Translation and homothetical TH-surfaces in the 3-dimensional Euclidean space \(\mathbb{E}^{3}\) and Lorentzian-Minkowski space \(\mathbb{E}_{1}^{3}\)
OMS-Vol. 3 (2019), Issue 1, pp. 234 – 244 Open Access Full-Text PDF
Bendehiba Senoussi, Mohammed Bekkar
Abstract: In the 3-dimensional Euclidean space \(\mathbb{E}^{3}\) and Lorentzian-Minkowski space \(\mathbb{E}_{1}^{3},\) a translation and homothetical TH-surface is parameterized \(z(u,v)=A(f(u)+g(v))+Bf(u)g(v),\) where \(f\) and \(g\) are smooth functions and \(A\), \(B\) are non-zero real numbers. In this paper, we define TH-surfaces in the 3-dimensional Euclidean space \(\mathbb{E}^{3}\) and Lorentzian-Minkowski space \(\mathbb{E}_{1}^{3}\) and completely classify minimal or flat TH-surfaces.