Open Journal of Discrete Applied Mathematics
ISSN: 2617-9687 (Online) 2617-9679 (Print)
DOI: 10.30538/psrp-odam2018.0002
Degree Subtraction Adjacency Eigenvalues and Energy of Graphs Obtained From Regular Graphs
Harishchandra S. Ramane\(^1\), Hemaraddi N. Maraddi
Department of Mathematics, Karnatak University, Dharwad-580003, India.; (H.S.R & H.N.M)
\(^{1}\)Corresponding Author; hsramane@yahoo.com
Abstract
Keywords:
1. Introduction
Let \(G\) be a simple, undirected graph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\}\) and edge set \(E(G) = \{e_1, e_2, \ldots, e_m\}\). The degree of a vertex \(v_i\) denoted by \(d_{G}(v_i)\) is the number of edges incident to it. If all vertices have same degree equal to \(r\) then \(G\) is called an \(r\)-regular graph.
The adjacency matrix of \(G\) is a square matrix of order \(n\), defined as \(A=A(G)=[a_{ij}]\), where \(a_{ij}=1\) if \(v_i\) is adjacent to \(v_j\) and \(a_{ij}=0\), otherwise. The characteristic polynomial of \(A(G)\) is denoted by \(\phi(G:\lambda)\), that is, \(\phi(G:\lambda)= \det|\lambda I-A(G)|\), where \(I\) is an identity matrix. The characteristic polynomial of the adjacency matrix of a complete graph \(K_n\) is \(\phi(K_n : \lambda) = (\lambda - n + 1)(\lambda + 1)^{n-1}\). The roots of the equation \(\phi(G:\lambda)=0\) are called the adjacency eigenvalues of \(G\) [1] and they are denoted by \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\). Two non-isomorphic graphs are said to be cospectral if they have same eigenvalues. For any graph \(G\), \(-\Delta\leq \lambda_{i} \leq \Delta\), where \(\Delta\) is the maximum degree. Thus for an \(r\)-regular graph, \(\lambda_{i}+ r\geq 0\) for \(i= 1, 2, \ldots, n\).
The vertex-edge incidence matrix of \(G\) is defined as \(B=B(G)=[b_{ij}]\), where \(b_{ij}=1\) if the vertex \(v_i\) is incident to an edge \(e_j\) and \(b_{ij}=0\), otherwise.
It is easy to observe that [1] $$BB^T=A+D,$$ where \(D= \text{diag} [d_G(v_1), d_G(v_2), \ldots, d_G(v_n)]\) is a diagonal degree matrix of \(G\) and \(B^T\) is the transpose of \(B\). If \(G\) is an \(r\)-regular graph, then2. DSA-eigenvalues
A subdivision graph of \(G\) is a graph \(S(G)\) obtained from \(G\) by inserting a new vertex on each edge of \(G\) [18]. Thus if \(G\) has \(n\) vertices and \(m\) edges, then \(S(G)\) has \(n+m\) vertices and \(2m\) edges. If \(u\in V(G)\) then \(d_{S(G)}(u)= d_{G}(u)\) and if \(v\) is subdivided vertex then \(d_{S(G)}(v)= 2\).Lemma 2.1. If \(M\) is a non-singular matrix, then we have \[ \left| \begin{array}{cc} M & N \\ P & Q \end{array}\right| = |M||Q-PM^{-1}N|. \]
Theorem 2.2. Let \(G\) be an \(r\)-regular graph on \(n\) vertices and \(m\) edges. Then \[ \psi(S(G):\xi) = \left\{\begin{array}{ll} \xi^{\frac{n}{2}}(\xi^2+2)^{\frac{n}{2}}, & \mathrm{if} \hspace{4mm} r= 1 \\[2mm] \xi^{2n}, & \mathrm{if} \hspace{4mm} r = 2\\[2mm] (-1)^{n} (r-2)^{2n} \xi^{m-n} \phi\left(G: \frac{-\xi^2-r(r-2)^{2}}{(r-2)^2}\right), & \mathrm{if} \hspace{4mm} r \geq 3. \end{array} \right. \]
Proof. (i) If \(r=1\), then \(G\) is a union of \(k \geq 1\) edges. Thus \(G\) has \(n=2k\) vertices and \(k\) edges. The vertices of \(S(G)\) can be labeled in such a way that \[ DSA(S(G)) = \left[ \begin{array}{cc} O & B^T \\ -B & O \end{array}\right], \] where \(B\) is vertex-edge incidence matrix of \(G\) and \(O\) is zero matrix. Therefore by Lemma 2.1 and Eq.(1) \begin{eqnarray*} \psi(S(G) : \xi) & = & \left|\begin{array}{cc}\xi I_m & - B^T \\ B & \xi I_n \\ \end{array}\right|\\ & = & \xi^m \left|\xi I_{n} + B \frac{I_{m}}{\xi} B^T \right| \\ & = & \xi^{m-n} \left|\xi^2 I_{n} + BB^T \right| \\ & = & \xi^{m-n} \left|\xi^2 I_{n} + A + rI_{n}\right| \\ & = & (-1)^n\xi^{m-n} \left|-(\xi^2 + r)I_{n} - A \right| \\ & = & (-1)^n\xi^{m-n} \phi(G: -(\xi^2 + r)) \\ & = & (-1)^{2k}\xi^{k-2k} \left((\xi^2+1)^2-1 \right)^{k}\\ & = & \xi^{k} (\xi^2+2)^{k} \\ & = & \xi^\frac{n}{2}(\xi^2+2)^\frac{n}{2}. \end{eqnarray*}
(ii) If \(r=2\), then each component of \(G\) is cycle. Therefore \(S(G)\) is \(2\)-regular graph on \(2n\) vertices. Hence \[ \psi(S(G):\xi)= \xi^{2n}. \]
(iii) Let \(r\geq 3\). The vertices of \(S(G)\) can be labeled in such a way that \[ DSA(S(G)) = \left[ \begin{array}{cc} O & (2-r) B^T \\ -(2-r)B & O \end{array}\right], \] where \(B\) is vertex-edge incidence matrix of \(G\) and \(O\) is zero matrix. Therefore by Lemma 2.1 and Eq.(1) \begin{eqnarray*} \psi(S(G) : \xi) & = & \left|\begin{array}{cc}\xi I_m & - (2-r)B^T \\ (2-r)B & \xi I_n \\ \end{array}\right|\\ & = & \xi^m \left|\xi I_{n} + (2-r)^2 B\frac{I_{m}}{\xi} B^T \right| \\ \nonumber & = & \xi^{m-n} \left|\xi^2 I_{n} + (r-2)^2(A+rI) \right| \\ & = & (-1)^n(r-2)^{2n}\xi^{m-n} \left|\left(\frac{-\xi^2-r(r-2)^2}{(r-2)^2}\right)I_n - A \right| \\ & = & (-1)^n(r-2)^{2n}\xi^{m-n} \phi\left(G: \frac{-\xi^2- r(r-2)^2}{(r-2)^2}\right). \end{eqnarray*}
By Theorem 2.2, we have following corollary.Corollary 2.3. Let \(G\) be an \(r\)-regular graph on \(n\) vertices and \(m\) edges. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be the adjacency eigenvalues of \(G\) and \(\mathbf{i}=\sqrt{-1}\).
(i) If \(r=1\) then DSA-eigenvalues of \(S(G)\) are \(0\) (\(\frac{n}{2}\) times) and \(\pm \mathbf{i}\sqrt{2}\) (\(\frac{n}{2}\) times).
(ii) If \(r=2\) then DSA-eigenvalues of \(S(G)\) are all zeros.
(iii) If \(r\geq 3\) then DSA-eigenvalues of \(S(G)\) are \(0\) (\(m-n\) times) and \(\pm \mathbf{i}(r-2)\sqrt{r+\lambda_i}\), \(i=1, 2, \ldots, n\).
The semitotal pont graph of \(G\), denoted by \(T_{1}(G)\), is a graph with vertex set \(V(G)\cup E(G)\) and two vertices in \(T_{1}(G)\) are adjacent if they are adjacent vertices in \(G\) or one is a vertex and other is an edge incident to it in \(G\) [19]. Note that if \(u\in V(G)\) then \(d_{T_{1}(G)}(u)= 2 d_{G}(u)\) and if \(e\in E(G)\) then \(d_{T_{1}(G)}(e)= 2\).Theorem 2.4. Let \(G\) be an \(r\)-regular graph on \(n\) vertices and \(m\) edges. Then \[ \psi(T_{1}(G):\xi) = \left\{\begin{array}{ll} \xi^{m+n}, & \mathrm{if} \hspace{4mm} r = 1\\[2mm] (-1)^n (2r-2)^{2n}\xi^{m-n} \phi\left(G: \frac{-\xi^2- r(2r-2)^2}{(2r-2)^2}\right), & \mathrm{if} \hspace{4mm} r\geq 2. \end{array} \right. \]
Proof. (i) If \(r=1\), then \(T_{1}(G)\) is a regular graph of degree two on \(m+n\) vertices. Hence \[ \psi(T_{1}(G):\xi) = \xi^{m+n}. \]
(ii) Let \(r \geq 2\). The vertices of \(T_1(G)\) can be labeled in such a way that \[ DSA(T_1(G)) = \left[\begin{array}{cc} O & (2-2r) B^T \\ -(2-2r)B & O \end{array}\right], \] where \(B\) is vertex-edge incidence matrix of \(G\) and \(O\) is a zero matrix. Therefore by Lemma 2.1, and Eq. (1) \begin{eqnarray*} \psi(T_1(G) : \xi) & = & \left|\begin{array}{cc}\xi I_m & - (2-2r)B^T \\ (2-2r)B & \xi I_n \\ \end{array}\right|\\ & = & \xi^m \left|\xi I_{n} + (2r-2)^2 B\frac{I_{m}}{\xi} B^T \right| \\ \nonumber & = & \xi^{m-n} \left|\xi^2 I_{n} + (2r-2)^2(A+rI) \right| \\ & = & (-1)^n(2r-2)^{2n}\xi^{m-n} \left|\left(\frac{-\xi^2-r(2r-2)^2}{(2r-2)^2}\right)I_n - A \right| \\ & = & (-1)^n(2r-2)^{2n}\xi^{m-n} \phi\left(G: \frac{-\xi^2- r(2r-2)^2}{(2r-2)^2} \right). \end{eqnarray*}
By Theorem 2.4, we have following corollary.corollary 2.5. Let \(G\) be an \(r\)-regular graph on \(n\) vertices and \(m\) edges. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be the adjacency eigenvalues of \(G\) and \(\mathbf{i}=\sqrt{-1}\).
(i) If \(r=1\) then DSA-eigenvalues of \(T_1(G)\) are all zeros.
(ii) If \(r\geq 2\) then DSA-eigenvalues of \(T_1(G)\) are \(0\) (\(m-n\) times) and \(\pm \mathbf{i}(2r-2)\sqrt{r+\lambda_i}\), \(i=1, 2, \ldots, n\).
Semitotal line graph of \(G\), denoted by \(T_2(G)\), is a graph with vertex set \(V(G)\cup E(G)\) and two vertices in \(T_2(G)\) are adjacent if one is a vertex and other is an edge incident to it in \(G\) or both are edges adjacent in \(G\) [1]. Note that if \(u\in V(G)\) then \(d_{T_2(G)}(u)= d_{G}(u)\) and if \(e= uv \in E(G)\) then \(d_{T_2(G)}(e)= d_{G}(u)+d_{G}(v)\).Theorem 2.6. Let \(G\) be an \(r\)-regular graph \((r\geq 1)\) on \(n\) vertices and \(m\) edges. Then \[ \psi(T_2(G) : \xi) = (-1)^n r^{2n}\xi^{m-n} \phi\left(G: \frac{-\xi^2- r^3}{r^2} \right). \]
Proof. The vertices of \(T_2(G)\) can be labeled in such a way that \[ DSA(T_2(G)) = \left[ \begin{array}{cc} O & r B^T \\ - rB & O \end{array}\right], \] where \(B\) is vertex-edge incidence matrix of \(G\) and \(O\) is a zero matrix. Therefore by Lemma 2.1 and Eq. (1) \begin{eqnarray*} \psi(T_2(G) : \xi) & = & \left|\begin{array}{cc}\xi I_m & - rB^T \\ rB & \xi I_n \\ \end{array}\right|\\ & = & \xi^m \left|\xi I_{n} + r^2 B\frac{I_{m}}{\xi} B^T \right| \\ \nonumber & = & \xi^{m-n} \left|\xi^2 I_{n} + r^2(A+rI) \right| \\ & = & (-1)^n r^{2n}\xi^{m-n}\left |\left(\frac{-\xi^2-r^3}{r^2}\right)I_n - A \right| \\ & = & (-1)^n r^{2n}\xi^{m-n} \phi\left(G: \frac{-\xi^2 - r^3}{r^2} \right). \end{eqnarray*}
By Theorem 2.6, we have following corollary.Corollary 2.7. Let \(G\) be an \(r\)-regular graph \((r\geq 1)\) on \(n\) verties and \(m\) edges. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be the adjacency eigenvalues of \(G\) and \(\mathbf{i}=\sqrt{-1}\). Then DSA-eigenvalues of \(T_2(G)\) are \(0\) (\(m-n\) times) and \(\pm \mathbf{i}r\sqrt{r+\lambda_{i}}\), \(i=1, 2, \ldots, n\).
Total graph of \(G\), denoted by \(T(G)\), is a graph with vertex set \(V(G)\cup E(G)\) and two vertices in \(T(G)\) are adjacent if and only if they are adjacent vertics of \(G\) or adjacent edges of \(G\) or one is a vertex and other is an edge incident to it in \(G\) [18]. Total graph of a regular graph is regular. Hence if \(G\) is regular, then \[ \psi(T(G): \xi) = \xi^{m+n}. \] Two different graphs having same eigenvalues are called cospectral. If \(G_1\) and \(G_2\) are adjacency cospectral graphs with same regularity, then by Corollaries 2.3, 2.5, and 2.7, the graphs \(S(G_1)\) and \(S(G_2)\); \(T_1(G_1)\) and \(T_1(G_2)\); \(T_2(G_1)\) and \(T_2(G_2)\) form a pair of DSA-cospectral graphs.3. DSA-energy
By Corollaries 2.3, 2.5, and 2.7 and by Eq. (2) we get the following proposition.Proposition 3.1. Let \(G\) be an \(r\)-regular graph on \(n\) vertices and \(m\) edges. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n\) be the adjacency eigenvalues of \(G\). Then
(i) \[ DSAE(S(G)) = \left\{\begin{array}{ll} n\sqrt{2}, & \mathrm{if} \hspace{4mm} r= 1 \\[2mm] 0, & \mathrm{if} \hspace{4mm} r = 2\\[2mm] 2(r-2)\sum\limits_{i=1}^{n}\sqrt{r+\lambda_{i}}, & \mathrm{if} \hspace{4mm} r \geq 3. \end{array} \right. \]
(ii) \[ DSAE(T_1(G)) = \left\{\begin{array}{ll} 0, & \mathrm{if} \hspace{4mm} r= 1 \\[2mm] 2(2r-2)\sum\limits_{i=1}^{n}\sqrt{r+\lambda_{i}}, & \mathrm{if} \hspace{4mm} r \geq 2. \end{array} \right. \]
(iii) \(DSAE(T_2(G)) = 2r\sum\limits_{i=1}^{n}\sqrt{r+\lambda_{i}}\) for \(r \geq 1\).
(iv) \(DSAE(T(G))= 0\) for \(r\geq 1\).
By Proposition 3.1 we have following result.Proposition 3.2. If \(G\) is an \(r\)-regular graph \((r\geq 3)\) on \(n\) vertices, then
(i) \((2r-2) DSAE(S(G)) = (r-2) DSAE(T_1(G))\);
(ii) \(r DSAE(S(G)) = (r-2) DSAE(T_2(G))\);
(iii) \(r DSAE(T_1(G)) = (2r-2) DSAE(T_2(G))\).
Proposition 3.3. Let \(G\) be an \(r\)-regular graph \((r\geq 3)\) on \(n\) vertices. Then $$DSAE(S(G)) < DSAE(T_2(G)) < DSAE(T_1(G)).$$
Proof. For \(r\geq 3\), we see that $$r-2 < r < 2r-2.$$ Hence by Proposition 3.2, this implies $$DSAE(S(G)) < DSAE(T_2(G)) < DSAE(T_1(G)).$$
Competing Interests
The authors declare that they have no competing interests.References
- Cvetković, D. M., Doob, M., & Sachs, H. (1980). Spectra of graphs: theory and application (Vol. 87). Academic Pr.[Google Scholor]
- Indulal, G. (2009). Distance spectrum of graph compositions. Ars Mathematica Contemporanea, 2, 93-100. [Google Scholor]
- Mohar, B., Alavi, Y., Chartrand, G., & Oellermann, O. R. (1991). The Laplacian spectrum of graphs. Graph theory, combinatorics, and applications, 2(871-898), 12. [Google Scholor]
- Aouchiche, M., & Hansen, P. (2013). Two Laplacians for the distance matrix of a graph. Linear Algebra and its Applications, 439(1), 21-33
- Hua, H., & Deng, H. (2007). On Unicycle Graphs with Maximum and Minimum Zeroth-order Genenal Randić Index. Journal of mathematical chemistry, 41(2), 173-181. [Google Scholor]
- Revankar, D. S., Patil, M. M., & Ramane, H. S. (2017). On eccentricity sum eigenvalue and eccentricity sum energy of a graph. Ann. Pure Appl. Math, 13, 125-130. [Google Scholor]
- Sowaity, M. I., & Sharada, B. (2017). The sum-eccentricity energy of a graph. Int. J. Rec. Innovat. Trends Comput. Commun, 5, 293-304. [Google Scholor]
- Ramane, H. S., Revankar, D. S., & Patil, J. B. (2013). Bounds for the degree sum eigenvalues and degree sum energy of a graph. International Journal of Pure and Applied Mathematical Sciences, 6(2), 161-167. [Google Scholor]
- Shinde, S. S. (2016). Spectral Graph Theory(Ph.D. thesis). Visvesvaraya Technological University, Belagavi.
- Rad, N. J., Jahanbani, A., & Gutman, I. (2018). Zagreb energy and Zagreb Estrada index of graphs. MATCH Commun. Math. Comput. Chem, 79, 371-386. [Google Scholor]
- Ramane, H. S., Nandeesh, K. C., Gudodagi, G. A., & Zhou, B. (2018). Degree subtraction eigenvalues and energy of graphs. Computer Science, 26(2), 146-162. [Google Scholor]
- Ramane, H. S., & Gudodagi, G. A. (2017). Degree product polynomial and degree product energy of specific graphs. Asian J. Math. Comput. Res., 15, 94-102.
- Basavanagoud, B., & Chitra. (2018). Degree square sum energy of graphs, Int. J. Math. And Appl., 6 ,193-205.
- Gutman, I., Mathad, V., Khalaf, S. I., & Mahde, S. S. (2018). Average Degree-Eccentricity Energy of Graphs. Mathematics Interdisciplinary Research, 3(1), 45-54. [Google Scholor]
- Ramane, H. S., Maraddi, H. N., & Jummannaver R. B. (Preprint 2018). Degree subtraction adjacency eigenvalues and energy of graphs.
- Gutman, I. (1978). The Energy of a Graph. Ber. Math. Stat. Sekt. Forschungsz. Graz, 103, 1-22.
- Li, X., Shi, Y., & Gutman, I. (2012). Graph Energy . Springer, New York, NY.
- Harary. F. (1999). Graph Theory . Narosa Publishing House, New Delhi.
- Sampathkumar, E., & Chikkodimath, S. B. (1973). Semitotal graphs of a graph-II. J. Karnatak Univ. Sci, 18, 274-280.