Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2019.0037
On certain subclasses of p-valent functions with negative coefficients defined by a generalized differential operator
Department of Mathematics, Gombe State University, P.M.B.127, Gombe, Nigeria.; (B.S & G.B.M)
\(^{1}\)Corresponding Author: bitrussambo3@gmail.com
Abstract
Keywords:
1. Introduction
Let \(\mathcal{A}\) denote the class of all functions of the formRemark 1.
- When \(\alpha =1, \nu=0\), we get the Sălăgean differential operator introduced by Sălăgean in [2].
- When \(\nu=0\), we obtain differential operator defined by Al-Oboudi in [3].
Remark 2.
- If \(\nu=0\), \( D_{\alpha \nu}^{n,p}f=D_{\alpha,p}^{n}f\) defined by Bulut in [4]
- If \(p=1\), \( D_{\alpha \nu}^{n,p}f=D_{\alpha \nu}^{n}f\) introduced by Raducanu and Orhan in [1]
- If \(p=1,\alpha=1,\nu=0\), \(D_{\alpha \nu}^{n,p}f=D^{n}f\) defined by Sălăgean in [2]
- If \(p=1,\nu=0\), \(D_{\alpha \nu}^{n,p}f=D_{\alpha}^{n}f\) defined by Al-Oboudi in [3].
Definition 1. A function \(f\in \mathcal{T}_{p}\) is in the class, \(S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) if and only if
Remark 3. If \(\nu=0\), \(\vartheta=\alpha\), \(\varphi=\mu\), the class \(S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) reduces to the class \(R_{p}^n(\alpha,\beta,\gamma,\mu)\) investigated by Bulut [4]
Definition 2. A function \(f\in \mathcal{T}_{p}\) is in the class \(S_{p}^{n,(\delta_0)}(\vartheta,\beta,\gamma,\varphi)\), if there exists a function \(g(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) such that $$\left|\frac{f(z)}{g(z)}-1\right|< 1-\delta_0 ... (z\in U ,0\le \delta_0 < 1)$$ for \(0\le \vartheta< 1,\) \(0\le\gamma< 1,\) \(0< \beta\le1,\) \(0< \varphi< 1.\)
Definition 3. For a function \(f\in \mathcal{T}_{p}\), \(\delta\ge 0\), \(\delta\)-neighborhood of \(f\) is defined as:
2. Coefficient inequalities
Theorem 4. A function \(f\in \mathcal{T}_{p}\) is in the class \(S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) if and only if
Proof. Suppose that \(f\in S_{p}^n(\vartheta, \beta, \gamma, \varphi),\) then from inequality 10, we have \begin{eqnarray*} \left| \frac {(D_{\alpha \nu}^{n,p}f(z))' -pz^{p-1}}{\vartheta(D_{\alpha \nu}^{n,p}f(z))'+(\beta-\gamma)} \right|&=&\left| \frac {pz^{p-1}-\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1} -pz^{p-1}}{\vartheta(pz^{p-1}-\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1})+(\beta-\gamma)} \right|\\ &= &\left| \frac {\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1}}{\vartheta(pz^{p-1}-\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1})+(\beta-\gamma)} \right|\\&<&\varphi, (z\in U,n\in N_{0}) \end{eqnarray*} it is well known that \(\Re z\le \left|z\right|\), therefore, we obtain \begin{align*} \Re\left\{\frac {\sum_{K=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1}}{\vartheta(pz^{p-1}-\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}z^{k-1})+(\beta-\gamma)}\right\} < \varphi. \end{align*} If we choose \(z\) real and let \(z \rightarrow 1^-,\) then we get \begin{eqnarray*} \sum_{K=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}&\le& \varphi\{\vartheta(p-\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k})+(\beta-\gamma)\} \end{eqnarray*} which is precisely the assertion 13. On contrary, suppose that the inequality 13 hold true and let \(z\in \delta U=\lbrace z\in C:\left|z\right|=1\rbrace.\) Then, from 10, we have \begin{eqnarray*} &&\left|(D_{\alpha \nu}^{n,p}f(z))' -pz^{p-1} \right|- \varphi\left|\vartheta(D_{\alpha \nu}^{n,p}f(z))'+(\beta-\gamma) \right|\le \sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}\left| z\right|^{k-1}\\&&- \varphi(\vartheta p+\beta-\gamma)+ \varphi \vartheta \sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}\left| z\right|^{k-1}\\ &&=\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}a_{k}\left| z\right|^{k-1}(1+\varphi\vartheta)a_{k}- \varphi(\vartheta p+\beta-\gamma)\le 0. \end{eqnarray*} By maximum modulus theorem, we have \(f \in S_{p}^n(\vartheta,\beta,\gamma,\varphi).\)
Corollary 5. If \(f \in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), then \( a_{p+1}\le \frac{\varphi(\vartheta p+\beta-\gamma)}{(p+1)\left[1+(\alpha \nu (p+1)+\alpha-\nu)(\frac{1}{p})\right]^{n}(1+\varphi\vartheta)}.\)
3. Growth and distortion theorem
Theorem 6. For each \(f(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), we have \( \left|z\right|^p-\frac{\varphi(\vartheta p+\beta-\gamma)}{\left[{1+(\alpha \nu (p+1)+\alpha-\nu)(\frac{1}{p})}\right]^{n}(1+\varphi \vartheta)(p+1)}\left|z\right|^{p+1} \le\left|f(z)\right| \le\left|z\right|^p+\frac{\varphi(\vartheta p+\beta-\gamma)}{\left[{1+(\alpha \nu (p+1)+\alpha-\nu)(\frac{1}{p})}\right]^{n}(1+\varphi \vartheta)(p+1)}\left|z\right|^{p+1}.\)
Proof. Let \(f(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi),z\in U\), the bound on \(f(z)\) is given by
Theorem 7. For each \(f(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), we have \( p\left|z\right|^{p-1}-\frac{\varphi(\vartheta p+\beta-\gamma)}{\left[{1+(\alpha \nu (p+1)+\alpha-\nu)(\frac{1}{p})}\right]^{n}(1+\varphi \vartheta)}\left|z\right|^{p} \le\left|f'(z)\right| \le p\left|z\right|^{p-1}+\frac{\varphi(\vartheta p+\beta-\gamma)}{\left[{1+(\alpha \nu (p+1)+\alpha-\nu)(\frac{1}{p})}\right]^{n}(1+\varphi \vartheta)}\left|z\right|^{p}.\)
Proof. Let \(f(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi),z\in U\), the bound on the derivative of \(f(z)\) is given by \begin{align*} \left|f'(z)\right|\le p\left|z\right|^{p-1}+ (p+1)\left|z \right|^p\sum_{k=p+1}^\infty a_k, z\in U, \end{align*} and, in the same way as above, we get our desired result.
4. Closure properties
Theorem 8. Let the functions \begin{align*} f(z)=z^{p}-\sum_{k=p+1}^{\infty}a_{k}z^{k} , && (a_k\ge 0)\\ g(z)=z^{p}-\sum_{k=p+1}^{\infty}b_{k}z^{k} , && (b_k\ge 0), \end{align*} be in the class \( S_{p}^n(\vartheta,\beta,\gamma,\varphi)\). Then for \(0\le \lambda\le1,\) the function \(h\) is defined as $$h(z)=(1-\lambda)f(z)+\lambda g(z)=z^{p}-\sum_{k=p+1}^{\infty}c_{k}z^{k},$$ where \( c_k:=(1-\lambda)a_k+\lambda b_k\ge0,\) is also in \( S_{p}^n(\vartheta,\beta,\gamma,\varphi).\)
Proof. Suppose that each of the functions \(f\) and \(g\) is in the class \(S_{p}^n(\vartheta,\beta,\gamma,\varphi)\). Then making use of inequality (13), we have \begin{eqnarray*} &&\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)c_{k}\\&&=(1-\lambda)\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)a_{k} \\&&+\lambda\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)b_{k} \\&& \le (1-\lambda)\varphi(\vartheta p+\beta-\gamma)+\lambda \varphi(\vartheta p+\beta-\gamma)\\&&= \varphi(\vartheta p+\beta-\gamma),\end{eqnarray*} which completes the proof.
5. \(\delta\)-Neighborhoods
Theorem 9. If
Proof. For a function \(f(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) of the form (8), Theorem 4 immediately yields $$ (p+1)\left[1+(\alpha \nu(p+1)+\alpha-\nu)(\frac{1}{p})\right]^{n}(1+\varphi \vartheta)\sum_{k=p+1}^{\infty}a_{k}\le \varphi(\vartheta p+\beta-\gamma),$$ therefore,
Theorem 10. If \(g(z)\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) and
Proof. Suppose that \(f\in N_{\delta}^p(f,g)\), then by Definition 3, we have $$\sum_{k=p+1}^{\infty}k|a_k-b_k|\le \delta,$$ which readily implies the coefficient inequality given by $$\sum_{k=p+1}^{\infty}|a_k-b_k|\le \frac{\delta}{p+1} (p\in N).$$ Next, since \(g\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), we have from inequality (13) that \begin{align*} \sum_{k=p+1}^{\infty}b_{k}\le \frac{\varphi(\vartheta p+\beta-\gamma)}{(p+1)\left[1+(\alpha \nu(p+1)+\alpha-\nu)(\frac{1}{p})\right]^{n}(1+\varphi \vartheta)}, \end{align*} so from the definition of the class, we have \begin{eqnarray*} \left|\frac{f(z)}{g(z)}-1\right|&<&\frac{\sum_{k=p+1}^{\infty}|a_k-b_k|}{1-\sum_{k=p+1}^\infty b_k}\\ &\le& \frac{\delta}{p+1}\frac{(p+1)\left[1+(\alpha \nu(p+1)+\alpha-\nu)(\frac{1}{p})\right]^{n}(1+\varphi \vartheta)}{(p+1)\left[1+(\alpha \nu(p+1)+\alpha-\nu)(\frac{1}{p})\right]^{n}(1+\varphi \vartheta)-\varphi(\vartheta p+\beta-\gamma)}\\ &= &1-\delta_0,\end{eqnarray*} provided that \(\delta_0\) is given precisely by (22). Thus, by the definition, \(f\in S_{p}^{n,\delta_0}(\vartheta,\beta,\gamma,\varphi)\) for \(\delta_0\) given by (22), this completes our proof.
6. Extreme points
Theorem 11. If \( f_{p}(z)=z^{p} , f_{k}(z)=z^{p}-\frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^{k} (k\ge p+1) \) then, \(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) if and only if it can be expressed in the form \(f(z)=\lambda_{p}f_{p}(z)+\sum_{k=p+1}^{\infty}\lambda_{k}f_{k}(z),\) where \(\lambda_k\ge 0\) and \(\lambda_{p}\)=\(1 - \sum_{k=p+1}^{\infty}\lambda_{k}\).
Proof. Assume that \(f(z)=\lambda_{p}f_{p}(z)+\sum_{k=p+1}^{\infty}\lambda_{k}f_{k}(z)\), then \begin{eqnarray*} f(z)&=&(1 - \sum_{k=p+1}^{\infty}\lambda_{k})z^{p}+\sum_{k=p+1}^{\infty}\lambda_{k}\left\{ z^{p}-\frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^{k}\right\}\\&=&z^{p}-\sum_{k=p+1}^{\infty}\lambda_{k}\left\{ \frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^{k}\right\}.\end{eqnarray*} Thus, \begin{eqnarray*}&&\sum_{k=p+1}^{\infty}k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta) \lambda_{k} \frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}\\&&= \varphi(\vartheta p+\beta-\gamma)\sum_{k=p+1}^{\infty}\lambda_{k}= \varphi(\vartheta p+\beta-\gamma)(1-\lambda_{p}) \le \varphi(\vartheta p+\beta-\gamma),\end{eqnarray*} which shows that \(f\) satisfies condition (13) and therefore,\(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi).\) Conversely, suppose that \(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), since \[ a_{k} \le \frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}, (k\ge p+1),\] we may set \[ \lambda_{k}=\frac{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}{\varphi(\vartheta p+\beta-\gamma)}a_{k}, \text{ and } \lambda_{p}=1- \sum_{k=p+1}^{\infty}\lambda_{k},\] then we obtain from \begin{eqnarray*}f(z)&=& z^{p}-\sum_{k=p+1}^{\infty}a_{k}z^{k}\\&=&(\lambda_{p}+\sum_{k=p+1}^{\infty}\lambda_{k})z^{p} - \sum_{k=p+1}^{\infty}\lambda_{k} \frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^k\\ &=&\lambda_{p}z^{p}+ \sum_{k=p+1}^{\infty}\lambda_{k}(z^{p}- \frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^k)\\&=& \lambda_{p}z^{p} + \sum_{k=p+1}^{\infty}\lambda_{k}f_{k}(z),\end{eqnarray*} which completes the proof.
Corollary 12. The extreme points of \(S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) are given by $$f_{p}(z)=z^{p} , f_{k}(z)=z^{p}-\frac{\varphi(\vartheta p+\beta-\gamma)}{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)}z^{k} (k\ge p+1)$$
7. Radii of close-to-convexity,starlikeness and convexity
A function \(f\in \mathcal{T}_p\) is said to be \(p\)-valently close-to-convex of order \(\rho\) if it satisfies $$\Re \left\{ f'(z)\right\} >\rho$$ for some \(\rho (0\le\rho< p)\) and for all \(z\in U.\) Also, a function \(f\in \mathcal{T}_p\) is said to be \(p\)-valently starlike of order \(\rho\) if it satisfies $$\Re \left\{ \frac{zf'(z)}{f(z)}\right\} >\rho,$$ for some \(\rho (0\le\rho< p)\) and for all \(z\in U.\) Further, a function \(f\in \mathcal{T}_p\) is said to be \(p\)-valently convex of order \(\rho\) if it satisfies $$\Re \left\{ 1+\frac{zf''(z)}{f'(z)}\right\} >\rho,$$ for some \(\rho (0\le\rho< p)\) and for all \(z\in U.\)Theorem 13. If \(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) then \(f\) is \(p\)-valently close-to-convex of order \(\rho\) in \(\left|z\right|< r_1(\vartheta,\beta,\gamma,\varphi,\rho)\), where \begin{align*} r_1(\vartheta,\beta,\gamma,\varphi,\rho)=\inf_{k}\left\{\frac{\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)a_{k}(p-\rho)}{\varphi(\vartheta p+\beta-\gamma)} \right\}^{\frac{1}{k-p}} k\ge p+1. \end{align*}
Proof. It is sufficient to show that \(\left|\frac{f'(z)}{z^{p-1}}-p\right|< p-\rho.\) Since \(\left|\frac{pz^{p-1}-\sum_{k=p+1}^\infty ka_Kz^{k-1}}{z^{p-1}}-p\right|< p-\rho,\) which implies that $$\left|\frac{f'(z)}{z^{p-1}}-p\right|\le \sum_{k=p+1}^{\infty}ka_k\left|z\right|^{k-p}< p-\rho,$$ implies
Theorem 14. If \(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\) then \(f\) is \(p\)-valently starlike of order \(\rho\) in \(\left|z\right|< r_2(\vartheta,\beta,\gamma,\varphi,\rho)\), where \begin{align*} r_2(\vartheta,\beta,\gamma,\varphi,\rho)=\inf_{k}\left\{\frac{k\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)(p-\rho)}{\varphi(\vartheta p+\beta-\gamma)(k-\rho)} \right\}^{\frac{1}{k-p}} k\ge p+1. \end{align*}
Proof. In order to prove, it suffices to show that \(\left|\frac{zf'(z)}{f(z)}-p\right| < p-\rho. \)
Theorem 15. If \(f\in S_{p}^n(\vartheta,\beta,\gamma,\varphi)\), then \(f\) is \(p\)-valently convex of order \(\rho\) in \(\left|z\right|< r_3(\vartheta, \beta, \gamma, \varphi, \rho)\), where \begin{align*} r_3(\vartheta,\beta,\gamma,\varphi,\rho)=\inf_{k}\left\{\frac{\left[{1+(\alpha \nu k+\alpha-\nu)\left(\frac{k}{p}-1\right)}\right]^{n}(1+\varphi \vartheta)p(p-\rho)}{\varphi(\vartheta p+\beta-\gamma)(k-\rho)} \right\}^{\frac{1}{k-p}} k\ge p+1. \end{align*}
Proof. To prove this, it suffices to show that \(\left|1+\frac{zf''(z)}{f'(z)}-p\right| < p-\rho .\) Since
Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Competing Interests
The author(s) do not have any competing interests in the manuscript.References
- Li, Y. K. (1998). Existence and global attractively of a positive periodic solution of a class of delay differential equation. Science in China Series A-Mathematics 41(3), 273--284.
- Huo, H. F., & Li, W. T. (2004). Positive periodic solutions of a class of delay differential system with feedback control. Applied Mathematics and Computation, 148(1), 35-46. [Google Scholor]
- Huo, H. F., & Li, W. T. (2003). Periodic solutions of a periodic two-species competition model with delays. International Journal of Applied Mathematics, 12(1), 13-22. [Google Scholor]
- Huo, H. F., Li, W. T., & Cheng, S. S. (2002). Periodic solutions of two-species diffusion models with continuous time delays. Demonstratio Mathematica, 35(2), 433-448. [Google Scholor]
- Saker, S. H., & Agarwal, S. (2002). Oscillation and global attractivity in a nonlinear delay periodic model of respiratory dynamics. Computers & Mathematics with Applications, 44(5-6), 623-632. [Google Scholor]
- Saker, S. H., & Agarwal, S. (2002). Oscillation and global attractivity in a periodic Nicholson's blowflies model. Mathematical and computer modelling, 35(7-8), 719-731. [Google Scholor]
- Yan, J., & Feng, Q. (2001). Global attractivity and oscillation in a nonlinear delay equation. Nonlinear Analysis, 1(43), 101-108. [Google Scholor]
- La Salle, J., & Lefschetz, S. (2012). Stability by Liapunov's Direct Method with Applications (Vol. 4). Elsevier. [Google Scholor]
- Lefschetz, S. (1965). Stability of nonlinear control systems. Academic Press, New York. [Google Scholor]