Open Journal of Discrete Applied Mathematics
ISSN: 2617-9687 (Online) 2617-9679 (Print)
DOI: 10.30538/psrp-odam2021.0056
Possibility Pythagorean bipolar fuzzy soft sets and its application
M. Palanikumar\(^1\), K. Arulmozhi
Department of Mathematics, Annamalai University, India; (M.P & K.A)
\(^{1}\)Corresponding Author: palanimaths86@email.com; Tel.: +919976931386
Abstract
Keywords:
1. Introduction
Many uncertain theories are put forward as fuzzy set [1], intuitionistic fuzzy set [2], bipolar fuzzy sets [3] and Pythagorean fuzzy set [4]. Zadeh [1] introduced fuzzy set and suggests that decision makers can solving uncertain problems by considering membership degree. The concept of intuitionistic fuzzy set was introduced by Atanassov [2] and characterized by a degree of membership and non-membership satisfying the condition that sum of its membership degree and non membership degree do not exceeds 1. However, we may interact a problem in decision making events where the sum of the degree of membership and non-membership of a particular attribute exceeds one. The concept of Pythagorean fuzzy sets introduced by extending the intuitionistic fuzzy sets and characterizing the condition that squares of sum of its membership and non membership degree do not exceeds 1 [4]. The theory of soft sets proposed by Molodtsov [5] is a tool of parameterization for coping with the uncertainties. In comparison with other uncertain theories, soft sets more accurately reflects the objectivity and complexity of decision making during actual situations. Moreover, the combination of soft sets with other mathematical models is also a critical research area. Maji et al., introduced the concept of fuzzy soft set and the intuitionistic fuzzy soft set in [6] and [7] respectively. Abdullah et al., [8] initiated the concept of bipolar fuzzy soft sets and Alkhazaleh et al., [9] introduced the concept of possibility fuzzy soft sets.
In 2015, Peng et al., [10] extended fuzzy soft set to Pythagorean fuzzy soft set. The purpose of this paper is to extend the concept of possibility Pythagorean fuzzy soft sets to parameterization of possibility Pythagorean bipolar fuzzy sets. We further establish a similarity measure based on soft model.
2. Preliminaries
Definition 1. [4,11] Let \(U\) be a non-empty set of the universe. The Pythagorean fuzzy set (PFS) \(A\) in \(U\) is an object having the form \(A= \{ x, \mu_{A}(x), \eta_{A}(x)| x\in U \}\), where \(\mu_{A}(x)\) and \(\eta_{A}(x)\) represent the degree of membership and degree of non-membership of \(A\) respectively. Consider the mappings \(\mu_{A}: U \rightarrow [0,1]\) and \(\eta_{A}: U \rightarrow [0,1]\) such that \(0 \leq (\mu_{A}(x))^{2}+(\eta_{A}(x))^{2} \leq 1\). The degree of indeterminacy is determined as \(\pi_{A}(x)=\Big[\sqrt{1-(\mu_{A}(x))^{2}-(\eta_{A}(x))^{2}}\Big]\). Here \(A= \langle \mu_{A}, \eta_{A} \rangle\) is called a Pythagorean fuzzy number (PFN).
Definition 2. [12] Let \(U\) be a non-empty set of the universe. The Pythagorean bipolar fuzzy set (PBFS) \(A\) in \(U\) is an object having the form \(A= \{ x, \mu^{+}_{A}(x), \eta^{+}_{A}(x), \mu^{-}_{A}(x), \eta^{-}_{A}(x)| x\in U \}\), where \(\mu^{+}_{A}(x), \eta^{+}_{A}(x) \), \(\mu^{-}_{A}(x), \eta^{-}_{A}(x)\) represent the degree of positive membership, degree of positive non-membership, degree of negative membership and degree of negative non-membership of \(A\) respectively. Consider the mappings \(\mu^{+}_{A}, \eta^{+}_{A}: U \rightarrow [0,1]\) and \(\mu^{-}_{A}, \eta^{-}_{A}: U \rightarrow [-1,0]\) such that \(0 \leq (\mu^{+}_{A}(x))^{2}+(\eta^{+}_{A}(x))^{2} \leq 1\) and \(-1 \leq -\Big[ (\mu^{-}_{A}(x))^{2}+(\eta^{-}_{A}(x))^{2}\Big] \leq 0\). The degree of indeterminacy is determined as \(\pi^{+}_{A}(x)=\Big[\sqrt{1-(\mu^{+}_{A}(x))^{2}-(\eta^{+}_{A}(x))^{2}}\Big]\) and \(\pi^{-}_{A}(x)=-\Big[\sqrt{1-(\mu^{-}_{A}(x))^{2}-(\eta^{-}_{A}(x))^{2}}\Big]\). Here \(A= \langle \mu^{+}_{A}, \eta^{+}_{A}, \mu^{-}_{A}, \eta^{-}_{A}\rangle\) is called a Pythagorean bipolar fuzzy number (PBFN).
Proposition 1. [12] Let \(\alpha_{1}= A(\mu^{+}_{\alpha_{1}}, \eta^{+}_{\alpha_{1}}, \mu^{-}_{\alpha_{1}}, \eta^{-}_{\alpha_{1}})\), \(\alpha_{2} = A(\mu^{+}_{\alpha_{2}}, \eta^{+}_{\alpha_{2}}, \mu^{-}_{\alpha_{2}}, \eta^{-}_{\alpha_{2}})\) and \(\alpha_{3}= A(\mu^{+}_{\alpha_{3}}, \eta^{+}_{\alpha_{3}}, \mu^{-}_{\alpha_{3}}, \eta^{-}_{\alpha_{3}})\) are any three PBFN's over \((U,E)\), then the following properties hold:
- (i) \(\alpha_{1}^{c}= (\eta^{+}_{\alpha_{1}}, \mu^{+}_{\alpha_{1}},\eta^{-}_{\alpha_{1}}, \mu^{-}_{\alpha_{1}})\);
- (ii) \(\alpha_{2} \Cup \alpha_{3}= \Big[\max(\mu^{+}_{\alpha_{2}}, \mu^{+}_{\alpha_{3}}), \min(\eta^{+}_{\alpha_{2}}, \eta^{+}_{\alpha_{3}}), \min(\eta^{-}_{\alpha_{2}}, , \eta^{-}_{\alpha_{3}}) \max(\mu^{-}_{\alpha_{2}}, \mu^{-}_{\alpha_{3}})\Big]\);
- (iii) \(\alpha_{2} \Cap \alpha_{3}= \Big[\min(\mu^{+}_{\alpha_{2}}, \mu^{+}_{\alpha_{3}}), \max(\eta^{+}_{\alpha_{2}}, \eta^{+}_{\alpha_{3}}), \max(\mu^{-}_{\alpha_{2}}, \mu^{-}_{\alpha_{3}}), \min(\eta^{-}_{\alpha_{2}}, \eta^{-}_{\alpha_{3}})\Big]\);
- (iv) \(\alpha_{2} \geq \alpha_{3}\) iff \(\mu^{+}_{\alpha_{2}} \geq \mu^{+}_{\alpha_{3}}\), \(\eta^{+}_{\alpha_{2}} \leq \eta^{+}_{\alpha_{3}}\), \(\mu^{-}_{\alpha_{2}} \leq \mu^{-}_{\alpha_{3}}\) and \(\eta^{-}_{\alpha_{2}} \geq \eta^{-}_{\alpha_{3}}\);
- (v) \(\alpha_{2} = \alpha_{3}\) iff \(\mu^{+}_{\alpha_{2}} = \mu^{+}_{\alpha_{3}}\), \(\eta^{+}_{\alpha_{2}} = \eta^{+}_{\alpha_{3}}\), \(\mu^{-}_{\alpha_{2}} = \mu^{-}_{\alpha_{3}}\) and \(\eta^{-}_{\alpha_{2}} = \eta^{-}_{\alpha_{3}}\).
Definition 3. [8] Let \(U\) be a non-empty set of the universe and \(E\) be a set of parameter. The pair \((\mathcal{F}, A)\) is called a bipolar fuzzy soft set (BFSS) on \(U\) if \(A \sqsubseteq E\) and \(\mathcal{F}: A \rightarrow \mathcal{BF}^{U},\) where \(\mathcal{BF}^{U}\) is the set of all bipolar fuzzy subsets of \(U\).
Definition 4. [13] Let \(U\) be a non-empty set of the universe and \(E\) be a set of parameter. The pair \((\mathcal{F}, A)\) is called a Pythagorean bipolar fuzzy soft set (PBFSS) on \(U\) if \(A \sqsubseteq E\) and \(\mathcal{F}: A \rightarrow P\mathcal{BF}^{U},\) where \(P\mathcal{BF}^{U}\) is the set of all Pythagorean bipolar fuzzy subsets of \(U\).
3. Possibility Pythagorean bipolar fuzzy soft sets
Definition 5. Let \(U\) be a non-empty set of the universe, \(E\) be a set of parameter and the pair \((U,E)\) is a soft universe. Further, let \(\mathcal{F} : E \rightarrow \mathcal{BF}^{U}\) and \(\mu\) be a bipolar fuzzy subset of \(E\) such that \(\mu: E \rightarrow \mathcal{BF}^{U}\). If \(\mathcal{F}^{\mathcal{B}}_{\mu}: E \rightarrow \mathcal{BF}^{U} \times \mathcal{BF}^{U}\) is a function defined as \(\mathcal{F}^{\mathcal{B}}_{\mu}(e) = \Big\{\big\langle \mathcal{BF}(e)(x), \mu(e)(x)\big\rangle, \,\, x\in U\Big\}\) then \(\mathcal{F}^{\mathcal{B}}_{\mu}\) is called a PBFSS over \((U,E)\).
Definition 6. Let \(U\) be a non-empty set of the universe and \(E\) be a set of parameter. The pair \((\mathcal{F}, A)\) is a PBFSS on \(U\) if \(\mathcal{F} : A \rightarrow P\mathcal{BF}^{U},\) where \(P\mathcal{BF}^{U}\) is the set of all Pythagorean bipolar fuzzy subsets of \(U\).
Example 1. A set of three Scooters \(U= \{u_{1}, u_{2}, u_{3}\}\) under consideration and parameters \(E= \{e_{1}= \text{Better Design}, \,\, e_{2}= \text{Better Price }, \,\, e_{3}= \text{More Mileage} , \,\, e_{4}= \text{More Durable} \}\). Suppose \(\mathcal{F}: E \rightarrow P\mathcal{BF}^{U}\) is given by \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{1})= \left\{\begin{array}{lr} \frac{u_{1}}{\langle 0.7 \,, 0.6 , -0.3 \,, -0.5 \rangle }\\ \frac{u_{2}}{\langle 0.3 \,, 0.8 ,-0.8 \,, -0.5 \rangle }\\ \frac{u_{3}}{\langle 0.8 \,, 0.5 ,-0.4 \,, -0.7 \rangle } \end{array}\right\}; \end{equation*} \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{2})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle 0.4 \,, 0.8 ,-0.7 \,, -0.2 \rangle }\\ \frac{u_{2}}{\langle 0.6 \,, 0.7 ,-0.8 \,, -0.3 \rangle }\\ \frac{u_{3}}{\langle 0.9 \,, 0.2 ,-0.7 \,, -0.5\rangle } \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{3})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle 0.9 \,, 0.4 ,-0.2 \,, -0.8 \rangle }\\ \frac{u_{2}}{\langle 0.6 \,, 0.5 ,-0.4 \,, -0.8 \rangle }\\ \frac{u_{3}}{\langle 0.5 \,, 0.7 ,-0.9 \,, -0.2 \rangle } \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{4}) = \left\{\begin{array}{lr}\frac{u_{1}}{\langle 0.7, 0.6 , -0.4, -0.7 \rangle} \\ \frac{u_{2}}{\langle 0.8, 0.5 ,-0.6, -0.8 \rangle} \\ \frac{u_{3}}{\langle 0.6, 0.8 , -0.5, -0.6\rangle} \end{array}\right\}. \end{equation*} The matrix form of \(\mathcal{F}^{\mathcal{B}}_{p}\) can be written as: \begin{equation} \begin{pmatrix} \langle 0.7 \,, 0.6 , -0.3 \,, -0.5 \rangle &\langle 0.3 \,, 0.8 ,-0.8 \,, -0.5 \rangle &\langle 0.8 \,, 0.5 ,-0.4 \,, -0.7\rangle \\ \langle 0.4 \,, 0.8 ,-0.7 \,, -0.2 \rangle &\langle 0.6 \,, 0.7 ,-0.8 \,, -0.3 \rangle &\langle 0.9 \,, 0.2 ,-0.7 \,, -0.5\rangle \\ \langle 0.9 \,, 0.4 ,-0.2 \,, -0.8 \rangle &\langle 0.6 \,, 0.5 ,-0.4 \,, -0.8 \rangle &\langle 0.5 \,, 0.7 ,-0.9 \,, -0.2 \rangle \\ \langle 0.7, 0.6 , -0.4, -0.7 \rangle &\langle 0.8, 0.5 ,-0.6, -0.8 \rangle &\langle 0.6, 0.8 , -0.5, -0.6 \rangle \end{pmatrix}. \end{equation}
Definition 7. Let \(U\) be a non-empty set of the universe, \(E\) be a set of parameter and the pair \((U,E)\) be a soft universe. Let \(\mathcal{F} : E \rightarrow P\mathcal{BF}^{U}\) and \(\widetilde{p}\) is a Pythagorean bipolar fuzzy subset of \(E\). Further, let \(p : E \rightarrow P\mathcal{BF}^{U}\) where \(P\mathcal{BF}^{U}\) denotes the collection of all Pythagorean bipolar fuzzy subsets of \(U\). If \(\mathcal{F}^{\mathcal{B}}_{p} : E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\) is a function defined as \(\mathcal{F}^{\mathcal{B}}_{p}(e) = \Big\{\big\langle \mathcal{BF}(e)(x), p(e)(x)\big\rangle, \,\, x\in U\Big\}\) then \(\mathcal{F}^{\mathcal{B}}_{p}\) is a Possibility Pythagorean bipolar fuzzy soft sets (PPBFSS) on \((U,E)\) such that for each parameter \(e\), \(\mathcal{F}^{\mathcal{B}}_{p}(e)= \Bigg\{\Big\langle x, ( \mu^{+}_{\mathcal{F}(e)}(x), \eta^{+}_{\mathcal{F}(e)}(x), \mu^{-}_{\mathcal{F}(e)}(x), \eta^{-}_{\mathcal{F}(e)}(x)), (\mu^{+}_{p(e)}(x), \eta^{+}_{p(e)}(x),\mu^{-}_{p(e)}(x), \eta^{-}_{p(e)}(x) ) \Big\rangle, \,\, x\in U\Bigg\}\).
Example 2. Let \(U = \{u_{1}, u_{2}, u_{3}\}\) be a set of three cars under consideration and parameters \(E = \{e_{1}\) = Costly, \(e_{2}\) = Attractive, \(e_{3}\) = Better Fuel Efficient \(\}\) is a set of parameters. Suppose that \(\mathcal{F}^{\mathcal{B}}_{p} : E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\) is given by \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{1})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.6 , 0.7 , -0.3 , -0.8 ), (0.6 , 0.5 ,-0.8 , -0.3 )\rangle} \,\, \\ \frac{u_{2}}{\langle(0.9 , 0.4 ,-0.7 , -0.5 ), (0.8 , 0.3 ,-0.6 , -0.5 )\rangle} \,\,\\ \frac{u_{3}}{\langle(0.8 , 0.5 ,-0.2 , -0.9), (0.7 , 0.4 , -0.8 , -0.6 )\rangle} \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{2})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.7 , 0.4 ,-0.2 , -0.8 ), (0.9 , 0.2 ,-0.7 , -0.4 )\rangle} \,\, \\ \frac{u_{2}}{\langle(0.3 , 0.9 ,-0.7 , -0.4 ), (0.6 , 0.4 ,-0.6 , -0.5 )\rangle} \,\, \,\, \\ \frac{u_{3}}{\langle(0.5 , 0.6 ,-0.2 , -0.9), (0.8 , 0.3 ,-0.7 , -0.6 )\rangle} \,\, \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{F}^{\mathcal{B}}_{p}(e_{3})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.3 , 0.7 ,-0.8 , -0.4 ), (0.6 , 0.5 ,-0.7 , -0.3 )\rangle} \,\,\\ \frac{u_{2}}{\langle(0.8 , 0.4 ,-0.7 , -0.3 ), (0.7 , 0.4 ,-0.6 , -0.4 )\rangle} \,\, \,\,\\ \frac{u_{3}}{\langle(0.9 , 0.2 ,-0.5 , -0.6 ), (0.8 , 0.5 ,-0.9 , -0.2 )\rangle} \,\,\end{array}\right\}. \end{equation*} The matrix form of \(\mathcal{F}^{\mathcal{B}}_{p}\) can be written as: \begin{equation} {\small\begin{pmatrix} \langle(0.6 , 0.7 , -0.3 , -0.8 ), (0.6 , 0.5 ,-0.8 , -0.3 )\rangle& \langle(0.9 , 0.4 ,-0.7 , -0.5 ), (0.8 , 0.3 ,-0.6 , -0.5 )\rangle & \langle(0.8 , 0.5 ,-0.2 , -0.9), (0.7 , 0.4 , -0.8 , -0.6 )\rangle \\ \langle(0.7 , 0.4 ,-0.2 , -0.8 ), (0.9 , 0.2 ,-0.7 , -0.4 )\rangle& \langle(0.3 , 0.9 ,-0.7 , -0.4 ), (0.6 , 0.4 ,-0.6 , -0.5 )\rangle& \langle(0.5 , 0.6 ,-0.2 , -0.9), (0.8 , 0.3 ,-0.7 , -0.6 )\rangle\\ \langle(0.3 , 0.7 ,-0.8 , -0.4 ), (0.6 , 0.5 ,-0.7 , -0.3 )\rangle & \langle(0.8 , 0.4 ,-0.7 , -0.3 ), (0.7 , 0.4 ,-0.6 , -0.4 )\rangle& \langle(0.9 , 0.2 ,-0.5 , -0.6 ), (0.8 , 0.5 ,-0.9 , -0.2 )\rangle \end{pmatrix}.} \end{equation}
Definition 8. Let \(U\) be a non-empty set of the universe and \(E\) be a set of parameter. Suppose that \(\mathcal{F}^{\mathcal{B}}_{p}\) and \(\mathcal{G}^{\mathcal{B}}_{q}\) are two PPBFSSs on \((U, E)\). Now \(\mathcal{F}^{\mathcal{B}}_{p} \sqsubseteq \mathcal{G}^{\mathcal{B}}_{q}\) if and only if
- (i) \( \mathcal{F}(e)(x) \sqsubseteq \mathcal{G}(e)(x)\) if \begin{equation*} \left\{\begin{array}{lr}\mu^{+}_{\mathcal{F}(e)}(x) \leq \mu^{+}_{\mathcal{G}(e)}(x),\,\,\,\, \eta^{+}_{\mathcal{F}(e)}(x) \geq \eta^{+}_{\mathcal{G}(e)}(x), \\ \mu^{-}_{\mathcal{F}(e)}(x) \geq \mu^{-}_{\mathcal{G}(e)}(x),\,\,\,\, \eta^{-}_{\mathcal{F}(e)}(x) \leq \eta^{-}_{\mathcal{G}(e)}(x) \end{array}\right\};\end{equation*}
- (ii) \(p(e)(x) \sqsubseteq q(e)(x)\) if \begin{equation*} \left\{\begin{array}{lr}\mu^{+}_{p(e)}(x) \leq \mu^{+}_{q(e)}(x), \,\,\,\, \eta^{+}_{p(e)}(x) \geq \eta^{+}_{q(e)}(x),\\ \mu^{-}_{p(e)}(x) \geq \mu^{-}_{q(e)}(x), \,\,\,\, \eta^{-}_{p(e)}(x) \leq \eta^{-}_{q(e)}(x) \end{array}\right\};\end{equation*} \(\forall e \in E\).
Example 3. Consider the PPBFSS \(\mathcal{F}^{\mathcal{B}}_{p}\) over \((U, E)\) as in Example 2. Let \(\mathcal{G}^{\mathcal{B}}_{q}\) be another PPBFSS over \((U, E)\) defined as: \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{1})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.7 , 0.5 ,-0.6 , -0.7 ), (0.6 , 0.4 ,-0.9 , -0.2 )\rangle} \\ \frac{u_{2}}{\langle(0.9 , 0.2 ,-0.8 , -0.4 ), (0.9 , 0.2 ,-0.7 , -0.4 )\rangle} \\ \frac{u_{3}}{\langle(0.9 , 0.1 ,-0.5 , -0.8), (0.8 , 0.3 ,-0.9 , -0.3 )\rangle} \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{2})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.8 , 0.3 ,-0.4 , -0.6 ), (0.9 , 0.1 ,-0.8 , -0.3 )\rangle} \\ \frac{u_{2}}{\langle(0.6 , 0.7 ,-0.8 , -0.3 ), (0.7 , 0.4 ,-0.7 , -0.4 )\rangle} \\ \frac{u_{3}}{\langle(0.7 , 0.4 ,-0.3 , -0.7), (0.9 , 0.2 ,-0.8 , -0.5 )\rangle} \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{3})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.5 , 0.6 ,-0.9 , -0.3 ), (0.7 , 0.4 ,-0.9 , -0.1 )\rangle} \\ \frac{u_{2}}{\langle(0.8 , 0.3 ,-0.8 , -0.2 ), (0.8 , 0.3 ,-0.7 , -0.3 )\rangle} \\ \frac{u_{3}}{\langle(0.9 , 0.1 ,-0.7 , -0.5 ), (0.9 , 0.4 ,-0.9 , -0.2 )\rangle} \end{array}\right\}. \end{equation*} The matrix form of \(\mathcal{G}^{\mathcal{B}}_{q}\) can be written as: \begin{equation} \begin{pmatrix} \langle(0.7 , 0.5 ,-0.6 , -0.7 ), (0.6 , 0.4 ,-0.9 , -0.2 )\rangle& \langle(0.9 , 0.2 ,-0.8 , -0.4 ), (0.9 , 0.2 ,-0.7 , -0.4 )\rangle & \langle(0.9 , 0.1 ,-0.5 , -0.8), (0.8 , 0.3 ,-0.9 , -0.3 )\rangle \\ \langle(0.8 , 0.3 ,-0.4 , -0.6 ), (0.9 , 0.1 ,-0.8 , -0.3 )\rangle& \langle(0.6 , 0.7 ,-0.8 , -0.3 ), (0.7 , 0.4 ,-0.7 , -0.4 )\rangle& \langle(0.7 , 0.4 ,-0.3 , -0.7), (0.9 , 0.2 ,-0.8 , -0.5 )\rangle\\ \langle(0.5 , 0.6 ,-0.9 , -0.3 ), (0.7 , 0.4 ,-0.9 , -0.1 )\rangle & \langle(0.8 , 0.3 ,-0.8 , -0.2 ), (0.8 , 0.3 ,-0.7 , -0.3 )\rangle& \langle(0.9 , 0.1 ,-0.7 , -0.5 ), (0.9 , 0.4 ,-0.9 , -0.2 )\rangle \end{pmatrix}. \end{equation}
Definition 9. Let \(U\) be a non-empty set of the universe, \(E\) be a set of parameter and \(\mathcal{F}^{\mathcal{B}}_{p}\) be a PPBFSS on \((U, E)\). The complement of \(\mathcal{F}^{\mathcal{B}}_{p}\) is denoted by \(\mathcal{F}^{\mathcal{B}}_{{p}^{c}}\) and is defined by \(\mathcal{F}^{\mathcal{B}}_{{p}^{c}} = \Big\langle \mathcal{BF}^{c}(e)(x), {p}^{c}(e)(x)\Big\rangle,\) where \(\mathcal{BF}^{c}(e)(x) = (\eta^{+}_{\mathcal{F}(e)}(x),\mu^{+}_{\mathcal{F}(e)}(x), \eta^{-}_{\mathcal{F}(e)}(x),\mu^{-}_{\mathcal{F}(e)}(x))\) and \(p^{c}(e)(x) = (\eta^{+}_{p(e)}(x),\mu^{+}_{p(e)}(x), \eta^{-}_{p(e)}(x),\mu^{-}_{p(e)}(x))\). It is true that \(\mathcal{F}^{\mathcal{B}}_{({p}^{c})^{c}}= \mathcal{F}^{\mathcal{B}}_{p}\)
Definition 10. Let \(U\) be a non-empty set of the universe, \(E\) be a set of parameter and \(\mathcal{F}^{\mathcal{B}}_{p}\) and \(\mathcal{G}^{\mathcal{B}}_{q}\) be two PPBFSSs on \((U, E)\). The union and intersection of \(\mathcal{F}^{\mathcal{B}}_{p}\) and \(\mathcal{G}^{\mathcal{B}}_{q}\) over \((U, E)\) are denoted by \(\mathcal{F}^{\mathcal{B}}_{p}\Cup \mathcal{G}^{\mathcal{B}}_{q}\) and \(\mathcal{F}^{\mathcal{B}}_{p}\Cap \mathcal{G}^{\mathcal{B}}_{q}\) respectively and are defined by \(V_{v} : E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\), \(W_{w} : E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\) such that \(V_{v}(e)(x)= (V(e)(x), v(e)(x)),\) \(W_{w}(e)(x)= (W(e)(x), w(e)(x)),\) where \(V(e)(x)= \mathcal{F}(e)(x)\Cup \mathcal{G}(e)(x)\), \(v(e)(x)= p(e)(x)\Cup q(e)(x)\), \(W(e)(x)= \mathcal{F}(e)(x)\Cap \mathcal{G}(e)(x)\) and \(w(e)(x)= p(e)(x)\Cap q(e)(x)\), for all \(x\in U\).
Example 4. Let \(\mathcal{F}^{\mathcal{B}}_{p}\) and \(\mathcal{G}^{\mathcal{B}}_{q}\) be the two PPBFSSs on \((U, E)\). \(\mathcal{F}^{\mathcal{B}}_{p}\) is same as in Example 2 and \(\mathcal{G}^{\mathcal{B}}_{q}\) is defined as, \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{1})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.3 , 0.4 ,-0.2 , -0.3 ), (0.5 , 0.4 ,-0.3 , -0.1 )\rangle}\\ \frac{u_{2}}{\langle(0.4 , 0.5 ,-0.6 , -0.2 ), (0.6 , 0.2 ,-0.4 , -0.2 )\rangle}\\ \frac{u_{3}}{\langle(0.6 , 0.2 ,-0.1 , -0.4), (0.4 , 0.3 ,-0.5 , -0.6 )\rangle} \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{2})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.8 , 0.7 ,-0.4 , -0.3 ), (0.2 , 0.1 ,-0.3 , -0.5 )\rangle}\\ \frac{u_{2}}{\langle(0.6 , 0.4 ,-0.3 , -0.8 ), (0.3 , 0.4 ,-0.2 , -0.8 )\rangle}\\ \frac{u_{3}}{\langle(0.5 , 0.3 ,-0.5 , -0.4), (0.4 , 0.3 ,-0.6 , -0.9 )\rangle} \end{array}\right\};\end{equation*} \begin{equation*} \mathcal{G}^{\mathcal{B}}_{q}(e_{3})= \left\{\begin{array}{lr}\frac{u_{1}}{\langle(0.6 , 0.4 ,-0.4 , -0.1 ), (0.5 , 0.6 ,-0.3 , -0.4 )\rangle},\\ \frac{u_{2}}{\langle(0.7 , 0.9 ,-0.6 , -0.4 ), (0.6 , 0.1 ,-0.8 , -0.5 )\rangle},\\ \frac{u_{3}}{\langle(0.2 , 0.6 ,-0.3 , -0.2 ), (0.3 , 0.2 ,-0.7 , -0.1 )\rangle} \end{array}\right\}. \end{equation*} The matrix form of \(\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q}\) can be written as: \begin{equation} \begin{pmatrix} \langle(0.6 , 0.4 ,-0.3 , -0.3 ), (0.6 , 0.4 ,-0.8 , -0.1 )\rangle& \langle(0.9 , 0.4 ,-0.7 , -0.2 ), (0.8 , 0.2 ,-0.6 , -0.2 )\rangle & \langle(0.8 , 0.2 ,-0.2 , -0.4), (0.7 , 0.3 ,-0.8 , -0.6 )\rangle \\ \langle(0.8 , 0.4 ,-0.4 , -0.3 ), (0.9 , 0.1 ,-0.7 , -0.4 )\rangle& \langle(0.6 , 0.4 ,-0.4 , -0.4 ), (0.6 , 0.4 ,-0.6 , -0.5 )\rangle& \langle(0.5 , 0.3 ,-0.5 , -0.4), (0.8 , 0.3 ,-0.7 , -0.6 )\rangle\\ \langle(0.6 , 0.4 ,-0.8 , -0.1 ), (0.6 , 0.5 ,-0.7 , -0.3 )\rangle & \langle(0.8 , 0.4 ,-0.7 , -0.3 ), (0.7 , 0.1 ,-0.8 , -0.4 )\rangle& \langle(0.9 , 0.2 ,-0.5 , -0.2 ), (0.8 , 0.2 ,-0.9 , -0.1 )\rangle \end{pmatrix} \end{equation} and the matrix form of \(\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q}\) can be written as: \begin{equation} \begin{pmatrix} \langle(0.3 , 0.7 ,-0.2 , -0.8 ), (0.5 , 0.5 ,-0.3 , -0.3 )\rangle& \langle(0.4 , 0.5 ,-0.6 , -0.5 ), (0.6, 0.3 ,-0.4 , -0.5 )\rangle & \langle(0.6 , 0.5 ,-0.1 , -0.9), (0.4 , 0.4 ,-0.5 , -0.6 )\rangle \\ \langle(0.7 , 0.7 ,-0.2 , -0.8 ), (0.2 , 0.2 ,-0.3 , -0.5 )\rangle& \langle(0.3 , 0.9 ,-0.3 , -0.8 ), (0.3 , 0.4 ,-0.2 , -0.8 )\rangle& \langle(0.5 , 0.6 ,-0.2 , -0.9), (0.4 , 0.3 ,-0.6 , -0.9 )\rangle\\ \langle(0.3 , 0.7 ,-0.4 , -0.4 ), (0.5 , 0.6 ,-0.3 , -0.4 )\rangle & \langle(0.7 , 0.9 ,-0.6 , -0.4 ), (0.6 , 0.4 ,-0.6 , -0.5 )\rangle& \langle(0.2 , 0.6 ,-0.3 , -0.6 ), (0.3 , 0.5 ,-0.7 , -0.2 )\rangle \end{pmatrix}. \end{equation}
Definition 11. A PPBFSS \(\Theta^{\mathcal{B}}_{\theta}(e)(x) = \Big\langle\Theta(e)(x), \theta(e)(x)\Big\rangle\) is said to a possibility null Pythagorean bipolar fuzzy soft set \(\Theta^{\mathcal{B}}_{\theta}: E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\), where \( \Theta^{+}(e)(x) = (0,1)\), \(\theta^{+}(e)(x) = (0, 1)\), \( \Theta^{-}(e)(x) = (-1,0)\) and \(\theta^{-}(e)(x) = (-1, 0), \,\, \forall \, x \in U\).
Definition 12. A PPBFSS \(\Omega^{\mathcal{B}}_{\omega}(e)(x) = \Big\langle\Omega(e)(x),\omega(e)(x)\Big\rangle\) is said to a possibility absolute Pythagorean bipolar fuzzy soft set \(\Omega^{\mathcal{B}}_{\omega}: E \rightarrow P\mathcal{BF}^{U} \times P\mathcal{BF}^{U}\), where \( \Omega^{+}(e)(x) = (1, 0)\), \(\omega^{+}(e)(x) = (1, 0)\), \( \Omega^{-}(e)(x) = (0, -1)\) and \(\omega^{-}(e)(x) = (0, -1)\), \(\forall \, x \in U\).
Theorem 1. Let \(\mathcal{F}^{\mathcal{B}}_{p}\) be a PPBFSS on \((U, E)\). Then the following properties hold:
- (i) \(\mathcal{F}^{\mathcal{B}}_{p} = \mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{F}^{\mathcal{B}}_{p}, \,\, \mathcal{F}^{\mathcal{B}}_{p} = \mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{F}^{\mathcal{B}}_{p}\);
- (ii) \(\mathcal{F}^{\mathcal{B}}_{p} \sqsubseteq \mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{F}^{\mathcal{B}}_{p}, \,\, \mathcal{F}^{\mathcal{B}}_{p} \sqsubseteq \mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{F}^{\mathcal{B}}_{p}\);
- (iii) \(\mathcal{F}^{\mathcal{B}}_{p} \Cup \Theta^{\mathcal{B}}_{\theta} = \mathcal{F}^{\mathcal{B}}_{p}, \,\, \mathcal{F}^{\mathcal{B}}_{p} \Cap \Theta^{\mathcal{B}}_{\theta} = \Theta^{\mathcal{B}}_{\theta} \);
- (iv) \(\mathcal{F}^{\mathcal{B}}_{p} \Cup \Omega^{\mathcal{B}}_{\omega} = \Omega^{\mathcal{B}}_{\omega}, \,\, \mathcal{F}^{\mathcal{B}}_{p} \Cap \Omega^{\mathcal{B}}_{\omega} = \mathcal{F}^{\mathcal{B}}_{p}\).
Remark 1. Let \(\mathcal{F}^{\mathcal{B}}_{p}\) be a PPBFSS on \((U, E)\). If \(\mathcal{F}^{\mathcal{B}}_{p} \neq \Omega^{\mathcal{B}}_{\omega} \) or \(\mathcal{F}^{\mathcal{B}}_{p} \neq \Theta^{\mathcal{B}}_{\theta}\) then \(\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{F}^{\mathcal{B}}_{{p}^{c}} \neq \Omega^{\mathcal{B}}_{\omega}\) and \(\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{F}^{\mathcal{B}}_{{p}^{c}} \neq \Theta^{\mathcal{B}}_{\theta}\).
Theorem 2. Let \(\mathcal{F}^{\mathcal{B}}_{p}\), \(\mathcal{G}^{\mathcal{B}}_{q}\) and \(\mathcal{H}^{\mathcal{B}}_{r}\) are three PPBFSSs over \((U, E)\). Then the following properties hold:
- (1) \(\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q} = \mathcal{G}^{\mathcal{B}}_{q} \Cup \mathcal{F}^{\mathcal{B}}_{p}\);
- (2) \(\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q} = \mathcal{G}^{\mathcal{B}}_{q} \Cap \mathcal{F}^{\mathcal{B}}_{p}\);
- (3) \(\mathcal{F}^{\mathcal{B}}_{p} \Cup (\mathcal{G}^{\mathcal{B}}_{q} \Cup \mathcal{H}^{\mathcal{B}}_{r}) = (\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q}) \Cup \mathcal{H}^{\mathcal{B}}_{r}\);
- (4) \(\mathcal{F}^{\mathcal{B}}_{p} \Cap (\mathcal{G}^{\mathcal{B}}_{q} \Cap \mathcal{H}^{\mathcal{B}}_{r}) = (\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q}) \Cap \mathcal{H}^{\mathcal{B}}_{r}\);
- (5) \((\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q})^{c} = \mathcal{F}^{\mathcal{B}}_{{p}^{c}} \Cap \mathcal{G}^{\mathcal{B}}_{{q}^{c}}\);
- (6) \((\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q})^{c} = \mathcal{F}^{\mathcal{B}}_{{p}^{c}} \Cup \mathcal{G}^{\mathcal{B}}_{{q}^{c}}\);
- (7) \((\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q}) \Cap \mathcal{F}^{\mathcal{B}}_{p} = \mathcal{F}^{\mathcal{B}}_{p}\);
- (8) \((\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q}) \Cup \mathcal{F}^{\mathcal{B}}_{p} = \mathcal{F}^{\mathcal{B}}_{p}\);
- (9) \(\mathcal{F}^{\mathcal{B}}_{p} \Cup (\mathcal{G}^{\mathcal{B}}_{q} \Cap \mathcal{H}^{\mathcal{B}}_{r}) = (\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{G}^{\mathcal{B}}_{q}) \Cap (\mathcal{F}^{\mathcal{B}}_{p} \Cup \mathcal{H}^{\mathcal{B}}_{r})\);
- (10) \(\mathcal{F}^{\mathcal{B}}_{p} \Cap (\mathcal{G}^{\mathcal{B}}_{q} \Cup \mathcal{H}^{\mathcal{B}}_{r}) = (\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{G}^{\mathcal{B}}_{q}) \Cup (\mathcal{F}^{\mathcal{B}}_{p} \Cap \mathcal{H}^{\mathcal{B}}_{r})\).