OMS-Vol. 1 (2017), Issue 1, pp. 85–96 |
Open Access Full-Text PDF
Haitao Qi, Nida Fatima, Hassan Waqas, Junaid Saeed
Abstract:The tangential stress and velocity field corresponding to the flow of a generalized Oldroyd-B fluid in an infinite circular cylinder will be determined by mean of Laplace and finite Hankel transform. The motion is produced by the cylinder, that after \(t=0^{+}\), begins to rotate about its axis, under the action of oscillating shear stress \(\Omega R \sin(\omega t)\) given on boundary. The solutions are based on an important remark regarding the governing equation for the non- trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions. The obtained solution will be presented under series form in term of generalized G-function. The similar solutions for the ordinary Oldroyd-B fluid, Maxwell, ordinary Maxwell and Newtonian fluids performing the same motion will be obtained as special cases of our general solutions.