders

Sannia Afzal, Haitao Qi, Muhammad Athar\(^1\), Maria Javaid, Muhammad Imran
Division of Science and Technology, University of Education, Lahore-54590, Pakistan. (S.A & M.A)
School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China. (H.Q)
Department of Mathematics, Government College University Faisalabad, Faisalabad-38000, Pakistan. (M.J & M.I)

\(^{1}\)Corresponding Author: athar_sms@yahoo.com

Abstract

In this paper the velocity field and the adequate shear stress corresponding to the rotational flow of a fractional Maxwell fluid, between two infinite coaxial circular cylinders with inner cylinder is at rest and outer is moving, are determined by applying the Laplace and finite Hankel transforms. The solutions that have been obtained are presented in terms of generalized G functions. The expressions for the velocity field and the shear stress are in the most simplified form. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. The corresponding solutions for ordinary Maxwell and Newtonian fluids are recovered as limiting cases of general solutions.

Keywords:

fluid dynamics, Maxwell fluid, exact solutions.

1. Introduction

Fluid has necessarily become part and parcel of daily human life. Take a look at any material of some importance in your life and you will eventually encounter fluid of some type. Air, gases, water, and liquids of various types all fall under the definition of a fluid. Consequently, basic concepts and principles of fluid mechanics are essentially important for us. Any system in which fluid is a working medium will be subject to analysis through the help of fluid mechanics. Principles of fluid mechanics are applied on the designs of almost all means of transportation. We can safely include the subsonic and supersonic aircrafts, hovercrafts, surface ships, submarines and other automobiles. Aerodynamic designs which had previously been confined for racing cars and boats only are now a subject of importance for all automobile manufacturers. Rockets, space flights and others having propulsion systems are based on the fluid mechanics principles. It is a common practice now to undertake prior studies on the aerodynamic forces around buildings and structures. The designs of some devices like pumps, blowers, compressors and turbines require the basic knowledge of fluid mechanics. Heating/cooling and ventilating of large underground tunnels, mines, pipeline systems, large office buildings and even private rooms require knowledge of fluid mechanics. Basic principles of the fluid mechanics are even applicable in the designs of artificial hearts, heart-ling machines, breathing aids and other such devices. All we want to do is to establish the fact that knowledge and principles of fluid mechanics are used in industry, manufacturing, and even in daily human life.

Having said this, we can now safely say that governing and studying the movement of the fluid flow in rotating or sliding cylinders is of much importance for industrial point of view.

Movement of a typical viscoelastic fluid i.e. fractional Maxwell fluid in rotating cylinder has been an area of keen interest for the theorists, researchers and mathematicians working on the fluid mechanics [1, 2]. When analyzing fluid motion, researchers are interested in use of rheological constitutive equations with fractional derivatives, in addition to the classical rheological constitutive equations. Time ordinary derivative are changed to fractional order derivative to find these equations, for fractional calculus [3]. Initially Maxwell model could not provide reasonable fit of data to be experimented for complete range of frequencies and this gave birth to Fractional Maxwell model. In comparison to the classical Maxwell model, the Fractional Maxwell fluid model can demonstrate better agreement of the data to be experimented.

Recently, among the various flow of fluids the oscillating and rotatory flows of fluid has attained significant attention. For example in [4] authors considered Exact Solutions for rotating flows of a Generalized Burgers's Fluid in Cylindrical domains where as in [5] same has been done for Oldroyd-B fluid in circular cylinder. Mainly the reason for this is that oscillating flows are more common in practical processes like towing operation, oil drilling, mixing and bioengineering. The reason for this is the flow of blood in veins due to periodic pressure gradient. In 2005 Yin and Zhu has exhibited research paper on oscillating issues of Fractional Maxwell fluid [6].

In 2012, Karam Rahaman discussed oscillating flow of upper convected Maxwell fluid and this was done by a cylinder [7]. The precise solutions for sinusoidal motion of visco- elastic non-Newtonian fluids were discovered by Mahmood et. al [8, 9, 10, 11, 12]. Various number of researchers are doing research since last decade to find the exact solutions of non Newtonian fluids, particulary the ones having boundary conditions of shear stress. The first ones to develop and come up with the solutions were Water et. al [13]. The exact solution for the Fractional Maxwell fluid which have shear stress boundary condition and flow rotationally in circular cylinder was given by Siddique [14]. Moreover, Rajagopal came up with two very firm yet simple solutions in regard to the motion of second grade fluid which had the torsional and longitudinal oscillation of unbounded rod. Bandelli et. al discus unsteady motions of second grade fluid [15]. The Erdagon's work was extended by Fetecau which had association to non-Newtonian fluid to cosine and sine oscillations of the flat plate [15, 16]. The exact solution for the Maxwell fluid which had oscillatory flow in cylinder was given by Vieru. et. al so considering all of this Laplace and Hankel transforms are practiced in this thesis to examine torsional sine oscillations of Fractional Maxwell Fluid which endured shear stress in an infinite circular cylinder [18].

According to the best knowledge of the us no attempt has so far been made to find the solutions for the movement of fractional Maxwell fluid present within two coaxial cylinders of infinite lengths and oscillating within. In this article we find the exact solutions for the velocity field \(v(r,t)\) and shear stress \(\tau(r,t)\) corresponding to the motion of a Maxwell fluid between two cylinders, which are infinite and coaxial with inner cylinder is at rest and outer one is oscillating. Laplace transform and finite Hankel transform are used to obtain their solutions. The solutions are presented under series form in term of generalized G-functions. These will satisfy governing equations and all imposed boundary and initial conditions. Furthermore the corresponding solutions for the Maxwell flow of Newtonian fluid are also obtained in term of limiting cases.

2. Mathematical Formulation and Governing Equation of Problem

The constitutive equation for the Maxwell Fluid is defined by
\begin{equation}\label{1} T = S-pI\,\,;\,\,\,\,\,\lambda\frac{\delta S}{\delta t}+S= \mu C_{1}; \end{equation}
(1)
\(S\) denotes the extra stress tensor and \(p\) is the pressure, \(I\) denotes unit tensor, \(\lambda\) is called relaxation time, \(\mu\) is called dynamic viscosity and \(T\) stands for Cauchy stress tensor stands for hydrostatic pressure.
\begin{equation}\label{2} \frac{\delta S}{\delta t} = \frac{dS}{dt} - LS - SL^{T}= \dot{S} - LS - SL^{T}. \end{equation}
(2)
Assume that the Maxwell fluid is in the annulus of coaxial circular cylinders whose radii \(R_{1}\) and \(R_{2}\) respectively, where \(R_{1}\) is less than \(R_{2}\) and lengths are infinite. when \(t=0\), the fluid and two cylinders are fixed. when \(t>0\), the outer cylinder starts oscillating around their axis with velocity \(W\sin(\omega~t)\) and \(\omega\) is the angular velocity of the outer cylinder. Then the velocity field \(\textbf{v}\) and the extra stress \(\textbf{S}\) is of the form
\begin{equation}\label{3} \textbf{v} = \textbf{v}(r,t) = v(r,t)e_{z}, \end{equation}
(3)
\begin{equation}\label{4} \textbf{S} = \textbf{S}(r,t), \end{equation}
(4)
where \(e_{z}\) is called the unit vector in the \(z- direction\).
In start, when the fluid is fixed, we have
\begin{equation}\label{5} \textbf{S}(r,0) = 0\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\textbf{v}(r,0) = 0. \end{equation}
(5)
The Maxwell fluid have the governing equations,
\begin{equation}\label{6} \Big( 1 + \lambda D^{\beta}_{t} \Big)\frac{\partial v(r,t)}{\partial t}= \nu\Big(\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r}\Big) v(r,t), \end{equation}
(6)
\begin{equation}\label{7} \Big( 1 + \lambda D^{\beta}_{t} \Big) \tau(r,t) =\mu\frac{\partial{v(r,t)}}{\partial r}. \end{equation}
(7)
The non-trivial shear stress is denoted by \(\tau(r,t)\) , \(\lambda\) is the material constant, \(\mu\) is called the dynamic viscosity and kinematic viscosity is denoted by \(\nu = \frac{\mu}{\rho}\), where \(\rho\) is constant density of the Maxwell fluid.
Furthermore, the fractional differential operator \(D^{\beta}_{t}\) of the Maxwell fluid is defined by \cite{10}
\begin{equation}\label{8} D^{\beta}_{t}f(t)=\frac{1}{\Gamma(1-\beta)}\frac{d}{dt}\int^t_0\frac{f(\tau)}{(t-\tau)^{\beta}}d\tau\\,\,\,\;\,\,\,\,0\leq\beta< 1 \end{equation}
(8)
where \(\Gamma(.)\) is the Gamma function which can be defined as
\begin{equation}\label{9} \Gamma(z) = \int^\infty_0t^{z-1}e^{-t}dt\,\,\,\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\,\,z>0 \end{equation}
(9)
\begin{equation}\label{10} %\begin{aligned} v~(r,~0)=0~;~~~r~\epsilon~(R_1,~R_2) %\end{aligned} \end{equation}
(10)
\begin{equation}\label{11} %\begin{aligned} v~(R_1,~t)=0~~~~~,~~~~~~v~(R_2,~t)=V\sin(\Omega~t)~,~~~\textrm{for}~t> 0 %\end{aligned} \end{equation}
(11)

3. Calculation of the Velocity Field

Now we apply Laplace transformation to equation, we have
\begin{equation}\label{12} q(1+\lambda{q}^\beta)\bar{v}(r,q)=\nu\biggr(\frac{\partial^2}{\partial{r^2}}+\frac{1}{r}\frac{\partial}{\partial{r}}\biggr)\bar{v}(r,q), \end{equation}
(12)
\begin{equation}\label{13} \bar{v}(R_{1},q) = 0 \hspace{0.9cm}, \bar{v}(R_{2},q) = \frac{V\Omega}{q^{2}+\Omega^{2}}, \end{equation}
(13)
Here \(q\) denotes the parameter of transformation. We can define, Hankel Transform of \(\bar{v}(r,q)\) as $$\bar{V}_H(r_n,q)=\int^{R_2}_{R_1} r\bar{v}(r,q)B_0(rr_n)dr,$$ where
\begin{equation}\label{14} B_0(rr_n)=J_0(rr_n)Y_0(R_2r_n)-J_0(R_2r_n)Y_0(rr_n). \end{equation}
(14)
Here, \(r_n\) are positive roots of \(B_0(R_1r)=0\), and \(J_0(.)\) and \(Y_0(.)\) represent the Bessel functions whose order is zero of first and second type, respectively. Now consider R.H.S of the equation (12), we have,
\begin{equation}\label{15} \int^{R_2}_{R_1}{r}\biggr(\frac{\partial^2}{\partial{r^2}}+\frac{1}{r}\frac{\partial}{\partial{r}}\biggr)\bar{v}(r,q)B_0(rr_n)dr=\frac{2}{\pi}\frac{V\Omega}{(q^2+\Omega^2)}-r_n^2\bar{V}_H(r_n,q). \end{equation}
(15)
Again, from equation (12), we have the following result
\begin{equation}\label{16} q(1+\lambda{q}^\beta)\bar{V}_H(r_n,q)=\nu\biggr[\frac{2}{\pi}\frac{V\Omega}{q^2+\Omega^2}-r_n^2\bar{V}_H(r_n,q)\biggr], \end{equation}
(16)
Then,
\begin{equation}\label{17} (q+\lambda{q}^{\beta+1}+\nu{r}_n^2)\bar{V}_H(r_n,q)=\frac{2\nu}{\pi}\frac{V\Omega}{(q^2+\Omega^2)}. \end{equation}
(17)
Now, simplification for \(\bar{V}_H(r_n,q)\)
\begin{equation}\label{18} \bar{V}_H(r_n,q)=\frac{2}{\pi}\frac{V\Omega}{(q^2+\Omega^2)}\frac{\nu}{(q+\lambda{q}^{\beta+1}+\nu{r}_n^2)}. \end{equation}
(18)
we can write the above equation as,
\begin{equation}\label{19} \bar{V}_H(r_n,q)=\frac{2}{\pi{r_n^2}}\frac{V\Omega}{(q^2+\Omega^2)}-\frac{2V\Omega}{\pi{r_n^2}(q^2+\Omega^2)}\frac{(q+\lambda{q^{\beta+1}})}{(q+\lambda{q^{\beta+1}}+\nu{r_n^{2}})}. \end{equation}
(19)
or we can say as, $$\bar{V}_H(r_n,q)=\bar{V}_{1H}(r_n,q)-\bar{V}_{2H}(r_n,q),$$ where $$\bar{V}_{1H}(r_n,q)=\frac{2}{\pi{r_n^2}}\frac{V\Omega}{(q^2+\Omega^2)},$$ and $$\bar{V}_{2H}(r_n,q)=\frac{2V\Omega}{\pi{r_n^2}(q^2+\Omega^2)}\frac{(q+\lambda{q^{\beta+1}})}{(q+\lambda{q^{\beta+1}}+\nu{r_n^{2}})}.$$ Now, going to define Inverse Hankel Transform,
\begin{equation}\label{20} \bar{v}(r,q)=\frac{\pi^2}{2}\sum^{\infty}_{n=1}\frac{r_n^2J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\bar{V}_H(r_n,q) \end{equation}
(20)
Inverse Hankel Transform or \(\bar{V}_{1H}(r_n,q)\) and \(\bar{V}_{2H}(r_n,q)\) are $$\bar{v}_1(r,q)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}\frac{V\Omega}{q^2+\Omega^2}.$$ $$\bar{v}_2(r,q)=\frac{\pi^2}{2}\sum^{\infty}_{n=1}\frac{r_n^2J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\bar{V}_{2H}(r_n,q).$$ Now,
\begin{multline}\label{21} \bar{v}(r,q)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}\frac{V\Omega}{q^2+\Omega^2}-\frac{\pi^2}{2}\sum^{\infty}_{n=1}\frac{r_n^2J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\times\biggr[\frac{2V\Omega}{\pi{r_n^2}(q^2+\Omega^2)} \frac{(q+\lambda{q^{\beta+1}})}{q+\lambda{q^{\beta+1}}+\nu{r_n^{2}}}\biggr]. \end{multline}
(21)
or,equivalently
\begin{multline}\label{22} \bar{v}(r,q)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}\frac{V\Omega}{q^2+\Omega^2}-\pi\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\times\biggr[\frac{V\Omega}{(q^2+\Omega^2)} \frac{(q+\lambda{q^{\beta+1}})}{q+\lambda{q^{\beta+1}}+\nu{r_n^{2}}}\biggr]. \end{multline}
(22)
Now by using the identity,
\begin{equation}\label{23} \frac{1}{q+\lambda{q^{\beta+1}}+\nu{r_n^{2}}}=\frac{1}{\lambda}\sum_{k=0}^{\infty}\bigg(\frac{-\nu{r}_{n}^{2}}{\lambda}\bigg)^k\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k+1}}. \end{equation}
(23)
as,
\begin{equation}\label{24} \frac{1}{a + z} = \sum^\infty_{k=0}\frac{(- z)^{k}}{a^{k + 1}}. \end{equation}
(24)
\begin{multline}\label{25} \bar{v}(r,q)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}\frac{V\Omega}{q^2+\Omega^2}-\frac{\pi}{\lambda}\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\times\biggr[\frac{V\Omega}{(q^2+\Omega^2)} \sum_{k=0}^{\infty}\bigg(\frac{-\nu{r}_{n}^{2}}{\lambda}\bigg)^k\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k+1}}(q+\lambda{q^{\beta+1}})\biggr], \end{multline}
(25)
\begin{multline}\label{26} \bar{v}(r,q)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}\frac{V\Omega}{q^2+\Omega^2}-{V\pi}\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\sum^{\infty}_{k=0}\bigg(\frac{\nu{r_n^2}}{\lambda}\bigg)^k \times\biggr[\Omega\frac{q}{(q^2+\Omega^2)}\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k}}\biggr]. \end{multline}
(26)
Taking inverse Laplace transformation and using the formula
\begin{equation}\label{27} £^{-1}\Big[\frac{q^{b}}{(q^{a} - d)^{c}}\Big] = G_{a,b,c}(d,t), \end{equation}
(27)
and also by using the convolution theorem we get,
\begin{multline}\label{28} {v}(r,t)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}V\sin(\Omega{t})-{V\pi}\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\sum^{\infty}_{k=0}\biggr(\frac{-\nu{r_n^{2}}}{\lambda}\biggr)^k \biggr[\Omega\int_{0}^{t}\cos\Omega(t-\tau)G_{\beta,-k-1,k}(-\lambda^{-1},\tau)d\tau\biggr]. \end{multline}
(28)

4. Calculation of the shear Stress

Now taking Laplace transformation of (7)
\(\Big[( 1 + \lambda D^{\beta}_{t})\tau(r,t) \Big] = £\Big[\mu\frac{\partial{v(r,t)}}{\partial r}\Big] \bar{\tau}(r,q) + \lambda q^{\beta} \bar{\tau}(r,q) = \mu\frac{\partial\bar{v}(r,q)}{\partial r} \bar{\tau}(r,q)\Big[1 + \lambda q^{\beta}\Big] = \mu \frac{\partial\bar{v}(r,q)}{\partial r}, \)
\begin{equation}\label{29} \bar{\tau}(r,q)=\frac{\mu}{(1 + \lambda q^{\beta})}\frac{\partial\bar{v}(r,q)}{\partial r}. \end{equation}
(29)
we have
\begin{multline}\label{30} \frac{\partial\bar{v}(r,q)}{\partial{r}}=\frac{1}{\ln(R_2/R_1)}\frac{1}{r}\frac{V\Omega}{q^2+\Omega^2}+{V\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n){\tilde{B}_{0}}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \\ \sum^{\infty}_{k=0}\bigg(\frac{\nu{r_n^2}}{\lambda}\bigg)^k\times\biggr[\Omega\frac{q}{(q^2+\Omega^2)}\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k}}\biggr], \end{multline}
(30)
\begin{multline}\label{31} \bar{\tau}(r,q)=\frac{\mu}{(1+\lambda{q}^{\beta})}\biggr[\frac{1}{\ln(R_2/R_1)}\frac{1}{r}\frac{V\Omega}{q^2+\Omega^2}+{V\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n){\tilde{B}_{0}}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \\ \sum^{\infty}_{k=0}\bigg(\frac{\nu{r_n^2}}{\lambda}\bigg)^k\times\bigg(\Omega\frac{q}{(q^2+\Omega^2)}\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k}}\bigg)\biggr], \end{multline}
(31)
\begin{multline}\label{32} \bar{\tau}(r,q)=\frac{\mu}{\lambda}\biggr[\frac{1}{\ln(R_2/R_1)}\frac{1}{r}\frac{V\Omega}{q^2+\Omega^2}\frac{1}{{q}^\beta+\frac{1}{\lambda}}+{V\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n){\tilde{B}_{0}}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \\ \sum^{\infty}_{k=0}\bigg(\frac{\nu{r_n^2}}{\lambda}\bigg)^k\biggr[\Omega\bigg(\frac{q}{q^2+\Omega^2}\frac{q^{-k-1}}{(q^\beta+\frac{1}{\lambda})^{k+1}}\bigg)\biggr]\biggr], \end{multline}
(32)
\begin{multline}\label{33} \tau(r,t)=\biggr[\frac{\mu}{\lambda}\biggr]\biggr[\frac{1}{\ln(R_2/R_1)}\frac{V}{r}\int^{t}_{0}\sin\Omega(t-\tau)G_{\beta,0,1}(-\lambda^{-1},\tau)d\tau+ {{V}\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n){\tilde{B}_{0}}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \sum^{\infty}_{k=0}\bigg(\frac{-\nu{r_n^{2}}}{\lambda}\bigg)^k\times\bigg(\Omega\int^{t}_{0}\cos\Omega(t-\tau)G_{\beta,-k-1,k+1}(-\lambda^{-1},\tau)d\tau\bigg)\biggr]. \end{multline}
(33)

5. Limiting Cases

5.1. Ordinary Maxwell Fluid

By putting \(\alpha\rightarrow1\),\(\beta\rightarrow1\) in the above results,
Velocity Field:
\begin{multline}\label{34} {v}(r,t)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}(V\sin\Omega{t})-{V\pi}\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)}\sum^{\infty}_{k=0}\bigg(\frac{-\nu{r_n^{2}}}{\lambda}\bigg)^k \times\biggr[\Omega\int^{t}_{0}\cos\Omega(t-\tau)G_{1,-k-1,k}(-\lambda^{-1},\tau)d\tau\biggr]. \end{multline}
(34)
Shear Stress:
\begin{multline}\label{35} \tau(r,t)=\biggr[\frac{\mu}{\lambda}\biggr]\biggr[\frac{1}{\ln(R_2/R_1)}\frac{V}{r}\int^{t}_{0}\sin\Omega(t-\tau)G_{1,0,1}(-\lambda^{-1},\tau)d\tau+ {{V}\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n){\tilde{B}_{0}}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \sum^{\infty}_{k=0}\bigg(\frac{-\nu{r_n^{2}}}{\lambda}\bigg)^k\times\bigg(\Omega\int^{t}_{0}\cos\Omega(t-\tau)G_{1,-k-1,k+1}(-\lambda^{-1},\tau)d\tau\bigg)\biggr]. \end{multline}
(35)

5.2. Newtonian Fluid

By placing \(\lambda\rightarrow0\), \(\lambda_{r}\rightarrow0\) in the last consequences of ordinary Maxwell fluid, we can get the results for newtonian fluid.
\begin{multline}\label{36} {v}(r,t)=\frac{\ln(r/R_1)}{\ln(R_2/R_1)}(V\sin\Omega{t})-{V\pi}\sum^{\infty}_{n=1}\frac{J^{2}_{0}(R_1r_n)B_0(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \bigg(\frac{-\Omega\nu{r^2_n}}{\Omega^2+\nu^2{r^4_n}}\exp({-\nu{r^2_n}{t}})+\frac{\Omega\nu{r^2_n}}{\Omega^2+\nu^2{r^4_n}}\cos\Omega{t}+\frac{\Omega^2}{\Omega^2+\nu^2{r^4_n}}\sin\Omega{t}\bigg). \end{multline}
(36)
Above result is similar to the result which already established in [1].
\begin{multline}\label{37} \tau(r,t)=\mu\biggr[\frac{1}{r}\frac{1}{\ln(R_2/R_1)}(V\sin\Omega{t})+{V\pi}\sum^{\infty}_{n=1}\frac{{r_n}J^{2}_{0}(R_1r_n)\tilde{B_0}(rr_n)}{J^{2}_{0}(R_1r_n)-J^{2}_{0}(R_2r_n)} \bigg(\frac{-\Omega\nu{r^2_n}}{\Omega^2+\nu^2{r^4_n}}\exp({-\nu{r^2_n}{t}})+\frac{\Omega\nu{r^2_n}}{\Omega^2+\nu^2{r^4_n}}\cos\Omega{t}+\frac{\Omega^2}{\Omega^2+\nu^2{r^4_n}}\sin\Omega{t}\bigg)\biggr]. \end{multline}
(37)

6. Conclusion

The purpose of this work is to find exact solutions for velocity field and adequate shear stress corresponding to the flow of Maxwell fluid between two longitudinally oscillating circular cylinders, whose lengths are infinite, with fractional derivatives. The motion of the fluid is produced by outer cylinder where inner cylinder is fixed, at time \(t=0^+\). It is worthwile to note that results obtained in [1] are special cases of our results. Finally we recover corresponding solutions for ordinary Maxwell and Newtonian fluids are as limiting cases.

Appendix

Followings are some expressions used in the text:
(A1).~~~The finite Hankel transform of the funcion \begin{equation*} a(r)=\frac{C_1\ln(R_2/r)+ C_2\ln(r/R_1)}{\ln(R_2/R_1)} ~~~~~. \end{equation*} satisfying \(a(R_1)=C_1\) and \(a(R_2)=C_2\) is \begin{equation*} a_n(r)=\int_{R_1}^{R_2}r a(r) B_0(rr_n) dr=\frac{2C_2}{\pi r_n^2}-\frac{2C_1}{\pi r_n^2}\frac{J_0(R_2 r_n)}{J_0(R_1 r_n)}. \end{equation*}

Competing Interests

The author do not have any competing interests in the manuscript.

References

  1. Jamil, M., & Fetecau, C. (2010). Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary. Nonlinear Analysis: Real World Applications, 11 (5), 4302-4311. [Google Scholor]
  2. Friedrich, C. H. R. (1991). Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheologica Acta,30(2), 151-158. [Google Scholor]
  3. Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Elsevier. [Google Scholor]
  4. Jamil, M., & Fetecau, C. (2010). Some exact solutions for rotating flows of a generalized Burgers’ fluid in cylindrical domains. Journal of Non-Newtonian Fluid Mechanics, 165(23-24), 1700-1712.[Google Scholor]
  5. Fetecau, C., Mahmood, A., Fetecau, C., & Vieru, D. (2008). Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder. Computers & Mathematics with Applications, 56(12), 3096-3108. [Google Scholor]
  6. Tong, D., & Liu, Y. (2005). Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. International Journal of Engineering Science, 43(3), 281-289. [Google Scholor]
  7. Kamran, M., Imran, M., Athar, M., & Imran, M. A. (2012). On the unsteady rotational flow of fractional Oldroyd-B fluid in cylindrical domains. Meccanica, 47(3), 573-584.[Google Scholor]
  8. Mahmood, A., Khan, N. A., Fetecau, C., Jamil, M., & Rubbab, Q. (2009). Exact analytic solutions for the flow of second grade fluid between two longitudinally oscillating cylinders. Journal of Prime Research in Mathematics,5, 192-204. [Google Scholor]
  9. Mahmood, A., Parveen, S., & Khan, N. A. (2011). Exact solutions for the flow of second grade fluid in annulus between torsionally oscillating cylinders. Acta Mechanica Sinica, 27 (2), 222-227. [Google Scholor]
  10. Mahmood, A., & Bolat, G. (2008). Some exact solutions for the rotational flow of a generalized second-grade fluid between two circular cylinders. Archives of Mechanics, 60(5), 385-401. [Google Scholor]
  11. Mahmood, A., Saifullah, K., & Rubab, Q. (2008). Exact solutions for a rotational flow of generalized second grade fluids through a circular cylinder. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, (3), 9-17. [Google Scholor]
  12. Mahmood, A., Parveen, S., Ara, A., & Khan, N. A. (2009). Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3309-3319. [Google Scholor]
  13. Waters, N.D. & King, M.G. (1970). Unsteady flow of an elastic-viscous liquid. Rheolgica Acta,3, 34-355.[Google Scholor]
  14. Siddique, I., & Vieru, D. (2012). Exact solutions for rotational flow of a fractional Maxwell fluid in a circular cylinder. Thermal Science, 16(2), 345-355. [Google Scholor]
  15. Bandelli, R., Rajagopal, K., & Galdi, G. (1995). On some unsteady motions of fluids of second grade. Archives of Mechanics, 47(4), 661-676. [Google Scholor]
  16. Fetecau, C., Imran, M., Fetecau, C., & Burdujan, I. (2010). Helical flow of an Oldroyd-B fluid due to a circular cylinder subject to time-dependent shear stresses. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 61(5), 959-969. [Google Scholor]
  17. Fetecau, C., Akhtar, W., Imran, M. A., & Vieru, D. (2010). On the oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders. Computers & Mathematics with Applications, 59(8), 2836-2845. [Google Scholor]
  18. Jamil M., Awan A.U., & Vieru D. (2011). Unsteady Helical Flows of Maxwell Fluids via Prescribed Shear Stresses. Bulletin of the Polytechnic Institute of Iasi, Tome LVII(LXI), Fasc. 1 137-148 [Google Scholor]
  19. Lorenzo C. F., Hartley T. T. Generalized Functios for the FractionalCalculus, Nasa/TP-1999-20942/REV\,1, (1999).[Google Scholor]
]]>
The Generalized Zagreb Index of Capra-Designed Planar Benzenoid Series \(Ca_k(C_6)\) https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/the-generalized-zagreb-index-of-capra-designed-planar-benzenoid-series-ca_kc_6/ Mon, 25 Sep 2017 23:30:54 +0000 https://old.pisrt.org/?p=1800
OMS-Vol. 1 (2017), Issue 1, pp. 44–51 | Open Access Full-Text PDF
Muhammad S. Sardar, Sohail Zafar, Mohammad R. Farahani
Abstract:Let \(G=(V,E)\) be a simple connected graph. The sets of vertices and edges of \(G\) are denoted by \(V=V(G)\) and \(E=E(G)\), respectively. In such a simple molecular graph, vertices represent atoms and edges represent bonds. In chemical graph theory, we have many topological indices for a molecular graph. The First and Second Zagreb indices are equal to \(M_1(G)=\sum_{uv \in E(G)}[d_u+d_v]\) and \(M_2(G)=\sum_{uv \in E(G)} d_{u}d_{v}\), respectively. In this paper, we focus on the structure of Capra-designed planar benzenoid series \(Ca_k(C_6)\) \((k\geq0)\), and compute its Generalized Zagreb index.
]]>

Open Journal of Mathematical Sciences

The Generalized Zagreb Index of Capra-Designed Planar Benzenoid Series \(Ca_k(C_6)\)

Muhammad S. Sardar, Sohail Zafar, Mohammad R. Farahani\(^1\)
Department of Mathematics, University of Management and Technology (UMT), Lahore, Pakistan. (M.S.S & S.Z)
Department of Applied Mathematics, Iran University of Science and Technology(IUST), Narmak, Tehran 16844, Iran. (M.R.F)

\(^{1}\)Corresponding Author: mr_farahani@mathdep.iust.ac.ir

Abstract

Let \(G=(V,E)\) be a simple connected graph. The sets of vertices and edges of \(G\) are denoted by \(V=V(G)\) and \(E=E(G)\), respectively. In such a simple molecular graph, vertices represent atoms and edges represent bonds. In chemical graph theory, we have many topological indices for a molecular graph. The First and Second Zagreb indices are equal to \(M_1(G)=\sum_{uv \in E(G)}[d_u+d_v]\) and \(M_2(G)=\sum_{uv \in E(G)} d_{u}d_{v}\), respectively. In this paper, we focus on the structure of Capra-designed planar benzenoid series \(Ca_k(C_6)\) \((k\geq0)\), and compute its Generalized Zagreb index.

Keywords:

Molecular Graph, Capra Operation, Benzenoid Series, Generalized Zagreb Index.

1. Introduction

Let \(G=(V,E)\) be a simple connected graph of finite order \(n=|V|=|V(G)|\) with the set of vertices and the set of edges \(E=E(G)\). We denote by \(d_v\), the degree of a vertex \(v\) of \(G\) which is defined as the number of edges incident to \(v\). A general reference for the notation in graph theory is [1]. A molecular graph is a simple finite graph such that its vertices correspond to the atoms and the edges to the bonds.

In chemistry, graph invariants are known as topological indices. In graph theory, we have many different topological indices of arbitrary graph \(G\). A topological index of a graph is a number related to a graph which is invariant under graph automorphisms. Obviously, every topological index defines a counting polynomial and vice versa.

The Wiener index \(W(G)\) is the oldest based structure descriptor [2, 3, 4], introduced by Harold Wiener in 1947, is the first topological index in chemistry. The Wiener index of \(G\) is defined as the sum of distances between all pairs of vertices of \(G\) and is equal as follow: \begin{eqnarray*}\label{F1} W(G) &=& \frac{1}{2} \sum \limits_{(u,v)} d(u,v). \end{eqnarray*} where \((u,v)\) is any ordered pair of vertices in \(G\) and \(d(u,v)\) is \(u-v\) geodesic.

The Zagreb index was defined about forty years ago by I. Gutman and N. Trinajstic in 1972 [5] (or, more precisely, the First Zagreb index, because there exists also a Second Zagreb index [4]). The First Zagreb index of \(G\) is defined as the sum of the squares of the degrees of all vertices of \(G\) [6,7]. The first and second Zagreb indices of \(G\) are denoted by \(M_1(G)\) and \(M_2(G)\), respectively and defined as follows: \begin{eqnarray*} M_1(G) &=& \sum_{u \in V(G)} d_u^2 \hspace{10mm} \mbox{and} \hspace{10mm}\\ M_2(G) &=& \sum_{uv \in E(G)} d_{u}d_{v}. \end{eqnarray*} In fact, one can rewrite the first Zagreb index as $$M_1(G)=\sum_{uv \in E(G)} \big[ d_u+d_v \big].$$ where \(d_u\) and \(d_v\) are the degrees of \(u\) and \(v\), respectively. In 2011, M. Azari and A. Iranmanesh [8] introduced the generalized Zagreb index of a connected graph \(G\), based on degree of vertices of \(G\). The Generalized Zagreb index of \(G\) is defined for arbitrary non-negative integer \(r\) and \(s\) as follows: $$M_{(r,s)}(G)=\sum_{uv \in E(G)} \big[ d_u^rd_v^s+d_u^sd_v^r \big].$$

In [8], A. Iranmanesh and M. Azari expressed some of the obvious properties of the Generalized Zagreb index of a graph \(G\).

Theorem 1.1. [8] Let \(G\) be a graph with the vertex and edge sets \(V(G)\) and \(E(G)\). Some of the properties of the generalized Zagreb index of \(G\) are as

  1. \(M_{(0,0)}(G)=2\sum_{v \in V(G)}=2|E(G)|\).
  2. \(M_{(1,0)}(G)=M_1(G)\).
  3. \(M_{(r-1,0)}(G)=\sum_{v \in V(G)}dv^r\).
  4. \(M_{(1,1)}(G)=2M_2(G)\).
  5. \(M_{(r,r)}(G)=2 \sum_{uv \in E(G)}(d_u\times d_v)^r\).

2. What is the Capra Operation?

A mapping is a new drawing of an arbitrary planar graph \(G\) on the plane. In graph theory, there are many different mappings (or drawing); one of them is Capra operation. This method enables one to build a new structure of a planar graph \(G\).

Let \(G\) be a cyclic planar graph. Capra map operation is achieved as follows:

  1. insert two vertices on every edge of \(G\);
  2. add pendant vertices to the above inserted ones and
  3. connect the pendant vertices in order \((-1,+3)\) around the boundary of a face of \(G\). By runing these steps for every face/cycle of \(G\), one obtains the Capra-transform of \(G\) \(Ca(G)\), see Figure 1.
By iterating the Capra-operation on the hexagon (i.e. benzene graph \(C_6\)) and its \(Ca-\)transforms, a benzenoid series (Figures 2 and 3) can be designed. We will use the Capra-designed benzene series to calculate some connectivity indices (see below).

This method was introduced by M.V. Diudea and used in many papers [9, 10, 11, 12, 13, 14, 15, 16]. Since Capra of planar benzenoid series has a very remarkable structure, we lionize it.

We denote Capra operation by \(Ca\), in this paper, as originally Diudea did. Thus, Capra operation of arbitrary graph \(G\) is \(Ca(G)\), iteration of Capra will be denoted by \(CaCa(G)\) (or we denote \(Ca_2(G))\) (Figures 2 and 3).

The benzene molecule is a usual molecule in chemistry, physics and nano sciences. This molecule is very useful to synthesize aromatic compounds. We use the Capra operation to generate new structures of molecular graph benzene series.

In this paper, we focus on the the structure of Capra-designed planar benzenoid series \(Ca_k(C_6)\), \(k\geq0\) and compute its generalized Zagreb index.

An example of Capra map operation on the hexagon face. Since Capra of planar benzenoid series has a very remarkable structure, we lionize it.

The first two graphs \(Ca(C_6)\) and \(Ca_2(C_6)\) from the Capra of planar benzenoid series, together with the molecular graph of benzene \(C_6\). Benzene is equivalent with \(Ca_0(C_6)\).

 Graph \(Ca_3(C_6)\) is the third member of Capra-designed planar benzenoid series \(Ca_k(C_6)\).

The aim of this paper is to compute the generalized Zagreb index \(M_{(r,s)}\)(G) of Capra-designed planar benzenoid series \(Ca_k(C_6)\).

3. Main Results

Capra transforms of a planar benzenoid series is a family of molecular graphs which are generalizations of benzene molecule \(C_6\). In other words, we consider the base member of this family is the planar benzene, denoted here \(Ca_0(C_6)=C_6=\) benzene. It is easy to see that \(Ca_k(C_6)=Ca(Ca_{k-1}(C_6))\) (Figures 2 and 3) ([9, 10, 11, 12, 13, 14, 15, 16]). In addition, we need the following notions [17]. Let \(G\) be a molecular graph and \(d_v\) is the degree of vertex \(v\in V(G)\). We divide vertex set \(V(G)\) and edge set \(E(G)\) of graph \(G\) to several partitions, as follow:

\(\forall i\), \(\delta < i< \Delta\), \(V_i=\{v \in V(G) |d_v=i\}\),
and \(\forall k, \delta^2\leq k\leq \Delta^2, E^*_k=\{e=uv\in E(G)|d_v\times d_u=k\}\).
Obviously, \(1\leq\delta\leq d_v\leq\Delta\leq n-1\) such that \(\delta=Min\{d_v|v\in V(G)\}\) and \(\Delta=Max\{d_v|v\in V(G)\}\).

Theorem 3.1. Consider the graph \(G=Ca_k(C_6)\) as the iterative Capra of planar benzenoid series. Then: $$ M_{(r,s)}=3(7^k-2(3^{k-1})-1)\times \big[ 2(3^{r+s}) \big]+4(3^k) \times\big[ 2^r3^s+2^s3^r \big]+3(3^{k-1}+1)\times \big[2(2^{r+s}) \big]. $$

Proof. Consider the Capra of planar benzenoid series \(G=Ca_k(C_6)\) \((k\geq1)\). By construction, the structure \(Ca_k(C_6)\) collects seven times of structure \(Ca_k-1(C_6)\) (we call "flower" the substructure \(Ca_{k-1}(C_6)\) in the graph \(Ca_k(C_6))\). Therefore, by simple induction on \(k\), the vertex set of \(Ca_k(C_6)\) will have \(7\times|V(Ca_k(C_6))|-6(2\times3^{k-1}+1)\) members. Because, there are \(3^{k-1}+1\) and \(3^{k-1}\) common vertices between seven flowers \(Ca_{k-1}(C_6)\) in \(Ca_k(C_6)\), marked by full black color in the above figures. Similarly, the edge set \(E(Ca_k(C6))\) have \(7\times|E(Ca_k(C_6))|-6(2×3^{k-1}+1)\) members. Since, there are \(3^{k-1}\) and \(3^{k-1}\) common edges (full black color in these figures).
Now, we solve the recursive sequences \(|V(Ca_k(C_6))|\) and \(|E(Ca_k(C_6))|\). First, suppose \(n_k=|V(Ca_k(C_6))|\) and \(e_k=|E(Ca_k(C_6))|\)
so \(n_k=7n_{k-1}-4(3^k)-6\) and \(e_k=7e_{k-1}-4(3^k)\). Thus, we have
\(n_k=7n_{k-1}-4ò_k-6\)
\(=7(7n_{k-2}-4ò_{k-1}-6)-4ò_k-6\)
\(=7^2n_{k-2}-7(4ò_{k-1}+6)-(4ò_k+6)\)
\(=7^3n_{k-3}-7^2(4ò_{k-2}+6)-7(4ò_{k-1}+6)-(4ò_k+6)\)
.
.
.
\(=7^in_{k-i}-7^{i-1}(4ò_{k-(i-1)}+6)-...-7(4ò_{k-1}+6)-(4ò_k+6)\)
\(=7^in_{k-i}-\sum^{i-1}_{j=0}7^j(4ò_{k-j}+6)\)
.
.
.
\(=7^kn_{k-k}-\sum^{k-1}_{i=0}7^i(4ò_{k-i}+6)\)

\begin{eqnarray}\label{A} =7^kn_0-4\sum^{k-1}_{i=0}7^i3^{k-i}-6\sum^{k-1}_{i=0}7^i \end{eqnarray}
(1)
where \(n_0=6\) is the number of vertices in benzene \(C_6\) (Figure 2) and \(6\sum^{k-1}_{i=0}7^i\) is equal to \(\frac{6(7^k-1)}{7-1}=7^k-1\). On the other hand, since
\((\alpha-\beta)\sum^n_{i=0}\alpha^i\beta^{n-1}=(\alpha-\beta)(\alpha^0\beta^n+\alpha^1\beta^{n-1}+...+\alpha^{n-1}\beta^1+\alpha^n\beta^0)=(\alpha^{n+1}-\beta^{n+1})\) Hence
\(\sum^{k-1}_{i=0}7^i3^{k-i}=(7^03^k+7^13^{k-1}+...+7^{k-2}3^2+7^{k-1}3^1)+7^k3^0-7^k3^0\)
\(=\frac{7^{k+1}-3^{k+1}}{7^1-3^1}-7^k3^0\)
\(=\frac{7^{k+1}-3^{k+1}-4(7^k)}{4}\)
\(=\frac{3(7^k-3(3^k))}{4}\)
\begin{equation}\label{B} =\frac{3}{4}(7^k-3^k). \end{equation}
(2)
Therefore, by using equations (1) and (2), we have
\(n_k=6\times7^k-(4(\frac{3}{4}(7^k-3^k))+(7^k-1))\) and \(\forall k\geq0, n_k=|V(Ca_k(C_6))|=2\times7^k+3^{k+1}+1. \)
By using a similar argument and (1), we can see that
\(e_k=7e_{k-1}-4ò=7^2e_{k-2}-7(4ò_{k-1})-4ò.\)
.
.
.
\(=7^ke_{k-k=0}-4\sum^{k-1}_{i=0}7^iò_{k-i}=7^ke_0-4\sum^{k-1}_{i=0}7^i3^{k-i}\).
It is easy to see that, the first member of recursive sequence \(e_k\) is \(e_0=6\), (Figure 2). Now, by using (2), we have \(e_k=6\times7^k-4(\frac{3}{4}(7^k-3^k))\) and the size of edge set \(E(Ca_k(C_6))\) is equal to: \(e_k=|E(Ca_k(C_6))|=3(^7k+3^k)\), \(\forall k\geq0\).
Also, according to Figures 2 and 3, we see that the number of vertices of degree two in the graph \(Ca_k(C_6)\) (we denote by \(v^{(k)}_2\) ) is equal to \(6\times3(\frac{(v_2^{(k-1))}}{6})-6\). The six removed vertices are the common ones between the six flowers \("Ca_{k-1}(C_6)"\) with degree three. By using a similar argument and simple induction, we have \(v_2^{k-1}\) the numbers of edges of graph \(Ca_k(C_6)\), which are in the set \(E_4\) or \(E_4^*\) (denoted by \(e_4^{(k)}\)).
Now, we solve the recursive sequence \(v_2^{(k)}=6(3(\frac{v_2^{(k-1)}}{6})-1)\) and we conclude \(v_2^{k}=3v_2^{(k-1)}-6=3(3v_2^{(k-2)}-6)-6=...=3^kv_2^{(0)}-6\sum^{k-1}_{i=0}3^i\).
It is obvious that, according to the structure of benzene, \(v_2^{(0)}=n_0=6\). Thus, \(v_2^{(k)}=6\times3^k-6(\frac{3^k-1}{3-1})=3^k+1+3.\)
Also, \(e_4^{(k)}=|E_4|=|E_4^*|=v_2^{(k-1)}=3^{k+1}+3\) and according to the above definition, it is obvious that, for Capra of planar benzenoid series \(G=Ca_k(C_6)\) we have two partitions: \(V_2=\{v\in V(Ca_k(C_6))|d_v=2\}\) and \(V_3=\{v\in V(Ca_k(C_6))|d_v=3\}\) with the size \(3^{k+1}+3\) and \(2(7^k-1)\) respectively.
On the other hand, according to the structure of Capra planar benzenoid series \(Ca_k(C_6)\), there are \(2v_2^{(k)}\) edges, such that the first point of them is a vertex with degree two. Among these edges, there exist \(v_2^{k-1}\) edges, of which the first and end point of them have degree 2 (the members of \(E_4\) or \(E_4^*\) ).
Thus, \(e_5^{(k)}=|E_5|=|E_6^*|=2v_2^{(k)}-2e_4^{(k)}=2v_2^{(k)}-2v_2^{(k-1)}\). So, the size of edge set \(E_5\) and \(E_6^*\) is equal to \(e_5^{k}=2(3^{k+1}+3-3^k-3)=4(3^k)\).
Now, it is obvious that:
\(e_6^{(k)}=|E_6|=|E_9^*|=3(7^k+3^k)-e_5^{(k)}-e_4^{(k)}\)
\(=3\times7^k+3^{k+1}-4\times3^k-3^k-3\)
\(=3\times7^k-2\times3^k-3\)
\(={3(7^k-2(3^{k-1})-1)}.\)
Now, we know the size of all sets \(V_2, V_3, E_4, E_4^*, E_5, E_6^*, E_6\) and \(E_9^*\). So, we can calculate the Generalized Zagreb Index Of Capra planar benzenoid series \(G=Ca_k(C_6)\), as follow:
Thus, we have following computations for the generalized Zagreb index of Capra planar benzenoid series \(G=Ca_k(C_6)\) $$M_{(r,s)}(G)=\sum_{uv \in E(G)} \big[ d_u^rd_v^s+d_u^sd_v^r \big] $$ $$=\sum_{uv \in E(G)} \big[ 3^r3^s+3^s3^r \big]+\sum_{uv \in E(G)} \big[ 2^r3^s+2^s3^r \big]+\sum_{uv \in E(G)} \big[ 2^r2^s+2^s2^r \big] $$ $$=\sum_{uv \in E(G)} \big[ 2(3^{r+s}) \big]+\sum_{uv \in E(G)} \big[ 2^r3^s+2^s3^r \big]+\sum_{uv \in E(G)} \big[2(2^{r+s})\big] $$ $$=3(7^k-2(3^{k-1})-1)\times \big[ 2(3^{r+s}) \big]+4(3^k) \times\big[ 2^r3^s+2^s3^r \big]+3(3^{k-1}+1)\times \big[2(2^{r+s}) \big].$$ Thus, we completed the proof of the theorem.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17-20. [Google Scholor]
  2. Dobrynin, A. A., Entringer, R., & Gutman, I. (2001). Wiener index of trees: theory and applications. Acta Applicandae Mathematica, 66(3), 211-249. [Google Scholor]
  3. Needham, D. E., Wei, I. C., & Seybold, P. G. (1988). Molecular modeling of the physical properties of alkanes. Journal of the American Chemical Society, 110(13), 4186-4194.[Google Scholor]
  4. Rücker, G., & Rücker, C. (1999). On topological indices, boiling points, and cycloalkanes. Journal of chemical information and computer sciences, 39(5), 788-802. [Google Scholor]
  5. Gutman, I., & Trinajstić, N. (1972). Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4), 535-538.[Google Scholor]
  6. Gutman, I., & Das, K. C. (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem, 50(1), 83-92.[Google Scholor]
  7. Gutman, I., Ruščić,, B., Trinajstić, N., & Wilcox, C. F. (1975). Graph theory and molecular orbits.XII. Acyclic polyenes. J. Chem. Phys, 62, 3399-3405.[Google Scholor]
  8. Azari, M., & Iranmanesh, A. (2011). Generalized Zagreb index of graphs. Studia Universitatis Babes-Bolyai, Chemia, 56(3), 59-70.[Google Scholor]
  9. Goldberg, M. (1937). A class of multi-symmetric polyhedra. Tohoku Mathematical Journal, First Series, 43, 104-108. [Google Scholor]
  10. Dress, A., & Brinkmann, G. (1996). Phantasmagorical fulleroids. MATCH Commun. Math. Comput. Chem, 33, 87-100.[Google Scholor]
  11. Diudea, M. V. (2005). Nanoporous carbon allotropes by septupling map operations. Journal of chemical information and modeling, 45(4), 1002-1009. [Google Scholor]
  12. Diudea, M. V., Stefu, M., John, P. E., & Graovac, A. (2006). Generalized operations on maps. Croatica chemica acta, 79(3), 355-362. [Google Scholor]
  13. Farahani, M. R., & Vlad, M. P. (2012). On the Schultz, Modified Schultz and Hosoya polynomials and Derived Indices of Capra-designed planar Benzenoids. Studia UBB Chemia, 57(4), 55-63. [Google Scholor]
  14. Farahani, M. R. (2012). Computing \(ABC_{4}\) index of Capra-designed planar benzenoid series \(Ca_{k}(C_{6})\). Advances in Materials and Corrosion, 1(1), 61-64. [Google Scholor]
  15. Farahani, M. R. (2013). On the Schultz polynomial and Hosoya polynomial of circumcoronene series of Benzenoid. Journal of Applied Mathematics & Informatics, 31(5-6), 595-608. [Google Scholor]
  16. Farahani, M. R. (2013). A new version of Zagreb index of circumcoronene series of benzenoid. Chemical Physics Research Journal, 6(1), 27-33. [Google Scholor]
  17. Farahani, M. R. (2012). Some connectivity indices and Zagreb index of polyhex nanotubes. Acta Chim. Slov, 59, 779-783. [Google Scholor]
]]>
QCD Ghost Dark Energy in Fractal Cosmology https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/qcd-ghost-dark-energy-in-fractal-cosmology/ Mon, 25 Sep 2017 23:14:56 +0000 https://old.pisrt.org/?p=1795
OMS-Vol. 1 (2017), Issue 1, pp. 34–43 | Open Access Full-Text PDF
Ines G. Salako, Faiza Gulshan
Abstract: We discuss the interacting QCD ghost dark energy with cold dark matter in the framework of Fractal cosmology. We investigate the cosmological parameters such as Hubble parameter, deceleration parameter and equation of state. We also discuss the physical significance of various cosmological planes like \(\omega_{D}-{\omega}'_{D}\) and state-finder. At the end, it is observed that all the results are compatible with observational data.
]]>

Open Journal of Mathematical Sciences

QCD Ghost Dark Energy in Fractal Cosmology

Ines G. Salako, Faiza Gulshan\(^1\)
Département de Physique – Université d’Agriculture, de Kétou BP 13 Kétou, Bénin. (I.G.S)
Department of Mathematics, Lahore Leads University, Lahore-54590, Pakistan. (F.G)

\(^{1}\)Corresponding Author: fazi.gull@yahoo.com

Abstract

We discuss the interacting QCD ghost dark energy with cold dark matter in the framework of Fractal cosmology. We investigate the cosmological parameters such as Hubble parameter, deceleration parameter and equation of state. We also discuss the physical significance of various cosmological planes like \(\omega_{D}-{\omega}’_{D}\) and state-finder. At the end, it is observed that all the results are compatible with observational data.

Keywords:

Fractal cosmology, HDE models, QCD ghost model, Cosmological parameters, Cosmological planes.

1. Introduction

The problem of accelerated expansion is a critical topic in cosmology since its discovery [1]. The main cause of accelerated expansion of the universe is a unknown force so-called dark energy (DE). To explain the nature of DE many cosmologists have proposed many models and theories. Many DE theories for dynamical DE scenario have been proposed to interpret the nature of accelerating universe. A number of DE models have been discussed in this context by many cosmologists. Cosmological constant \(\Lambda\) (\(\Lambda CDM\)) [2] is the simplest candidate for DE (has a constant energy and pressure with constant equation of state). But this model has faced two major problems, cosmic coincidence and fine tuning [2].

In order to describe accelerated expansion phenomenon, two different approaches has been adopted. One is the proposal of various dynamical DE models such as family of chaplygin gas [3], holographic [4, 5], new agegraphic [6], polytropic gas [7], pilgrim [8, 9, 10] \(DE\) models etc. A second approach for understanding this strange component of the universe is modifying the standard theories of gravity, namely, General Relativity (GR) or Teleparallel Theory Equivalent to GR (TEGR). Several modified theories of gravity are \(f(R)\), \(f(T)\) [11, 12, 13, 14, 15, 16], \(f(R,\mathcal{T})\) [17, 18], \(f(G)\) [19, 20, 21, 22, 23] (where \(R\) is the curvature scalar, \(T\) denotes the torsion scalar, \(\mathcal{T}\) is the trace of the energy momentum tensor and \(G\) is the invariant of Gauss-Bonnet defined as \(G=R^2-4R_{\mu\nu}R^{\mu\nu}+ R_{\mu\nu \lambda\sigma}R^{\mu\nu\lambda\sigma}\)). For clear review of DE models and modified theories of gravity, see the reference [24, ].

We arrange the paper as follow: Section 2 describes the basic equations of fractal cosmology. In section 3, we discuss the cosmological parameters (Hubble, Deceleration, EoS) and planes (\(\omega_{D}-\omega'_{D}\), state-finder). In the last section, we conclude our results.

2. Fractal Cosmology

According to Einstein gravity in a fractal space-time, the total action is [25, 26, ]
\begin{equation}\label{2} S=S_{G}+S_{m}, \end{equation}
(1)
where \(S_{G}\) is the gravitational part of the action and can be defined as
\begin{equation}\label{3} S_{G}=\frac{1}{16{\pi}G}\int{d\varrho(x)\sqrt{-g}\big(R-2\Lambda- \omega\partial_{\mu}\nu\partial^{\mu}\nu\big)}, \end{equation}
(2)
and \(S_{m}\) is the matter part of the action is
\begin{equation}\label{4} S_{m}=\int{d\varrho(x)\sqrt{-g}{L}_{m}}. \end{equation}
(3)
Where \(g\) is the determinant of the metric (dimensionless) \(g_{\mu\nu}\), \(\Lambda\) is the cosmological constant and \(R\) is the Ricci scalar, \(\nu\) and \(\omega\) are the fractional function and fractal parameter respectively, while the standard measure \(d^{4}x\) is replaced with a Lebesgue-Stieltjes measure \(d\varrho(x)\). The Friedmann equation in fractal universe can be obtained after variation of Eq.(1) with respect to the \(g_{\mu\nu}\) as
\begin{equation}\label{5} H^{2}+H\frac{\dot{\nu}}{\nu}-\frac{\omega}{6} \dot{\nu}^{2}=\frac{1}{3}(\rho_{de}+\rho_{m})+\frac{\Lambda}{3}. \end{equation}
(4)
Here \(H\) denotes the Hubble parameter (\(H=\frac{\dot{a}}{a}\)), \(\rho_{cdm}\) and \(\rho_{de}\) are the energy densities due to CDM and DE and \(p=p_{de}\) is the pressure of DE. \(k\) is the curvature constant with different values of \(k=0,+1,-1\) described as a flat closed and open universe respectively. \(\Lambda\) is the cosmological constant. The continuity equations in fractal universe are given by
\begin{eqnarray}\label{6} \dot{\rho_{m}}+(3H+\frac{\dot{\nu}}{\nu})\rho_{m}=Q, \end{eqnarray}
(5)
\begin{eqnarray}\label{7} \dot{\rho_{de}}+(3H+\frac{\dot{\nu}}{\nu})(\rho_{de}+p_{de})=-Q. \end{eqnarray}
(6)
Where \(Q\) describes as the interaction term between DE and CDM with \(Q=3b^{2}H\rho_{m}\) and \(b^{2}\) is a coupling constant. By assuming a timelike fractal profile \(\nu=a^{-\gamma}\) (where \(\gamma\) is the constant), the Friedmann equation becomes
\begin{equation}\label{8} {H^{2}}(1-\gamma-\frac{\gamma^{2}\omega a^{-2\gamma}}{6})=\frac{1}{3}(\rho_{de}+\rho_{m}), \end{equation}
(7)
and the continuity equations can be written as
\begin{equation}\label{9} \dot{\rho_{m}}=(3b^{2}-3+\gamma)\rho_{m0}a^{(3b^{2}-3+\gamma)}H. \end{equation}
(8)
\begin{equation}\label{10} {\dot\rho_{de}}+H(3-\gamma)(\rho_{de}+p_{de})=-3b^{2}H\rho_{m0}a^{(3b^{2}-3+\gamma)}. \end{equation}
(9)
Where \(\rho_{m0}\) is the integrating constant.

3. QCD Ghost Dark Energy

Recent observations have been proved that Veneziane ghost of chromodynamics QCD is a good model and helps to solve the U(1) problem [27]. Veneziane ghost DE model contribute to the vacuum energy and proportional to \(\Lambda^{3}_{QCD}H\) (smallest \(QCD\) scale), where \(H\) is the Hubble parameter and \(\Lambda_{QCD}\) is the QCD mass scale. GDE is defined as [28, 29, 30, 31, 32] \(\rho_{de}=\alpha H\). This model is discussed for many cosmological parameter theories and observational schemes. Later on, it has been discussed in the form \(H+O(H^{2})\) [33] of Veneziane ghost in QCD has enough vacuum energy by which the early evolution of the universe is explained (with the help of \(H^{2}\)) [34]. This model is called generalized ghost DE model (GGDE). Garcia-Salcedo has proposed a new version of GGDE called QCD ghost DE model which depends on the radius of trapping horizon. For flat universe, it is defined as
\begin{equation}\label{28} \rho_{de}=\frac{\alpha(1-\epsilon)}{\tilde{r}_{T}}, \end{equation}
(10)
where \(\alpha\) is numerical constant, \(\epsilon=\frac{\dot{\tilde{r}}_T}{2H\tilde{r}_{T}}\) and \(\tilde{r}_{T}=\frac{1}{H}\). Using these values in Eq.(10), we get
\begin{equation}\label{29} \rho_{de}=\alpha(1+\frac{\dot H}{2H^{2}})H. \end{equation}
(11)

3.1. Hubble Parameter

By using Eqs.(7) and (11), we get the Hubble parameter in the form
\begin{equation}\label{30} \frac{\dot{H}}{H^{2}}=\frac{6}{\alpha}\bigg(H(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{1}{3H}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2. \end{equation}
(12)

Figure 1. Plots of \(H\) versus \(1+z\) for QCD ghost DE model in fractal Cosmology.

Figure 1 that Hubble parameter corresponds to future day observation of the universe.

3.2. Deceleration Parameter

The deceleration parameter is denoted by \(q\). This parameter tells us the transaction phase of the universe, either accelerating (\(-1 \leq q< 0\)) or decelerating (\(q\geq0\)). Its mathematical form is
\begin{equation}\label{n1} q= -\frac{\ddot{a}a}{{\dot{a}}^2}= -1-\frac{\dot{H}}{H^2}. \end{equation}
(13)
After solving the Eqs. (13) and (12), the deceleration parameter is
\begin{equation}\label{31} q=-1-\frac{6}{\alpha}\bigg(H(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{1}{3H}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)+2. \end{equation}
(14)

Figure 2. Plots of \(q\) versus \(1+z\) for QCD ghost DE model in fractal cosmology.

It is cleared from figure 2 that the deceleration parameter corresponds to acceleration expansion of the universe.

3.3. Equation of State Parameter

This parameter can be obtained by using Eqs.(9) and (12) as follows
\begin{eqnarray}\nonumber \omega_{de}&=&-1-2\bigg(\alpha(3-\gamma)\bigg(2H^{2}+\bigg(\frac{6}{\alpha}\bigg(H^{3} \bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}\rho_{m0}\\\nonumber&\times&a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2} \bigg)\bigg)\bigg)^{-1}\bigg((3-\gamma)H\rho_{m_{_{0}}} a^{(3b^{2}-3+\gamma)}+\gamma^{3}{\omega}a^{-2\gamma}H^{3}\\\nonumber&+& \bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg) \bigg(9H\\\nonumber&\times&\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg)-\rho_{m0}a^{(3b^{2} -3+\gamma)}\bigg)-\frac{\alpha}{2}\bigg(\frac{6}{\alpha}\bigg(H^{3} \bigg(1-\gamma-\frac{1}{6}\\\label{32}&\times&\gamma^{2}{\omega}a^{-2\gamma}\bigg)- \frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2} \bigg)^{2}\bigg). \end{eqnarray}
(15)

Figure 3. Plots of \(\omega_{D}\) versus \(1+z\) for QCD ghost DE model in fractal Cosmology.

The plot of EoS versus redshift parameter is shown in Figure 3. The EoS parameter behaves quintom-like nature for the interacting case \(d^2=0.2\). For \(d^2=0.3\), EoS parameter starts from phantom region and goes towards quintessence region of the universe. However, it remains in the phantom region for \(d^2=0.4\).

3.4. \(\omega_{D}-\omega'_{D}\) plane

The \(\omega_{D}-\omega'_{D}\) plane characterize thawing as well as the freezing region of universe, i.e., when \(\omega_{D}< 0\) and \({\omega}'_{D}> 0\) then the plane corresponding to thawing region. But if both \(\omega_{D}\) and \({\omega}'_{D}\) are negative, then this plane provides freezing region. Caldwell and Linder [35] discover this method. By taking derivative of Eq.(15), we obtain
\begin{eqnarray}\nonumber {\omega_{D}}'&=&-\frac{2}{H}\bigg(6(3-\gamma)\bigg(H^{3} (1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma})-\frac{H}{3} \rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)\bigg)^{-1}\bigg((3\\\nonumber&-&\gamma) (3b^{2}-3+\gamma)\rho_{m0}a^{(3b^{2}-3+\gamma)}H^{2}-2 \gamma^{4}{\omega}a^{-2\gamma}H^{4}+\bigg(\frac{6}{\alpha}\bigg(H^{3}(1-\gamma\\\nonumber &-&\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg)\bigg((3-\gamma) a^{(3b^{2}-3+\gamma)}\rho_{m0}+3\\\nonumber&\times&\gamma^{3}{\omega}a^{-2\gamma}H^{2}+ \bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}a^{(3b^{2}-3+\gamma)}\rho_{mo}\bigg)-2\\\nonumber&\times&H^{2}\bigg) \bigg(9\bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg)+\frac{1}{H^{2}}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)+3 \gamma^{3}{\omega}a^{-2\gamma}H^{2}\\\nonumber&-&(3b^{2}-3+\gamma)\rho_{m0}a^{(3b^{2}-3+\gamma)} +\frac{\alpha}{H^{3}}\bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg) -\frac{1}{3}\\\nonumber&\times&\rho_{m0}a^{(3b^{2}-3+\gamma)}H\bigg)-2H^{2}\bigg)^{2}-\frac{\alpha} {H^{2}}\bigg(\bigg(\frac{18}{\alpha}H^{2}\bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg)- \frac{2}{\alpha}\\\nonumber&\times&\rho_{m0}a^{(3b^{2}-3+\gamma)}-2H\bigg) \bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg) -\frac{H}{3}a^{(3b^{2}-3+\gamma)}\\\nonumber&\times&\rho_{m0}\bigg)-2H^{2}\bigg)+ \frac{2}{\alpha}\gamma^{3}{\omega}a^{-2\gamma}H^{4}-\frac{2}{\alpha}(3b^{2}-3+\gamma) a^{(3b^{2}-3+\gamma)}\rho_{m0}H^{2}\bigg)\\\nonumber&\times&\bigg)+\bigg(\bigg(\frac{18}{\alpha}H^{2} \bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg)- \frac{2}{\alpha}\rho_{m0}a^{(3b^{2}-3+\gamma)}-2H\bigg) \bigg(\frac{6}{\alpha}\bigg(\\\nonumber&\times&H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg)+ \frac{2}{\alpha}\gamma^{3}a^{-2\gamma}H^{4}\\\nonumber&\times&\omega-\frac{2}{\alpha}(3b^{2}-3+\gamma) \rho_{m0}a^{(3b^{2}-3+\gamma)}H^{2}\bigg)\bigg( 9H\bigg(1-\gamma-\frac{1}{6}\gamma^{2}a^{-2\gamma}{\omega}\bigg)-\\\nonumber&\times&\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg) \bigg)+\frac{2}{H}\bigg(\frac{36}{\alpha}(3-\gamma)\bigg(H^{3} \bigg(1-\gamma-\frac{1}{6}\gamma^{2}{\omega}a^{-2\gamma}\bigg)-\frac{H}{3}\\\nonumber&\times& \rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)^{2}\bigg)^{-1}\bigg((3-\gamma) \rho_{m0}a^{(3b^{2}-3+\gamma)}H+\bigg(9H\bigg(1-\gamma-\frac{1}{6}\gamma^{2}\\\nonumber&\times&{\omega} a^{-2\gamma}\bigg)-\frac{1}{H}\rho_{m0}a^{(3b^{2}-3+\gamma)} \bigg)(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}\rho_{m0}\\\nonumber&\times&a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2})+ \gamma^{3}{\omega}a^{-2\gamma}H^{3}-\frac{\alpha}{2H^{2}}\big(\frac{6}{\alpha} \bigg(H^{3}\bigg(1-\gamma-\frac{1}{6}\gamma^{2}a^{-2\gamma}\\\nonumber&\times&\omega\bigg) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\big)^{2}\bigg) \bigg(4H\bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) \\\nonumber&-&\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg)+\bigg( \bigg(\frac{18}{\alpha}H^{2}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg)- \frac{2}{\alpha}\rho_{m0}\\\nonumber&\times&a^{(3b^{2}-3+\gamma)}-2H\bigg) \bigg(\frac{6}{\alpha}\bigg(H^{3}\bigg(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}\bigg) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)\\\label{2.3.5}&-&2H^{2}\bigg)+ \frac{2}{\alpha}\gamma^{3}{\omega}a^{-2\gamma}H^{4}-\frac{2}{\alpha}(3b^{2}-3+\gamma) \rho_{m0}a^{(3b^{2}-3+\gamma)}H^{2}\bigg)\bigg). \end{eqnarray}
(16)

Figure 4. Plots of \(\omega_{D}-\omega’_{D}\) for QCD ghost DE model in fractal cosmology.

The behavior of \(\omega_{D}-\omega'_{D}\) can be observed from Figure 4 which exhibits the freezing region.

3.5. \(r-s\) plane

With the help of this plane, we can identify different DE models. Trajectories of different DE models have different ranges in this plane. For example, \(\{r,s\}=\{1,0\}\) corresponds to \(\Lambda CDM\) model, \(\{r,s\}=\{1,1\}\) shows \(CDM\) limit, \(\{s>0,r< 1\}\) shows phantom and quintessence while \(\{s< 0,r >1\}\) denotes chaplygin gas region. Mathematical form of state-finder parameters are given by [36]
\begin{equation}\label{n2} r=1+\frac{3\dot{H}}{H^2}+\frac{\ddot{H}}{H^3}~~~and~~~s=\frac{r-1}{3(q-\frac{1}{2})}. \end{equation}
(17)
To obtain the values of \(r-s\) plane we substitute Eq. (12) and (14) in (17),
\begin{eqnarray}\nonumber r&=&1+\bigg(\frac{6}{\alpha}\bigg(H^{3}(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg)\\\nonumber&\times& \bigg(3+\frac{9H}{\alpha}(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{2}{H\alpha}\rho_{m_{_{0}}}a^{(3b^{2}-3+\gamma)}-2\bigg)+\frac{2H^{4}} {\alpha}\\\label{34}&\times&\gamma^{3}{\omega}a^{-2\gamma}-\frac{2H^{2}}{\alpha} (3b^{2}-3+\gamma)\rho_{m0}a^{(3b^{2}-3+\gamma)} \end{eqnarray}
(18)
\begin{eqnarray}\nonumber s&=&\frac{1}{3}\bigg(-\frac{3}{2}-\frac{6}{\alpha}\bigg(H(1-\gamma- \frac{\gamma^{2}{\omega}a^{-2\gamma}}{6})-\frac{1}{3H}\rho_{m0} a^{(3b^{2}-3+\gamma)}\bigg)+2\bigg)^{-1}\\\nonumber&\times&\bigg( \bigg(\frac{6}{\alpha}\bigg(H^{3}(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{H}{3}\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg)-2H^{2}\bigg)\\\nonumber&\times& \bigg(3+\frac{9H}{\alpha}(1-\gamma-\frac{\gamma^{2}{\omega}a^{-2\gamma}}{6}) -\frac{2}{H\alpha}\rho_{m0}a^{(3b^{2}-3+\gamma)}-2\bigg)+\frac{2H^{4}} {\alpha}\\\label{35}&\times&\gamma^{3}{\omega}a^{-2\gamma}-\frac{2H^{2}}{\alpha} (3b^{2}-3+\gamma)\rho_{m0}a^{(3b^{2}-3+\gamma)}\bigg). \end{eqnarray}
(19)

Figure 5. Plots of \(r-s\) for QCD ghost DE model in fractal Cosmology.

The plane of this model is given in Figure 5. The \(r-s\) plane for this model shows the Chaplygin gas behavior as well as \(\Lambda CDM\) model.

4. Concluding Remarks

We have investigated the physical significance of QCD ghost DE model in fractal universe by developing various cosmological parameters as well as cosmological planes. These parameters as well as planes shamefully explain the current cosmic acceleration.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Riess, A. G. et. al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009-1038.[Google Scholor]
  2. Weinberg, S. (1989). The cosmological constant problem. Reviews of modern physics, 61(1), 1-23. [Google Scholor]
  3. Kamenshchik, A., Moschella, U., & Pasquier, V. (2001). An alternative to quintessence. Physics Letters B, 511(2), 265-268. [Google Scholor]
  4. Hsu, S. D. (2004). Entropy bounds and dark energy. Physics Letters B, 594(1), 13-16. [Google Scholor]
  5. Li, M. (2004). A model of holographic dark energy. Physics Letters B, 603(1), 1-5. [Google Scholor]
  6. Wei, H., & Cai, R. G. (2008). A new model of agegraphic dark energy. Physics Letters B, 660(3), 113-117. [Google Scholor]
  7. Karami, K., Ghaffari, S., & Fehri, J. (2009). Interacting polytropic gas model of phantom dark energy in non-flat universe. The European Physical Journal C-Particles and Fields, 64(1), 85-88. [Google Scholor]
  8. Wei, H. (2012). Pilgrim dark energy. Classical and Quantum Gravity, 29(17), 175008. [Google Scholor]
  9. Sharif, M., & Jawad, A. (2013). Pilgrim dark energy with apparent and event horizons in non-flat universe. The European Physical Journal C, 73(10), 2600, 1-10. [Google Scholor]
  10. Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., & Naseem, S. (2016). Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials, 6(4), 71, 2-10. [Google Scholor]
  11. Amorós, J., de Haro, J., & Odintsov, S. D. (2013). Bouncing loop quantum cosmology from \(F(T)\) gravity. Physical Review D, 87(10), 104037. [Google Scholor]
  12. Linder, E. V. (2010). Einstein’s Other Gravity and the Acceleration of the Universe. Physical Review D, 81(12), 127301. [Google Scholor]
  13. Jamil, M., Momeni, D., & Myrzakulov, R. (2013). Wormholes in a viable \(F(T)\) gravity. The European Physical Journal C, 73(1), 2267. [Google Scholor]
  14. Myrzakulov, R. (2012). Cosmology of \(F(T)\) Gravity and k-Essence. Entropy, 14(9), 1627-1651. [Google Scholor]
  15. Salako, I. G., Rodrigues, M. E., Kpadonou, A. V., Houndjo, M. J. S., & Tossa, J. (2013). \(\Lambda\)CDM model in \(f(T)\) gravity: reconstruction, thermodynamics and stability. J. Cosmol. Astropart. Phys, 11(060), 1307-0730. [Google Scholor]
  16. Rodrigues, M. E., Salako, I. G., Houndjo, M. J. S., & Tossa, J. (2014). Locally rotationally symmetric Bianchi type-I cosmological model in \(F(T)\) gravity: from early to dark energy dominated universe. International Journal of Modern Physics D, 23(01), 1450004. [Google Scholor]
  17. Baffou, E. H., Kpadonou, A. V., Rodrigues, M. E., Houndjo, M. J. S., & Tossa, J. (2015). Cosmological viable \(f(R,T)\) dark energy model: dynamics and stability. Astrophysics and Space Science, 356(1), 173-180. [Google Scholor]
  18. Houndjo, M. J. S. (2012). Reconstruction of \(f(R,T)\) gravity describing matter dominated and accelerated phases. International Journal of Modern Physics D, 21(01), 1250003. [Google Scholor]
  19. Nojiri, S. I., & Odintsov, S. D. (2005). Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Physics Letters B, 631(1),1-6. [Google Scholor]
  20. Bamba, K., Odintsov, S. D., Sebastiani, L., & Zerbini, S. (2010). Finite-time future singularities in modified Gauss–Bonnet and $F(R,G)$ gravity and singularity avoidance. The European Physical Journal C, 67(1-2), 295-310. [Google Scholor]
  21. Bamba, K., Geng, C. Q., Nojiri, S. I., & Odintsov, S. D. (2010). Equivalence of the modified gravity equation to the Clausius relation. EPL (Europhysics Letters), 89(5), 50003. [Google Scholor]
  22. Rodrigues, M. E., Houndjo, M. J. S., Momeni, D., & Myrzakulov, R. (2013). A type of Levi–Civita solution in modified Gauss–Bonnet gravity. Canadian Journal of Physics, 92(2), 173-176. [Google Scholor]
  23. Houndjo, M. J. S., Rodrigues, M. E., Momeni, D., & Myrzakulov, R. (2014). Exploring cylindrical solutions in modified \(f(G)\) gravity. Canadian Journal of Physics, 92(12), 1528-1540. [Google Scholor]
  24. Bamba, K., Capozziello, S., Nojiri, S. I., & Odintsov, S. D. (2012). Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophysics and Space Science, 342(1), 155-228.[Google Scholor]
  25. Calcagni, G. (2010). Fractal universe and quantum gravity. Physical review letters, 104(25), 251301. [Google Scholor]
  26. Calcagni, G. (2010). Quantum field theory, gravity and cosmology in a fractal universe. Journal of High Energy Physics, 2010(3),120. [Google Scholor]
  27. Elizalde, E., Nojiri, S. I., Odintsov, S. D., & Wang, P. (2005). Dark energy: vacuum fluctuations, the effective phantom phase, and holography. Physical Review D, 71(10), 103504. [Google Scholor]
  28. Yang, W. Q., Wu, Y. B., Song, L. M., Su, Y. Y., Li, J., Zhang, D. D., & Wang, X. G. (2011). Reconstruction of new holographic scalar field models of dark energy in brans–dicke universe. Modern Physics Letters A, 26(03), 191-204. [Google Scholor]
  29. Granda, L. N., & Oliveros, A. (2008). Infrared cut-off proposal for the holographic density. Physics Letters B, 669(5), 275-277. [Google Scholor]
  30. Sheykhi, A. (2009). Interacting holographic dark energy in Brans–Dicke theory. Physics Letters B, 681(3), 205-209. [Google Scholor]
  31. Jamil, M., & Sheykhi, A. (2011). Interacting entropy-corrected agegraphic-tachyon dark energy. International Journal of Theoretical Physics, 50(3), 625-636. [Google Scholor]
  32. Jamil, M., Momeni, D., & Myrzakulov, R. (2012). Stability of a non-minimally conformally coupled scalar field in \(F (T)\) cosmology. The European Physical Journal C, 72(7), 2075. [Google Scholor]
  33. Zhitnitsky, A. R. (2012). Contact term, its holographic description in QCD and dark energy. Physical Review D, 86(4), 045026. [Google Scholor]
  34. Cai, R. G., Tuo, Z. L., Wu, Y. B., & Zhao, Y. Y. (2012). More on QCD ghost dark energy. Physical Review D, 86(2), 023511. [Google Scholor]
  35. Caldwell, R. R., & Linder, E. V. (2005). Limits of quintessence. Physical review letters, 95(14), 141301. [Google Scholor]
  36. Sahni, V., Saini, T. D., Starobinsky, A. A., & Alam, U. (2003). Statefinder—a new geometrical diagnostic of dark energy. JETP Letters, 77(5), 201-206. [Google Scholor]
]]>
Some multi-step iterative methods for solving nonlinear equations-I https://old.pisrt.org/psr-press/journals/oms-vol-1-2017/some-multi-step-iterative-methods-for-solving-nonlinear-equations-i/ Sun, 24 Sep 2017 15:14:52 +0000 https://old.pisrt.org/?p=1786
OMS-Vol. 1 (2017), Issue 1, pp. 25–33 | Open Access Full-Text PDF
Muhammad Saqib, Muhammad Iqbal
Abstract: In this paper, we suggest and analyze two new algorithm of fourth and fifth order convergence. We rewrite nonlinear equation as an equivalent coupled system and then use modified decomposition technique to develop our algorithms. Convergence analysis of newly introduced algorithms has been discussed. To see efficiency and performance of these algorithms, we have made comparison of these algorithms with some well known algorithms existing in literature..
]]>

Open Journal of Mathematical Sciences

Some multi-step iterative methods for solving nonlinear equations-I

Muhammad Saqib\(^1\), Muhammad Iqbal
Department of Mathematics, Lahore Leads University, Lahore-54590, Pakistan. (M.S & M.I)

\(^{1}\)Corresponding Author: saqib270@yahoo.com

Abstract

In this paper, we suggest and analyze two new algorithm of fourth and fifth order convergence. We rewrite nonlinear equation as an equivalent coupled system and then use modified decomposition technique to develop our algorithms. Convergence analysis of newly introduced algorithms has been discussed. To see efficiency and performance of these algorithms, we have made comparison of these algorithms with some well known algorithms existing in literature.

Keywords:

Iterative methods, nonlinear system, Convergence.

1. Introduction

To find the root of nonlinear equation of the form \(f(x)=0,\) is the oldest and basic problem in numerical analysis. Newton's method is one of oldest and most powerful formula to approximate the root of nonlinear equations. It has second order convergence. Many modifications in Newton's method have been made to increase its convergence order using various techniques. Recently, many iterative methods with higher order convergence have been established using different techniques like Taylor's series, Adomain decomposition, homotopy, modified homotopy, decomposition, modified decomposition, interpolation, quadrature rules and their many modifications. see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and references therein. Chun [3] introduced some multi-step iterative methods using Adomain decomposition. These method requires higher order derivatives. Later on, Noor [4, 5] established some multi-step iterative methods that do not require higher order derivative using a different technique.

In this paper, some numerical methods based on decomposition technique are proposed for solving algebraic nonlinear equations. For this purpose, we write nonlinear equations as an equivalent system of equations and use technique introduced by Gejji and Jafari [9]. Recently, several iterative methods have been suggested by writing nonlinear equations as an equivalent system of equations and then using different techniques. In section 3, we give detailed proof regarding convergence of our newly established iterative methods. In the last section, numerical results are given to make comparison of these algorithm with some classical methods.

2. Iterative methods

Consider the nonlinear equation
\begin{equation} f(x)=0;\;\; x\in\mathbb{R}, \label{2.1} \end{equation}
(1)
assume \(\alpha\) is a simple root of (1) and \(\gamma\) is an initial guess sufficiently close to \(\alpha\). We can write (1) as following coupled system;
\begin{equation} f(\gamma )+(x-\gamma )f^{\prime }(\frac{x+\gamma }{2})+g(x)=0 , \end{equation}
(2)
\begin{equation} g(x)=f(x)-f(\gamma )-(x-\gamma )f^{\prime }(\frac{x+\gamma }{2}). \end{equation}
(3)
From Eq. (2), we have \[ x=\gamma -\frac{f(\gamma )}{f^{\prime }(\frac{x+\gamma }{2})}-\frac{g(x)}{% f^{\prime }(\frac{x+\gamma }{2})}. \] Let
\begin{equation} x=c+N(x), \end{equation}
(4)
where
\begin{equation} c=\gamma -\frac{f(\gamma )}{f^{\prime }(\frac{x+\gamma }{2})}, \end{equation}
(5)
and
\begin{equation} N(x)=-\frac{g(x)}{f^{\prime }(\frac{x+\gamma }{2})}. \end{equation}
(6)
Now, we construct a sequence of higher-order iterative methods by applying modified decomposition technique introduced by Gejji and Jafari [8]. This technique consists a solution of equation (3) that can be written in the form of infinite series:
\begin{equation} x=\sum\limits_{i=0}^{\infty }x_{i}, \end{equation}
(7)
\noindent and using Gejji and Jafari [8] technique, we decompose the nonlinear function \(N\) as;
\begin{equation} N(\sum\limits_{i=0}^{\infty }x_{i})=N(x_{0})-\sum_{i=1}^{\infty }\{N(\sum\limits_{j=0}^{i}x_{j})-N(\sum\limits_{j=0}^{i-1}x_{j})\}. \label{2.8} \end{equation}
(8)
Thus from Eqs. (4), (7) and (8) we have \[ \sum\limits_{i=0}^{\infty }x_{i}=x_{0}+N(x_{0})+\sum_{i=1}^{\infty }\{N(\sum\limits_{j=0}^{i}x_{j})-N(\sum\limits_{j=0}^{i-1}x_{j})\}. \] So we have iteration scheme as \begin{eqnarray*} x_{0} &=&c \\ x_{1} &=&N(x_{0}) \\ x_{2} &=&N(x_{0}+x_{1})-N(x_{0}) \\ &&. \\ &&. \\ &&. \\ x_{n+1} &=&N(x_{0}+x_{1}+...+x_{n})-N(x_{0}+x_{1}+...+x_{n-1}),\text{ }% n=1,2,.. \end{eqnarray*} When \begin{eqnarray*} x &\approx &x_{0} \\ &=&c \\ &=&\gamma -\frac{f(\gamma )}{f^{\prime }(\frac{x+\gamma }{2})}. \end{eqnarray*} From above relation, we can write the algorithm as follows;
Algorithm 2.1: For any initial value \(x_{0},\) we compute the approximation solution \(x_{n+1}\), by the iteration scheme; \begin{eqnarray*} y_{n} &=&x_{n}-\frac{f(x_{n})}{f^{\prime }(x_{n})} \\ x_{n+1} &=&x_{n}-\frac{f(x_{n})}{f^{\prime }(\frac{x_{n}+y_{n}}{2})}. \end{eqnarray*} This algorithm has third order convergence and has been established by Frontini and Sormani [1]. When \begin{eqnarray*} x &\approx &x_{0}+x_{1} \\ &=&\gamma -\frac{f(\gamma )}{f^{\prime }(\frac{x+\gamma }{2})}-\frac{g(x_{0}) }{f^{\prime }(\frac{x+\gamma }{2})}. \end{eqnarray*} From Eq. (3), we see that \[ g(x_{0})=f(x_{0}), \] by substituting in above, we get \[ x=\gamma -\frac{f(\gamma )}{f^{\prime }(\frac{x+\gamma }{2})}-\frac{f(x_{0}) }{f^{\prime }(\frac{x_{0}+\gamma }{2})}, \] Using this, we suggest the following three step iterative methods for solving Eq. (1) as follows;
Algorithm 2.2: For any initial value \(x_{0},\) we compute the approximation solution \(x_{n+1}\), by the iteration scheme; \begin{eqnarray*} \text{ Predictor Steps;}\;\;\;\; y_{n} &=&x_{n}-\frac{f(x_{n})}{% f^{\prime }(x_{n})} \\ z_{n} &=&x_{n}-\frac{f(x_{n})}{f^{\prime }(\frac{x_{n}+y_{n}}{2})} \end{eqnarray*} \[ \text{Corrector Step; }\;\;\;\; x_{n+1}=z_{n}-\frac{f(z_{n})}{% f^{\prime }(\frac{x_{n}+z_{n}}{2})} \] When \begin{eqnarray*} x &\approx &x_{0}+x_{1}+x_{2} \\ &=&x_{0}+N(x_{0}+x_{1}) \\ &=&x_{0}-\frac{g(x_{0}+x_{1})}{f^{\prime }(\frac{x_{0}+x_{1}+\gamma }{2})} \\ &=&x_{0}-\frac{f(x_{0}+x_{1})+f(x_{0})}{f^{\prime }(\frac{x_{0}+x_{1}+\gamma }{2})} \end{eqnarray*} From this relation, we formulate four step iterative method for solving Eq. (1) as follows;
Algorithm 2.3: For any initial value \(x_{0},\) we compute the approximation solution \(x_{n+1}\), by the iteration scheme; \begin{eqnarray*} \text{ Predictor Steps;} \;\;\;\; y_{n} &=&x_{n}-\frac{f(x_{n})}{% f^{\prime }(x_{n})} \\ z_{n} &=&x_{n}-\frac{f(x_{n})}{f^{\prime }(\frac{x_{n}+y_{n}}{2})} \\ u_{n} &=&z_{n}-\frac{f(z_{n})}{f^{\prime }(\frac{x_{n}+z_{n}}{2})} \end{eqnarray*} \[ \text{Corrector Step;} \;\;\;\; x_{n+1}=z_{n}-\frac{f(u_{n})+f(z_{n})% }{f^{\prime }(\frac{x_{n}+u_{n}}{2})} \]

3. Convergence Analysis

In this section, we discuss in detail the convergence analysis of Algorithm 2.2 and 2.3 established above.

Theorem 3.1. For an open interval \(I \subset \mathbb{R}\) let \(f:I \rightarrow\mathbb{R}\) and \(\alpha \in I\) be simple zero of \(f(x)=0.\) If \(f\) is differentiable and \(x_{0}\) is sufficiently close to \(\alpha\) then three-step iterative method defined by Algorithm 2.2 has fourth order convergence.

Proof. Expanding \(f(x)\) by Taylor's series about \(\alpha ,\) we have

\begin{equation} f(x_{n})=f^{^{\prime }}(\alpha )(e_{n}+c_{2}e_{n}^{2}+c_{3}e_{n}^{3}+c_{4}e_{n}^{4}+c_{5}e_{n}^{5}+... \label{3.1} \end{equation}
(9)
where \(c_{k}=\frac{1}{k!}\frac{f^{(k)}(\alpha )}{f^{^{\prime }}(\alpha )}\), and \(e_{n}=x_{n}-\alpha .\)
\begin{equation} f^{^{\prime }}(x_{n})=f^{^{\prime }}(\alpha )(1+2c_{2}e_{n}+3c_{3}e_{n}^{2}+4c_{4}e_{n}^{3}+5c_{5}e_{n}^{4}+6c_{6}e_{n}^{5}+... \label{3.2} \end{equation}
(10)
\[ y_{n}=x_{n}-\frac{f(x_{n})}{f^{\prime }(x_{n})} \] From above equations,we get
\begin{align} y_{n} &=\alpha+c_{2}e_{n}^{2}+(2c_{3}-2c_{2}^{2})e_{n}^{3}+(3c_{4}-7c_{2}c_{3}+4c_{2}^{3})e_{n}^{4}+(4c_{5}-10c_{2}c_{4} \nonumber \\ &-6c_{3}^{2}+20c_{3}c_{2}^{2}-8c_{2}^{4})e_{n}^{5}+... \label{3.3} \end{align}
(11)
Now, expanding \(f^{\prime }(\frac{x_{n}+y_{n}}{2})\) by Taylor's series about \(\alpha\),
\begin{align} f^{\prime }(\frac{x_{n}+y_{n}}{2}) &=f^{\prime }(\alpha )\{1+c_{2}e_{n}+(c_{2}^{2}+\frac{3}{4}c_{3})e_{n}^{2}+(\frac{7}{2}% c_{2}c_{3}-2c_{2}^{3}+\frac{1}{2}c_{4})e_{n}^{3}\nonumber \\&+(3c_{3}^{2}-\frac{37}{4}% c_{3}c_{2}^{2}+ \frac{3}{2}c_{2}c_{4}+4c_{2}^{4}+\frac{5}{16}c_{5})e_{n}^{4}+...\} \label{3.4} \end{align}
(12)
Dividing Eq. (9) by Eq. (12)
\begin{align} \frac{f(x_{n})}{f^{\prime }(\frac{x_{n}+y_{n}}{2})} &=e_{n}+(-c_{2}^{2}+% \frac{1}{4}c_{3})e_{n}^{3}+(-\frac{15}{4}c_{2}c_{3}+3c_{2}^{3}+\frac{1}{2}% c_{4})e_{n}^{4}\nonumber \\&+(-\frac{51}{16}c_{3}^{2}+\frac{22}{7} c_{3}c_{2}^{2}-2c_{2}c_{4} -6c_{2}^{4}+\frac{16}{11}c_{5})e_{n}^{5}+... \end{align}
(13)
Now \[ z_{n}=x_{n}-\frac{f(x_{n})}{f^{\prime }(\frac{x_{n}+y_{n}}{2})} \] Putting values in above, we get
\begin{align} z_{n} &=\alpha +(c_{2}^{2}-\frac{1}{4}c_{3})e_{n}^{3}+(\frac{15}{4}% c_{2}c_{3}-3c_{2}^{3}-\frac{1}{2}c_{4})e_{n}^{4}\nonumber \\&+(\frac{51}{16}c_{3}^{2}-% \frac{22}{7}c_{3}c_{2}^{2}+2c_{2}c_{4} -6c_{2}^{4}+\frac{16}{11}c_{5})e_{n}^{5}+... \label{3.6} \end{align}
(14)
Expanding \(f(z_{n})\) and \(f^{\prime }(\frac{x_{n}+z_{n}}{2})\) by Taylor's series about \(\alpha,\)
\begin{align} f(z_{n}) &=f^{\prime }(\alpha )\{(c_{2}^{2}-\frac{1}{4}c_{3})e_{n}^{3}+(% \frac{15}{4}c_{2}c_{3}-3c_{2}^{3}-\frac{1}{2}c_{4})e_{n}^{4}\nonumber \\&+(\frac{51}{16}% c_{3}^{2}-\frac{22}{7}c_{3}c_{2}^{2}+2c_{2}c_{4} -6c_{2}^{4}+\frac{16}{11}c_{5})e_{n}^{5}+...\} \label{3.7} \end{align}
(15)
\begin{align} f^{\prime }(\frac{x_{n}+z_{n}}{2}) &=f^{\prime }(\alpha )\{1+c_{2}e_{n}+% \frac{3}{4}c_{3}e_{n}^{2}+(c_{2}^{3}-\frac{1}{4}c_{2}c_{3}+\frac{1}{2}% c_{4})e_{n}^{3}+(\frac{21}{4}c_{3}c_{2}^{2}-3c_{2}^{3}\nonumber \\&-\frac{1}{2}c_{2}c_{4} +\frac{5}{16}c_{5}-\frac{3}{8}c_{3}^{2})e_{n}^{4}+...\} \label{3.8} \end{align}
(16)
Dividing (15) by Eq. (16), we have \begin{align*} \frac{f(z_{n})}{f^{\prime }(\frac{x_{n}+z_{n}}{2})} &=(c_{2}^{2}-\frac{1}{4}% c_{3})e_{n}^{3}+(4c_{2}c_{3}-4c_{2}^{3}-\frac{1}{2}c_{4})e_{n}^{4}+(\frac{27% }{8}c_{3}^{2}-\frac{73}{4}c_{3}c_{2}^{2}\\&+\frac{5}{2}c_{2}c_{4}+ 10c_{2}^{4}-\frac{11}{16}c_{5})e_{n}^{5}+... \end{align*} Corrector step of Algorithm 2.2 is \[ x_{n+1}=z_{n}-\frac{f(z_{n})}{f^{\prime }(\frac{x_{n}+z_{n}}{2})} \] By substitution and simplification, we have
\begin{equation} x_{n+1}=\alpha +(4c_{2}c_{3}-4c_{2}^{3}-\frac{1}{2}c_{4})e_{n}^{4}+(\frac{27% }{8}c_{3}^{2}-\frac{73}{4}c_{3}c_{2}^{2}+\frac{5}{2}c_{2}c_{4}+10c_{2}^{4}-% \frac{11}{16}c_{5})e_{n}^{5}+... \label{3.9} \end{equation}
(17)
Hence Algorithm 2.2 has fourth order convergence.

Theorem 3.2. Let \(f:I\subset \mathbb{R}\rightarrow\mathbb{R}\) for an open interval \(I\) and \(\alpha \in I\) be simple zero of \(f(x)=0.\) If \(f\) is differentiable and \(x_{0}\) is sufficiently close to \(\alpha\) then three-step iterative method defined by Algorithm 2.3 has fifth order convergence and satisfies the error equation \[ x_{n+1}=\alpha +(-\frac{1}{4}c_{3}c_{2}^{2}+c_{2}^{4})e_{n}^{5}+O(e_{n}^{6}),% \text{ and }e_{n}=x_{n}-\alpha. \]

Proof. From Eq. (17), we have \[ u_{n}=\alpha +(4c_{2}c_{3}-4c_{2}^{3}-\frac{1}{2}c_{4})e_{n}^{4}+(\frac{27}{8% }c_{3}^{2}-\frac{73}{4}c_{3}c_{2}^{2}+\frac{5}{2}c_{2}c_{4}+10c_{2}^{4}-% \frac{11}{16}c_{5})e_{n}^{5}+..., \] Expanding \(f(u_{n})\) and \(f^{\prime }(\frac{x_{n}+u_{n}}{2})\) by Taylor's series about \(\alpha ,\)

\begin{equation} f(u_{n})=f^{\prime }(\alpha )\{(4c_{2}c_{3}-4c_{2}^{3}-\frac{1}{2}% c_{4})e_{n}^{4}+(\frac{27}{8}c_{3}^{2}-\frac{73}{4}c_{3}c_{2}^{2}+\frac{5}{2}% c_{2}c_{4}+10c_{2}^{4}-\frac{11}{16}c_{5})e_{n}^{5}+...\}, \label{3.10} \end{equation}
(18)
\begin{equation} f^{\prime }(\frac{x_{n}+u_{n}}{2})=f^{\prime }(\alpha )\{1+c_{2}e_{n}+\frac{3% }{4}c_{3}e_{n}^{2}+\frac{1}{2}c_{4}e_{n}^{3}+(c_{2}^{3}-\frac{1}{4}% c_{3}c_{2}^{2}+\frac{5}{16}c_{4})e_{n}^{4}+....\}. \label{3.11} \end{equation}
(19)
Now \[ x_{n+1}=z_{n}-\frac{f(u_{n})+f(z_{n})}{f^{\prime }(\frac{x_{n}+u_{n}}{2})}, \] by substituting values and simplifying, we have \[ x_{n+1}=\alpha +(-\frac{1}{4}c_{3}c_{2}^{2}+c_{2}^{4})e_{n}^{5}+O(e_{n}^{6}). \] Hence Algorithm 2.3 has fifth order convergence.

4. Applications

In this section, we present some numerical examples to examine the validity and efficieny of our newly devolped algorithms namely, Algorithm 2.2 and Algorithm 2.3. We also provide comparison of these algorithms with Newton's method(NM), Abbasbandy's method (AM), Householder's method(HHM), Halley's method (HM), Chun's method (CM) [3] and Noor's method(NR)[4]. We use \(\epsilon =10^{-25}\). We use the following stopping criteria; \vskip-1cm \begin{eqnarray*} (i)\text{}\;\;\;\; |x_{n}-x_{n-1}| &<&\in \\ (ii)\text{}\;\;\;\;|f(x_{n})| &<&\in \end{eqnarray*} We consider the following nonlinear scalar equations for comparison: \begin{eqnarray*} f_{1}(x) &=&\sin ^{2}x-x^{2}+1=0 \\ f_{2}(x) &=&x^{2}-e^{x}-3x+2=0 \\ f_{3}(x) &=&\cos x-x=0 \\ f_{4}(x) &=&(x-1)^{3}-1=0 \\ f_{5}(x) &=&x^{3}-10=0 \\ f_{6}(x) &=&e^{x^{2}+7x-30}-1=0. \end{eqnarray*} Comparison Table \begin{array}{ccccc} \text{Examples} & & \text{Iterations} & x_{n} & f(x_{n}) \\ f_{1},\text{ }x_{0}=1 & & & & \\ NM & & 7 & 1.40449164831534122635086 & -1.05e^{-50} \\ AM & & 5 & 1.40449164831534122635086 & -5.82e^{-54} \\ HM & & 4 & 1.40449164831534122635086 & -5.45e^{-63} \\ CM & & 5 & 1.40449164831534122635086 & -2.01e^{-64} \\ HHM & & 6 & 1.40449164821534122603508 & 1.82e^{-25} \\ NR & & 5 & 1.40449164821534122603508 & 9.23e^{-26} \\ \text{Alg. }2.2 & & 3 & 1.40449164821534122603508 & 3.40e^{-25} \\ \text{Alg. }2.3 & & 3 & 1.40449164821534122603509 & 2.32e^{-44} \\ f_{2},\text{ }x_{0}=2 & & & & \\ NM & & 6 & 0.257530285439860760455367 & 2.94e^{-55} \\ AM & & 5 & 0.257530285439860760455367 & 1.03e^{-63} \\ HM & & 5 & 0.257530285439860760455367 & 0 \\ CM & & 4 & 0.257530285439860760455367 & 1.05e^{-62} \\ HHM & & 5 & 0.257530285439860760455367 & -6.01e^{-25} \\ NR & & 5 & 0.257530285439860760455367 & 1.08e^{-23} \\ \text{Alg. }2.2 & & 3 & 0.257530285439860934975933 & 1.72e^{-69} \\ \text{Alg}.2.3 & & 2 & 0.257530285439860934975933 & 1.01e^{-29} \\ \end{array} \begin{array}{ccccc} \text{Examples} & & \text{Iterations} & x_{n} & f(x_{n}) \\ f_{3},\text{ }x_{0}=1.7 & & & & \\ NM & & 5 & 0.739085133215160641655372 & -2.04e^{-31} \\ AM & & 4 & 0.739085133215160641655372 & -7.13e^{-47} \\ HM & & 4 & 0.739085133215160641655372 & -5.04e^{-58} \\ CM & & 4 & 0.739085133215160641655372 & 0 \\ HHM & & 4 & 0.739085133215160641655372 & 3.91e^{-17} \\ NR & & 4 & 0.739085133215160645628855 & 6.66e^{-18} \\ \text{Alg. }2.2 & & 3 & 0.739085133215160641655312 & 3.21e^{-50} \\ \text{Alg.}2.3 & & 3 & 0.739085133215160641655312 & 1.21e^{-100} \\ f_{4},\text{ }x_{0}=1.5 & & & & \\ NM & & 8 & 2.0000000000000000000001234 & 2.05e^{-42} \\ AM & & 5 & 2 & 0 \\ HM & & 5 & 2 & 0 \\ CM & & 5 & 2 & 0 \\ HHM & & 7 & 2.000000000000000000000828 & 2.47e^{-22} \\ NR & & 5 & 2.000000000000000000000302 & 1.12e^{-24} \\ \text{Alg. }2.2 & & 4 & 2.000000000000000000000007 & 1.83e^{-44} \\ \text{Alg. }2.3 & & 4 & 2.000000000000000000000000 & 5.07e^{-27}\\ f_{5},\text{ }x_{0}=1.5 & & & & \\ N.M. & & 7 & 2.154434690031883721759235 & 2.05e^{-54} \\ A.M. & & 5 & 2.154434690031883721759235 & -5.01e^{-63} \\ H.M. & & 5 & 2.154434690031883721759235 & -5.03e^{-62} \\ C.M. & & 5 & 2.154434690031883721759235 & -5.01e^{-64} \\ H.H.M. & & 6 & 2.154434690031883721759293 & 7.86e^{-27} \\ NR.M. & & 4 & 2.154434690031883721759292 & 8.98e^{-24} \\ \text{Alg. }2.2 & & 3 & 2.154434690031883721759294 & 2.00e^{-27} \\ \text{Alg. }2.3 & & 3 & 2.154434690031883721759293 & 1.33e^{-50} \\ f_{6,}\text{ }x_{0}=3.5 & & & & \\ N.M. & & 13 & 3.000000000000000000000000 & 1.52e^{-48} \\ A.M. & & 7 & 3.000000000000000000000000 & -4.32e^{-48} \\ H.M. & & 8 & 3.000000000000000000000000 & 2.01e^{-62} \\ C.M. & & 8 & 3.000000000000000000000000 & 2.05e^{-62} \\ H.H.M. & & 12 & 3.000000000000000000000000 & 5.47e^{-25} \\ NR.M. & & 6 & 3.00000010285594873990664 & 1.34e^{-06} \\ \text{Alg. }2.2 & & 4 & 3.00000000000000000000000 & 4.76e^{-30} \\ \text{Alg. }2.3 & & 4 & 3.00000000000000000000000 & 1.99e^{-102}% \end{array}

5. Conclusion

We have established two new algorithms of fourth and fifth order convergence by using modified decomposition technique to coupled system. We have discussed convergence analysis of these newly established algorithms. Computational comparison of these algorithms has been made with some well known methods for solving nonlinear equations. From numerical table, we see that our new methods converge fast to the true solution of equations and are comparable with some classical methods.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Frontini, M., & Sormani, E. (2003). Some variant of Newton's method with third-order convergence. Applied Mathematics and Computation, 140(2), 419-426.[Google Scholor]
  2. Adomian, G. (1988). Nonlinear stochastic systems theory and applications to physics (Vol. 46). Springer Science & Business Media.[Google Scholor]
  3. Chun, C. (2005). Iterative methods improving newton's method by the decomposition method. Computers & Mathematics with Applications, 50(10), 1559-1568. [Google Scholor]
  4. Noor, M. A., & Noor, K. I. (2006). Some iterative schemes for nonlinear equations. Applied Mathematics and Computation, 183(2), 774-779. [Google Scholor]
  5. Noor, M. A., Noor, K. I., Mohyud-Din, S. T., & Shabbir, A. (2006). An iterative method with cubic convergence for nonlinear equations. Applied Mathematics and Computation, 183(2), 1249-1255. [Google Scholor]
  6. Babolian, E., & Biazar, J. (2002). On the order of convergence of Adomian method. Applied Mathematics and Computation, 130(2), 383-387. [Google Scholor]
  7. Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton's method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. [Google Scholor]
  8. Daftardar-Gejji, V., & Jafari, H. (2006). An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 316(2), 753-763. [Google Scholor]
  9. Saqib, M., Iqbal, M., Ali, S., & Ismaeel, T. (2015). New Fourth and Fifth-Order Iterative Methods for Solving Nonlinear Equations. Applied Mathematics, 6(08), 1220--1227. [Google Scholor]
  10. Frontini, M., & Sormani, E. (2003). Modified Newton's method with third-order convergence and multiple roots. Journal of computational and applied mathematics, 156(2), 345-354.[Google Scholor]
  11. Hasanov, V. I., Ivanov, I. G., & Nedzhibov, G. (2002). A new modification of Newton’s method. Appl. Math. Eng., 27, 278-286.[Google Scholor]
]]>