Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2017.0004
Mapping properties of integral operator involving some special Functions
Department of Mathematics, Government College University Faisalabad, Pakistan.; (M.U.D & M.R & S.N)
\(^{1}\)Corresponding Author; muheyudin@yahoo.com
Abstract
Keywords:
1. Introduction
Let \(\mathcal{A}\) denote the class of functions \(f\) of the form2. Main Lemmas
The following lemmas play an very important role to derive our main results.Lemma 2. 1. If \(b,v \in \mathbb{R}\), and \(c\in \mathbb{C}\), \(k=v+\frac{b+2}{2}\) are so constrained that \begin{equation*} k>\max \left\{ 0,\frac{7\left\vert c\right\vert }{24}\right\} , \end{equation*} then the function \(u_{v,b,c}:\mathcal{U}\rightarrow \mathbb{C}\) defined by (8) satisfies the following inequality: \begin{equation*} \left\vert \frac{zu_{v,b,c}^{\prime }(z)}{u_{v,b,c}(z)}-1\right\vert \leq \frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{% 3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\ \ \ \ \left( z\in \mathcal{U}\right) . \end{equation*}
Lemma 2.2 . Let \(v\in \mathbb{R}\) and consider the normalized Dini function \(q_{v}(z):\mathcal{U}\rightarrow \mathbb{C},\) defined by \begin{equation*} q_{v}\left( z\right) =2^{v-1}\Gamma \left( v+1\right) z^{1-\frac{v}{2}% }\left( \left( 2-v\right) J_{v}\left( \sqrt{z}\right) +\sqrt{z}J_{v}^{\prime }\left( \sqrt{z}\right) \right) , \end{equation*} where \(J_{v}(z)\) is the Bessel function of first kind. Then \begin{equation*} \left\vert \frac{zq_{v}^{\prime }(z)}{q_{v}(z)}-1\right\vert \leq \frac{4v+9 }{2\left( 4v^{2}+9v+3\right) },\text{ \ }v>\frac{-9+\sqrt{33}}{8}. \end{equation*} The main objective of this paper is to give sufficient conditions for integral operator involving some special functions. The main results are given below.
3. Sufficient Conditions of Integral Operator Defined by Normalized Struve Function
Theorem 3.1 . Let \(v_{1},\ldots ,v_{n},\) \(b\in \mathbb{R}\), \(c\in\mathbb{C}\) and \(k_{i}>\frac{7\left\vert c\right\vert }{24}\) with \(k_{i}=v_{i}+\left( b+2\right) /2,\ i=1,\ldots ,n.\) Let \(u_{v_{i},b,c}:\mathcal{U}\rightarrow\mathbb{C}\) be defined as \begin{equation*} u_{v_{i},b,c}(z)=2^{v}\sqrt{\pi }\Gamma \left( v+\frac{b+2}{2}\right) z^{% \frac{\left( -1-v\right) }{2}}w_{v_{i},b,c}(\sqrt{z}). \end{equation*} Suppose \(k=\min \left\{ k_{1},k_{2},\ldots ,k_{n}\right\} \), \(\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}\) \((i=1,2,...,n)\) are positive real numbers and let \(f_{j}(z),\) \((j=1,2,...,m)\) be of the form of (1) is in class \(N\left( p,\gamma _{j}\right)\). More over\ these numbers satisfy the relation \begin{equation*} 1<1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) <\frac{% 2^{p}+1}{2^{p-1}+1}, \end{equation*} then the function \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}:\mathcal{U}\rightarrow \mathbb{C}\) defined by (12) is in \(N\left( \mu \right) \), where \begin{equation*} \mu =1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{equation*}
Proof. We easily observe that \(u_{v_{i},b,c},\forall i=1,2,\cdots n\) are analytic and normalized of the form of \(u_{v_{i},b,c}\left( 0\right) =u_{v_{i},b,c}^{\prime }\left( 0\right) -1=0.\) Clearly \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\) also analytic and normalized form of the form of \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\left( 0\right) =F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( 0\right) -1=0.\) On the other hand, it is easy to see that \begin{equation*} F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\left( z\right) =\overset{n}{\underset{i=1}{\prod }}\left( \frac{% u_{v_{i},b,c}}{z}\right) ^{\alpha _{i}}\overset{n}{\underset{i=1}{\prod }}% \left( \frac{D^{p}f_{j}(z)}{z}\right) ^{\beta _{j}}. \end{equation*} Differentiating logarithmically, we get \begin{eqnarray*} &&\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\\ &=&\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{% zu_{v_{i},b,c}^{\prime }(z)}{u_{v_{i},b,c}\left( z\right) }-1\right)\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\left( \frac{D^{p+1}f_{j}(z)}{D^{p}f_{j}(z)}% -1\right) , \end{eqnarray*} or equivalently, \begin{eqnarray*} &&1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) } \\ &=&\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{zu_{v_{i},b,c}^{\prime }(z)}{% u_{v_{i},b,c}\left( z\right) }\right) +\sum\limits_{j=1}^{m}\beta _{j}\left( \frac{D^{p+1}f_{j}(z)}{D^{p}f_{j}(z)}\right)\\ &+&1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}. \end{eqnarray*} This implies that \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{% F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\} \\ &=&\sum\limits_{i=1}^{n}\alpha _{i}Re\left( \frac{zu_{v_{i},b,c}^{% \prime }(z)}{u_{v_{i},b,c}\left( z\right) }\right) +\sum\limits_{j=1}^{m}\beta _{j}Re\left( \frac{D^{p+1}f_{j}(z)}{% D^{p}f_{j}(z)}\right)\\ &+&\left( 1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}\right) . \end{eqnarray*} Now, by using Lemma 2.1 for each \(v_{i}\), where \(i=1,2,\cdots n,\) we obtain \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{% F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\} \\ &\leq &\sum\limits_{i=1}^{n}\alpha _{i}\left( 1+\frac{\left\vert c\right\vert \left( 6k_{i}-\left\vert c\right\vert \right) }{3\left( 4k_{i}-\left\vert c\right\vert \right) \left( 3k_{i}-\left\vert c\right\vert \right) }\right) \\ &+& \sum\limits_{j=1}^{m}\beta _{j}\gamma _{j}+\left( 1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}\right) \\ &=&1+\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{\left\vert c\right\vert \left( 6k_{i}-\left\vert c\right\vert \right) }{3\left( 4k_{i}-\left\vert c\right\vert \right) \left( 3k_{i}-\left\vert c\right\vert \right) }\right)\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{eqnarray*} Now consider the funnction \begin{equation*} \tau :\left( \frac{7\left\vert c\right\vert }{24},\infty \right) \rightarrow\mathbb{R}, \end{equation*} defined by \begin{equation*} \tau \left( k\right) =\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }, \end{equation*} is decreasing function \begin{equation*} \frac{\left\vert c\right\vert \left( 6k_{i}-\left\vert c\right\vert \right) }{3\left( 4k_{i}-\left\vert c\right\vert \right) \left( 3k_{i}-\left\vert c\right\vert \right) }\leq \frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }. \end{equation*} Therefore \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{% F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\} \\ &\leq& 1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{eqnarray*} Since \(1<1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) <\frac{% 2^{p}+1}{2^{p-1}+1},\) therefore \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\in N\left( \mu \right) \), where \begin{equation*} \mu =1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{equation*} which completes the proof.
By setting \(\beta _{1}=\beta _{2}=...=\beta _{n}=0\) and \(p=1\) in Theorem 3.1 we will obtain the result given belowCorollary 3.2. Let \(v_{1},\ldots ,v_{n},\) \(b\in\mathbb{R}\), \(c\in\mathbb{C}\) and \(k_{i}>\frac{7\left\vert c\right\vert }{24}\) with \(k_{i}=v_{i}+\left( b+2\right) /2,\ i=1,\ldots ,n.\) Let \(u_{v_{i},b,c}:\mathcal{U}\rightarrow\mathbb{C}\) be defined as \begin{equation*} u_{v_{i},b,c}(z)=2^{v}\sqrt{\pi }\Gamma \left( v+\frac{b+2}{2}\right) z^{% \frac{\left( -1-v\right) }{2}}w_{v_{i},b,c}(\sqrt{z}). \end{equation*} Suppose \(v=\min \left\{ v_{1},v_{2},...,v_{n}\right\}\). Let \(\alpha _{1},\ldots ,\alpha _{n}\) \((i=1,2,...,n)\) are positive real numbers and \(f_{j}(z),\) \((j=1,2,...,m)\) be of the form of (1) is in class \(N\left( p,\gamma _{j}\right)\). More over these numbers satisfy the relation
\begin{equation*} 1<1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}<\frac{3}{2}, \end{equation*} then the function \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}:\mathcal{U}\rightarrow\mathbb{C}\) defined by (12) is in \(N\left( \mu \right) ,\) where \begin{equation*} \mu =1+\frac{\left\vert c\right\vert \left( 6k-\left\vert c\right\vert \right) }{3\left( 4k-\left\vert c\right\vert \right) \left( 3k-\left\vert c\right\vert \right) }\sum\limits_{i=1}^{n}\alpha _{i}. \end{equation*} The next theorem gives other sufficient conditions for the integral operator defined in (12). The key tool in the proof is Lemma 2.2.4. Sufficient Conditions of Integral Operator Defined by Normalized Dini Function
Theorem 4.1 . Let \(v_{1},\ldots ,v_{n}>\frac{-9+\sqrt{33}}{8},\) where \(n\in \mathbb{N}\). Let \(q_{v_{i}}:\mathcal{U}\rightarrow \mathbb{C}\) be defined as \begin{equation*} q_{v_{i}}\left( z\right) =2^{v_{i}-1}\Gamma \left( v_{i}+1\right) z^{1-\frac{% v_{i}}{2}}\left( \left( 2-v_{i}\right) J_{v_{i}}\left( \sqrt{z}\right) + \sqrt{z}J_{v_{i}}^{\prime }\left( \sqrt{z}\right) \right) . \end{equation*} Suppose \(k=\min \left\{ k_{1},k_{2},\ldots ,k_{n}\right\} \), \(\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}\) are positive real numbers and let \(f_{j}(z),\) \((j=1,2,...,m)\) be of the form of (1) is in class \(N\left( p,\gamma _{j}\right) .\) More over these numbers satisfy the relation \begin{equation} 1<1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) <\frac{% 2^{p}+1}{2^{p-1}+1}, \label{m16} \end{equation} then the function \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}:\mathcal{U}\rightarrow \mathbb{C}\) defined by (12) is in \(N\left( \mu \right) ,\) where \begin{equation*} \mu =1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{equation*}
Proof. We easily observe that \(q_{v_{i}}\forall i=1,2,\cdots n\) are analytic and normalized of the form of \(q_{v_{i}}\left( 0\right) =q_{v_{i}}^{\prime }\left( 0\right) -1=0.\) Clearly \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\) also analytic and normalized form of the form of $$F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\left( 0\right) =F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( 0\right) -1=0.$$ On the other hand, it is easy to see that \begin{equation*} F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\left( z\right) =\overset{n}{\underset{i=1}{\prod }}\left( \frac{ q_{v_{i}}}{z}\right) ^{\alpha _{i}}\overset{n}{\underset{i=1}{\prod }}\left( \frac{D^{p}f_{j}(z)}{z}\right) ^{\beta _{j}}. \end{equation*} Differentiating logarithmically, we get \begin{eqnarray*} &&\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\\ &=&\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{ zq_{v_{i}}^{\prime }(z)}{q_{v_{i}}\left( z\right) }-1\right)\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\left( \frac{D^{p+1}f_{j}(z)}{D^{p}f_{j}(z)} -1\right) , \end{eqnarray*} or equivalently, \begin{eqnarray*} &&1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) } \\ &=&\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{q_{v_{i}}^{\prime }(z)}{% q_{v_{i}}\left( z\right) }\right) +\sum\limits_{j=1}^{m}\beta _{j}\left( \frac{D^{p+1}f_{j}(z)}{D^{p}f_{j}(z)}\right) +1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}. \end{eqnarray*} This implies that \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{ F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\} \\ &=&\sum\limits_{i=1}^{n}\alpha _{i}Re\left( \frac{zq_{v_{i}}^{\prime }(z)}{q_{v_{i}}\left( z\right) }\right)\\ &+&\sum\limits_{j=1}^{m}\beta _{j} Re\left( \frac{D^{p+1}f_{j}(z)}{D^{p}f_{j}(z)}\right) +\left( 1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}\right) . \end{eqnarray*} Now, by using Lemma 2.2 for each \(v_{i}\), where \(i=1,2,\cdots n,\) we obtain \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{ F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\} \\ &\leq &\sum\limits_{i=1}^{n}\alpha _{i}\left( 1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\right)\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\gamma _{j}+\left( 1-\sum\limits_{i=1}^{n}\alpha _{i}-\sum\limits_{i=1}^{n}\beta _{j}\right) \\ &=&1+\sum\limits_{i=1}^{n}\alpha _{i}\left( \frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\right)\\ &+& \sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{eqnarray*} Now as it is clear that the function \begin{equation*} \phi (v):\left( \frac{-9+\sqrt{33}}{8},\infty \right) \rightarrow \mathbb{R}, \end{equation*} defined by \begin{equation*} \phi (v)=\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }, \end{equation*} is decreasing function. Therefore \begin{equation*} \frac{4v_{i}+9}{2\left( 4v_{i}^{2}+9v_{i}+3\right) }\leq \frac{4v+9}{2\left( 4v^{2}+9v+3\right) }. \end{equation*} Therefore \begin{eqnarray*} &&Re\left\{ 1+\frac{zF_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime \prime }\left( z\right) }{% F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}^{\prime }\left( z\right) }\right\}\\ &\leq&1+\frac{4v+9}{2\left(4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha_{i}\\ &+&\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{eqnarray*} Since \(1<1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n} \alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) < \frac{2^{p}+1}{2^{p-1}+1},\) therefore $$F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}\in N\left( \mu \right) $$ , where \begin{equation*} \mu =1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha _{i}+\sum\limits_{j=1}^{m}\beta _{j}\left( \gamma _{j}-1\right) . \end{equation*} which completes the proof.
By setting \(\beta _{1}=\beta _{2}=...=\beta _{n}=0\) and \(p=1\) in Theorem 4.1 we will obtain the result given belowCorollary 4.2. Let \(v_{1},\ldots ,v_{n}>\frac{-9+\sqrt{33}}{8},\) where \(n\in\mathbb{N}\). Let \(q_{v_{i}}:\mathcal{U}\rightarrow \mathbb{C}\) be defined as \begin{equation*} q_{v_{i}}\left( z\right) =2^{v_{i}-1}\Gamma \left( v_{i}+1\right) z^{1-\frac{% v_{i}}{2}}\left( \left( 2-v_{i}\right) J_{v_{i}}\left( \sqrt{z}\right) +% \sqrt{z}J_{v_{i}}^{\prime }\left( \sqrt{z}\right) \right) . \end{equation*} Suppose \(v=\min \left\{ v_{1},v_{2},...,v_{n}\right\}\). Let \(\alpha _{1},\ldots ,\alpha _{n}\) \((i=1,2,...,n)\) are positive real numbers and \(f_{j}(z),\) \((j=1,2,...,m)\) be of the form of (1) is in class \(N\left( p,\gamma _{j}\right).\) More over these numbers satisfy the relation \begin{equation*} 1<1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha _{i}<\frac{3}{2}, \end{equation*} then the function \(F_{v_{1},\ldots ,v_{n},\alpha _{1},\ldots ,\alpha _{n},\beta _{1},...,\beta _{m}}:\mathcal{U}\rightarrow \mathbb{C}\) defined by (12) is in \(N\left( \mu \right)\), where \begin{equation*} \mu =1+\frac{4v+9}{2\left( 4v^{2}+9v+3\right) }\sum\limits_{i=1}^{n}\alpha _{i}. \end{equation*}
Referance
- Salagean, G. S. (1983). Subclasses of univalent functions, Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372. Lecture Notes in Math, 1013.[Google Scholor]
- Uralegaddi, B. A., Ganigi, M. D., & Sarangi, S. M. (1994). Univalent functions with positive coefficients. Tamkang J. Math, 25(3), 225-230. [Google Scholor]
- Baricz, À. R. P. À. D. (2006). Bessel transforms and Hardy space of generalized Bessel functions. Mathematica, 48(71), 127-136. [Google Scholor]
- Baricz, À. (2010). Generalized Bessel functions of the first kind. Springer. [Google Scholor]
- Bansal, D., & Prajapat, J. K. (2016). Certain geometric properties of the Mittag-Leffler functions. Complex Variables and Elliptic Equations, 61(3), 338-350. [Google Scholor]
- Orhan, H., & Yagmur, N. (2014). Geometric properties of generalized Struve functions. Annals of the Alexandru Ioan Cuza University-Mathematics.[Google Scholor]
- Raza, M., Din, M. U., & Malik, S. N. (2016). Certain geometric properties of normalized Wright functions. Journal of Function Spaces, 2016,Article ID 1896154, 8 pages. [Google Scholor]
- Srivastava, H. M., Din, M. U.,& Raza, M., Univalence of Certain Integral Operators Involving Generalized Struve functions. (accepted). [Google Scholor]
- Baricz, À., Deniz, E., & Yağmur, N. (2016). Close-to-convexity of normalized Dini functions. Mathematische Nachrichten, 289(14-15), 1721-1726. [Google Scholor]
- Baricz, À ., Ponnusamy, S., & Singh, S. (2016). Modified Dini functions: monotonicity patterns and functional inequalities. Acta Mathematica Hungarica, 149(1), 120-142. [Google Scholor]
- Breaz, D. (2008). Certain Integral Operators on the Classes \(\mathcal{M}(\beta_{i})\) and \(\mathcal{N}(\beta_{i})\). Journal of Inequalities and Applications, 2008(1), 719354. [Google Scholor]
- Din, M. U, Raza, M, & Deniz, E. Sufficient Conditions for Univalence of Integral Operators Involving Dini Functions. (Submitted). [Google Scholor]
- Deniz, E., Orhan, H., & Srivastava, H. M. (2011). Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions. Taiwanese J. Math, 15(2), 883-917. [Google Scholor]
- Struve, H. (1882). Beitrag zur Theorie der Diffraction an Fernröhren. Annalen der Physik, 253(13), 1008-1016. [Google Scholor]
- Pascu, N. N., & Pescar, V. (1990). On the integral operators of Kim-Merkes and Pfaltzgraff. Mathematica (Cluj), 32(55), 185-192. [Google Scholor]
- Porwal, S. (2011). Mapping properties of an integral operator. Acta Universitatis Apulensis, (27), 151-155. [Google Scholor]
- Porwal, S., & Breaz, D. (2014). Mapping properties of an integral operator involving Bessel functions. In Analytic Number Theory, Approximation Theory, and Special Functions (pp. 821-826). Springer New York. [Google Scholor]
- Porwal, S., & Kumar, M. (2017). Mapping properties of an integral operator involving Bessel functions. Afrika Matematika, 28(1-2), 165-170.[Google Scholor]