Open Journal of Mathematical Analysis

Exponential decay of solutions with \(L^{p}\) -norm for a class to semilinear wave equation with damping and source terms

Amar Ouaoua\(^1\), Messaoud Maouni, Aya Khaldi
Laboratory of Applied Mathematics and History and Didactics of Mathematics (LAMAHIS) University of 20 August 1955, Skikda, Algeria.; (A.O & M.M & A,K)
\(^{1}\)Corresponding Author: ouaouaama21@gmail.com;

Abstract

In this paper, we consider an initial value problem related to a class of hyperbolic equation in a bounded domain is studied. We prove local existence and uniqueness of the solution by using the Faedo-Galerkin method and that the local solution is global in time. We also prove that the solutions with some conditions exponentially decay. The key tool in the proof is an idea of Haraux and Zuazua with is based on the construction of a suitable Lyapunov function.

Keywords:

Wave equation, source termes, Faedo-Galerkin method, global existence, exponential decay.

1. Introduction

Consider the following problem:

\begin{align} &u_{tt}-div\left( \frac{\mid \nabla u\mid ^{2m-2}\nabla u}{\sqrt{1+\mid \nabla u\mid ^{2m}}}\right) -\omega \Delta u_{t}+\mu u_{t}=u\mid u\mid ^{p-2},\ x\in \Omega ,\ t\geq 0, \label{1} \end{align}
(1)
\begin{align} &u\left( x,0\right) =u_{0}\left( x\right) ,\ u_{t}\left( x,0\right) =u_{1}\left( x\right) , \label{2} \end{align}
(2)
\begin{align} &u\left( x,t\right) =0,\ x\in \partial \Omega ,\ t\geq 0, \label{3} \end{align}
(3)
where \(\Omega \) is a bounded regular domain in \(\mathbb{R}^{n},\) \(n\geq 1\) with a smooth boundary \(\partial \Omega \). \(\omega \), \(\mu \) and \(m\), \(p\) are real numbers.

The nonlinear wave equations

\begin{align} &u_{tt}-\Delta u-\omega \Delta u_{t}+\mu u_{t}=u\mid u\mid ^{p-2},\ x\in \Omega ,\ t\geq 0, \label{4} \end{align}
(4)
\begin{align} &u\left( x,0\right) =u_{0}\left( x\right) ,\ u_{t}\left( x,0\right) =u_{1}\left( x\right) ,\ t\geq 0, \label{5} \end{align}
(5)
\begin{align} &u\left( x,t\right) =0,x\in \partial \Omega ,t\geq 0, \label{6} \end{align}
(6)
has been investigated by many authors [1,2,3,4,5,6,7,8,9,10]. In the absence of the nonlinear source term, it is well know that the presence of one damping term ensures global existence and decay of solutions for arbitrary initial condition [5,6]. For \(\omega =\mu =0\) the nolinear term \(u\mid u\mid ^{p-2}\) causes finite time blow up of solutions with negative energy [2]. The interaction between the damping and the source terms was first considered by Levine [11]. He showed that solutions with negative initial energy blows up in finite time. When \(\omega =0\) and the linear term \(u_{t}\) is replaced by \(\mid u_{t}\mid ^{r-2}u_{t}\), Georgiev and Todorowa [12] extended Levin's result to the case where \(r>2\). In their work, the authors introduced a method different from the one know as the concavity method. The termined suitable relations between \(r\) and \(p\), for whith there is global existence or alternatively fnite time blow-up.

For the initial boundary value problem of a quasilinear equation

\begin{equation*} u_{tt}-div\left( {\mid \nabla u\mid ^{m-2}\nabla u}\right) +au_{t}\mid u_{t}\mid ^{p-2}-\Delta u_{t}=bu\mid u\mid ^{r-2}, \end{equation*}
\begin{align} &x\in \Omega ,\ t\geq 0, \label{7} \end{align}
(7)
\begin{align} &u\left( x,0\right) =u_{0}\left( x\right) \in W_{0}^{1,m}\left( \Omega \right) ,\ u_{t}\left( x,0\right) =u_{1}\left( x\right) \in L^{2}\left( \Omega \right) ,\ t\geq 0, \label{8} \end{align}
(8)
\begin{align} &u\left( x,t\right) =0,\ x\in \partial \Omega ,\ t\geq 0. \label{9} \end{align}
(9)
Yang and Chen [13,14] studied the problem (7)-(9) and obtained global existence results under the growth assumptions on the nonlinear terms and the initial value. This global existence results have been improved by Liu and Zhao [15] by using a new method. In [13], the author considered a similar problem to (7)-(9) and proved a blow-up result under the condition \(p>max(r,m)\) and the energy is sufficiently negative. Messaoudi and Said-Houari [16] improved the results in [15] and showed that blow-up takes place for negative initial data only regardless of the size of \(\Omega\) Messaoudi in [17] showed that for \(m=2\), the decay is exponential. In absence of strong damping \(-\Delta u_{t}\) equation (7) becames
\begin{equation} \ u_{tt}-div\left( {\mid \nabla u\mid ^{m-2}\nabla u}\right) +au_{t}\mid u_{t}\mid ^{p-2}=bu\mid u\mid ^{r-2},\ x\in \Omega ,\ t\geq 0. \label{10} \end{equation}
(10)
For \(b=0\), it is well known that the damping term assures global existence and decay of the solution energy for arbitrary initial value [18]. For \(a=0\), the source term causes finite time blow-up of solutions with negative initial energy if \(r>m\) (see [2]). When the quasilinear operator \(-div\left( {\mid \nabla u\mid ^{m-2}\nabla u}\right) \) is replaced by \(\Delta ^{2}u\) , Wu and Tsai [19] showed that the solution is global in time under some conditions without the relation between \(p\) and \(r\). They also proved that the local solution blows up infinite time if \(r>p\) and the initial energy is nonnegative, and gave the decay estimates of the energy function and the lifespan of solutions. In this paper, we show that the local solutions of the problem (1)-(3) can be extented in infinite time to global solutions with the some conditions on initial data in the stable set for which the solutions decay expontially with \(L_{p}\) norm. The key tool in the proof is an idea of Haraux and Zuazua [6] and [9] with is based on the construction of a suitable Lyapunov function.

2. Assumptions and preliminaries

In this section, we present some material needed in the proof in our result.

Lemma 1. \(\left( Young^{\prime }s\ inequality\right) \) \(Let\ a,\ b\geq 0\) and \(\frac{1}{p}+\frac{1}{q}\)=1 for \( 1 < p, q < + \infty \), then one has the inequality \(ab \leq \delta a^{p} +C\left( \delta \right) b^{q}, \) where \(\delta >0 \) is an arbitrary constant, and \(C\left( \delta \right) \) is a positive constant depending on \(\delta \).

Lemma 2. Let s be a number with \(2\leq s < +\infty \) if \(\ n\leq r\) and \(2\leq s\leq \frac{nr}{n-r}\) if \(n>r\). Then there is a constant \(C\) depending on \(\Omega \) and s such that \(\left\Vert u\right\Vert _{s}\) \(\leq C\left\Vert \nabla u\right\Vert _{r}\), \(u\in W_{0}^{1,r}\left( \Omega \right) .\)

We denote the total energy related to the problem (1)-(3) by

\begin{equation} E\left( t\right) =\frac{1}{2}\left\Vert u_{t}\right\Vert _{2}^{2}+\frac{1}{m} \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx- \frac{1}{p}\left\Vert u\right\Vert _{p}^{p}. \label{11} \end{equation}
(11)
We also introduce the following functionals:
\begin{equation} I\left( t\right) =\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx-\left\Vert u\right\Vert _{p}^{p}, \label{12} \end{equation}
(12)
\begin{equation} J\left( t\right) =\frac{1}{m}\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx-\frac{1}{p}\left\Vert u\right\Vert _{p}^{p}. \label{13.} \end{equation}
(13)
As in [20], we can now define the so called " Nehari manifold" as follows: \begin{equation*} \mathcal{N}\text{=}\left\{ u\in W_{0}^{1,m}\left( \Omega \right) \backslash \left\{ 0\right\} ;\text{ }I\left( t\right) =0\right\} . \end{equation*} \(\mathcal{N}\) separates the two unbounded sets: \begin{equation*} \mathcal{N}^{+}\text{=}\left\{ u\in W_{0}^{1,m}\left( \Omega \right) ;\text{ }I\left( t\right) >0\right\} \cup \left\{ 0\right\} \end{equation*} and \begin{equation*} \mathcal{N}^{-}\text{=}\left\{ u\in W_{0}^{1,m}\left( \Omega \right) ;\text{ }I\left( t\right) < 0\right\} . \end{equation*} Assumptions:
  • \(\left( A1\right) :\) Assume that \(I\left( 0\right) >0,\) and \(0< E\left( 0\right) \) such that
    \begin{equation} B=c^{p}\left( \frac{mp}{p-m}E\left( 0\right) \right) ^{\frac{p-m}{m}}< 1.% \text{ } \label{14} \end{equation}
    (14)
    where \(c\) is the Poincaré constant.
  • \(\left( A2\right) :\) \(p\) satisfies
\[(2< m< p\leq\dfrac{nm}{n-m}, n\geq m; 2< m < p\leq+\infty, n < m.\] For simplicity, we define the weak solutions of (1)-(3) over the interval \(\left[ 0,T\right) \), but it is to be understood throughout that \(T\) is either infinity or the limit of the existence interval.

Definition 1. We say that \(u\left( x,t\right) \) is a weak solution of the problem (1)-(3) on the interval \(\Omega \times \left[ 0,T\right) ,\) if \(u\in L^{\infty }\left( \left[ 0,T\right) ;W_{0}^{1,m}\left( \Omega \right) \right) ,u_{t}\ \in L^{\infty }\left( % \left[ 0,\text{ }T\right) ;\text{ }L^{2}\left( \Omega \right) \right) \cap L^{2}\left( \left[ 0,\text{ }T\right) ;\ H_{0}^{1}\left( \Omega \right) \right) \) satisfy the following conditions:

  • \(\left( i\right) \)
    \begin{equation} \left( u^{\prime \prime }\left( t\right) ,\phi \right) +\left( \frac{\mid \nabla u\mid ^{2m-2}\nabla u}{\sqrt{1+\mid \nabla u\mid ^{2m}}},\nabla \phi \right) +\omega \left( \nabla u^{\prime },\nabla \phi \right) +\mu \left( u^{\prime },\phi \right) =\left( u\lvert u\rvert ^{p-2},\phi \right) , \label{15} \end{equation}
    (15)
    for any function \(\phi \in W_{0}^{1,m}\left( \Omega \right) \) and a.e. \(t\in \left[ 0,T\right)\).
  • \(\left( ii\right) \)
    \begin{equation} u\left( x,0\right) =u_{0}\left( x\right) \in L^{2}\left( \Omega \right) ,\ u_{t}\left( x,0\right) =u_{1}\left( x\right) \in L^{1}\left( \Omega \right) . \label{16} \end{equation}
    (16)

Theorem 1. (Local existence) Suppose that \(u_{0}\in L^{2}\left( \Omega \right) ,\ u_{1}\in L^{1}\left( \Omega \right) \) and \(E\left( 0\right) >0,\) then there exists \(T>0\) such that problem (1)-(3) has a unique solution u satisfying \(u\ \in L^{\infty}\left( [0, T ];\ W_{0}^{1,m}\left( \Omega\right)\right), \) \(u_{t}\ \in L^{\infty }\left( \left[ 0,\text{ }T\right) ;\text{ }L^{2}\left( \Omega \right) \right) \cap L^{2}\left( \left[ 0,\text{ }T\right) ;\ H_{0}^{1}\left( \Omega \right) \right) .\)

3. Global existence and exponential decay of solutions

In this section we are going to obtain the existence of local solutions to the problem (1)-(3) and exponential decay of solution. We will use the Faedo- Galerkin's method approximation.

Let \(\{w_{l}\}_{l=1}^{\infty }\) be a basis of \(W_{0}^{1,m}\left( \Omega \right) \) wich constructs a complete orthonormal system in \(L^{2}\left( \Omega \right) .\) Denote by \(V_{k}=span\{w_{1},w_{2},...,w_{k}\}\) the subspace generated by the first \(k\) vectors of the basis \( \{w_{l}\}_{l=1}^{\infty }.\) By the normalization, we have \(\lVert w_{l}\rVert =1.\) for any given integer k, we consider the approximation solution

\begin{equation*} u_{k}\left( t\right) =\sum_{l=1}^{k}u_{lk}\left( t\right) v_{l}, \end{equation*} where \(u_{k}\) is the solutions to the following Cauchy problem
\begin{equation} \left( u_{k}^{\prime \prime }\left( t\right) ,v_{l}\right) +\left( \frac{\mid \nabla u_{k}\mid ^{2m-2}\nabla u_{k}}{\sqrt{1+\mid \nabla u_{k}\mid ^{2m}}},\nabla v_{l}\right) +\omega \left( \nabla u_{k}^{\prime },\nabla v_{l}\right) +\mu \left( u_{k}^{\prime },v_{l}\right) =\left( u_{k}\lvert u_{k}\rvert ^{p-2},v_{l}\right) , \label{17} \end{equation}
(17)
where \(l=1,...,k,\) with initial conditions \(u_{k}\left( 0\right) =u_{0k}\) and \(u_{k}^{\prime }\left( 0\right) =u_{1k},\) \(u_{k}\left( 0\right) \) and \( u_{k}^{\prime }\left( 0\right) \) are chosen in \(V_{k}\) such that
\begin{equation} \sum_{l=1}^{k}\left( u_{0},v_{l}\right) v_{l}=u_{0k}\longrightarrow u_{0}\ in\ L^{2}\left( \Omega \right) ;\sum_{l=1}^{k}\left( u_{1},v_{l}\right) v_{l}=u_{1k}\longrightarrow u_{1}\ in\ L^{1}\left( \Omega \right) . \label{18} \end{equation}
(18)
Well known results on the solvability of nonlinear ODE provide the existence of a solution to problem (17)-(18) on interval \(\left[ 0,\tau\right) \) for some \(\tau >0\) and we can extend this solution to the whole interval \(\left[ 0,T\right] \) for any given \(T>0\) by making use of the a priori estimates below. Multiplying equation (17) by \(u_{lk}^{\prime }\left( t\right) \) and sum for \(l=1,...,k,\) we obtain
\begin{equation} \frac{d}{dt}\left( \frac{1}{2}\left\Vert u_{k}^{\prime }\right\Vert _{2}^{2}+ \frac{1}{m}\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx-\frac{1}{p}\left\Vert u_{k}\right\Vert _{p}^{p}\right) =-\left( \omega \underset{\Omega }{\int }\lvert \nabla u_{k}\rvert _{2}^{2}dx+\mu \underset{\Omega }{\int }\lvert u_{k}^{\prime }\rvert _{2}^{2}dx\right). \label{19} \end{equation}
(19)
Integrating (19) over \(\left( 0,t\right)\), we obtain the estimate
\begin{equation} \frac{1}{2}\left\Vert u_{k}^{\prime }\right\Vert _{2}^{2}+\frac{1}{m} \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx- \frac{1}{p}\left\Vert u_{k}\right\Vert _{p}^{p} +\omega \int_{0}^{t}\underset{\Omega }{\int }\lvert \nabla u_{k}\rvert _{2}^{2}dx+\mu \int_{0}^{t}\underset{\Omega }{\int }\lvert u_{k}^{\prime }\rvert _{2}^{2}dx\leq E\left( 0\right) . \label{20} \end{equation}
(20)
Since \(I\left( 0\right) >0,\) then there exists \(\tau < T\) by continuity such that \(I\left( t\right) \geq 0,\). We get from (12) and (13) that
\begin{equation} J\left( u_{k}\left( t\right) \right) =\frac{p-m}{mp}\underset{\Omega }{\int }% \sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx+\frac{1}{p}I\left( u_{k}\left( t\right) \right) \label{21} \end{equation}
(21)
\begin{equation} J\left( u_{k}\left( t\right) \right) \geq \frac{p-m}{mp}\underset{\Omega }{% \int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx, \forall t\in \left[ 0,\text{ }\tau \right] . \label{22} \end{equation}
(22)
Hence we have
\begin{equation} \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}} dx\leq \frac{mp}{p-m}J\left( u_{k}\left( t\right) \right) . \label{23} \end{equation}
(23)
From (11) and (13) we obvioulsy have \(\forall t\in \left[ 0,\text{ }\tau \right] ,\) \(J\left( u_{k}\left( t\right) \right) \leq E\left( u_{k}\left( t\right) \right) .\) Thus we obtain
\begin{equation} \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}} dx\leq \frac{mp}{p-m}E\left( u_{k}\left( t\right) \right) . \label{24} \end{equation}
(24)
Since \(E\) is a decreasing function of \(t,\) we have
\begin{equation} \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}} dx\leq \frac{mp}{p-m}E\left( 0\right) , \forall t\in \left[ 0,\text{ }\tau \right] \label{25} \end{equation}
(25)
By using Lemma 2, we easily have \begin{eqnarray*} \left\Vert u_{k}\right\Vert _{p}^{p} &\leq &c^{p}\left\Vert \nabla u_{k}\right\Vert _{m}^{p}=c^{p}\left( \underset{\Omega }{\int }\left\vert \nabla u_{k}\right\vert ^{m}dx\right) ^{\frac{p}{m}}\leq c^{p}\left( \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}} dx\right) ^{\frac{p}{m}} \\ &\leq &c^{p}\left( \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx\right) ^{\frac{p-m}{m}}\underset{\Omega }{\int } \sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx \end{eqnarray*} Using the inequality (25), we deduce \begin{equation*} \left\Vert u_{k}\right\Vert _{p}^{p}\leq c^{p}\left( \frac{mp}{p-m}E\left( 0\right) \right) ^{\frac{p-m}{m}}\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx. \end{equation*} Now exploiting the inequality (14), we obtain
\begin{equation} \left\Vert u_{k}\right\Vert _{p}^{p}\leq \underset{\Omega }{\int }\sqrt{ 1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx. \label{26} \end{equation}
(26)
Hence \(\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx-\) \(\left\Vert u_{k}\right\Vert _{p}^{p}>0,\) \(\forall t\in \left[ 0, \text{ }\tau \right] ,\) this shows that \(I\left( u_{k}\left( t\right) \right) >0,\) by repeating this procedure, \(\tau \) is extended to T.

Since \(\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u_{k}\right\vert ^{2m}}dx>\lVert \nabla u_{k}\rVert _{m}^{m},\) it follows from (20) and (26) that

\begin{equation} \frac{1}{2}\left\Vert u_{k}^{\prime }\right\Vert _{2}^{2}+\frac{p-m}{pm}% \lVert \nabla u_{k}\rVert _{m}^{m}+ +\omega \int_{0}^{t}\underset{\Omega }{\int }\lvert \nabla u_{k}\rvert _{2}^{2}dx+\mu \int_{0}^{t}\underset{\Omega }{\int }\lvert u_{k}^{\prime }\rvert _{2}^{2}dx\leq E\left( 0\right) . \label{27} \end{equation}
(27)
From (27), we have
\begin{equation} \left\{ \begin{array}{c} \left\{ u_{k}\right\} \mathit{\ }\text{is uniformly bounded in }L^{\infty }\left( \left[ 0,T\right] ;W_{0}^{1,m}\left( \Omega \right) \right) , \\ \left\{ u_{k}\right\} \rightharpoonup u\mathit{\ }\text{is uniformly bounded in }L^{2}\left( \left[ 0,T\right] ;H_{0}^{1}\left( \Omega \right) \right) , \\ \left\{ u_{k}^{\prime }\right\} \mathit{\ }\text{is uniformly bounded in }L^{\infty }\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) , \\ \left\{ u_{k}^{\prime }\right\} \mathit{\ }\text{is uniformly bounded in }L^{2}\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right). \end{array} \right. \label{28} \end{equation}
(28)
Furthermore, we have from Lemma 2 and (28) that
\begin{equation} \left\{ \lvert u_{k}\rvert ^{p}u_{k}\right\} \mathit{\ }\text{ is uniformly bounded in }L^{\infty }\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) . \label{29} \end{equation}
(29)
By (28) and (29), we infer that there exists a subsequence of \(u_{k}\) (denote still by the same symbol) and a function \(u\) such that
\begin{equation} \left\{ \begin{array}{c} u_{k}\rightharpoonup u\mathit{\ }\text{weakly star in } L^{\infty }\left( \left[ 0,T\right] ;W_{0}^{1,m}\left( \Omega \right) \right) , \\ u_{k}\rightharpoonup u\mathit{\ }\text{weakly star in } L^{2}\left( \left[ 0,T\right] ;H_{0}^{1}\left( \Omega \right) \right) , \\ u_{k}^{\prime }\rightharpoonup u^{\prime }\mathit{\ }\text{ weakly star in }L^{\infty }\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) , \\ u_{k}^{\prime }\rightharpoonup u^{\prime }\mathit{\ }\text{ weakly star in }L^{2}\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) , \\ \lvert u_{k}\rvert ^{p-2}u_{k}\rightharpoonup \mathcal{X}\mathit{\ }\text{ weakly star in }L^{\infty }\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) . \end{array} \right. \label{30} \end{equation}
(30)
By the Aubin-Lions compactness Lemma [7], we conclude from (30) that \begin{equation*} \left\{ \begin{array}{c} u_{k}\rightharpoonup u\ \ \text{strongly in}\ \ C\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) , \\ u_{k}^{\prime }\rightharpoonup u^{\prime }\mathit{\ }\text{ strongly in }C\left( \left[ 0,T\right] ;L^{2}\left( \Omega \right) \right) , \end{array} \right. \end{equation*} and
\begin{equation} u_{k}\rightharpoonup u\mathit{\ }\text{almost everywhere in }\left[ 0,T\right] \times \Omega . \label{31} \end{equation}
(31)
It follows from Lemma 1.3 in [21] and (31)
\begin{equation} \lvert u_{k}\rvert ^{p-2}u_{k}\rightharpoonup \lvert u\rvert ^{p-2}u\mathit{ \ }\text{weakly star in }L^{\infty }\left( \left[ 0,T \right] ;L^{2}\left( \Omega \right) \right) . \label{32} \end{equation}
(32)
By the last formula (32) and (30), we obtain \(\mathcal{X}=\lvert u\rvert ^{p-2}u\) On the other hand, taking \(\phi =1\), (17) become
\begin{equation} \left( u_{k}^{\prime \prime }\left( t\right) ,1\right) +\mu \left( u_{k}^{\prime },1\right) =\left( u_{k}\lvert u_{k}\rvert ^{p-2},1\right). \label{33} \end{equation}
(33)
We have \begin{equation*} \lvert \left( u_{k}^{\prime \prime }\left( t\right) ,1\right) +\mu \left( u_{k}^{\prime },1\right) \rvert \geq \lVert u_{k}^{\prime \prime }\rVert -\mu \lVert u_{k}^{\prime }\rVert. \end{equation*} Since, the measure of \(\Omega \) is finite, by the embedding theorem, (30) and (33), we obtain \begin{equation*} \lVert u_{k}^{\prime \prime }\rVert \leq C, \end{equation*} then \begin{equation*} \left\{ u_{k}^{\prime \prime }\right\} \mathit{\ }\text{is uniformly bounded in }L^{\infty }\left( \left[ 0,T\right] ;L^{1}\left( \Omega \right) \right) . \end{equation*} Similarly, we have
\begin{equation} u_{k}^{\prime \prime }\rightharpoonup u^{\prime \prime }\mathit{\ }\text{ weakly star in }L^{\infty }\left( \left[ 0,T\right] ;L^{1}\left( \Omega \right) \right) , \label{34} \end{equation}
(34)
Setting up \(k\longrightarrow \infty \) and passing to the limit in (17), we obtain \begin{equation*} \left( u^{\prime \prime }\left( t\right) ,v_{l}\right) +\left( \frac{\mid \nabla u\mid ^{2m-2}\nabla u}{\sqrt{1+\mid \nabla u_{k}\mid ^{2m}}},\nabla v_{l}\right) +\omega \left( \nabla u^{\prime },\nabla v_{l}\right) +\mu \left( u^{\prime },v_{l}\right) =\left( u\lvert u\rvert ^{p-2},v_{l}\right) , \end{equation*} \(l=1,...,k.\) Since \(\{v_{l}\}_{l=1}^{\infty }\) is a base of \(W_{0}^{1,m}\left( \Omega \right)\), we deduce that \(u\) satisfies (1).

From (30), (34) and Lemma 3.1.7 in [22], with \(B=L^{2}\left( \Omega \right) \) and \(B=L^{1}\left( \Omega \right) ,\) respectively, we infer that

\begin{equation} \left\{ \begin{array}{c} u_{k}\left( 0\right) \rightharpoonup u\left( 0\right) \ \text{ weakly in} \text{ }\ L^{2}\left( \Omega \right) , \\ u_{k}^{^{\prime }}\left( 0\right) \rightharpoonup u^{^{\prime }}\left( 0\right) \ \text{weakly star in}\ L^{1}\left( \Omega \right) . \end{array}% \right. \label{35} \end{equation}
(35)
We get from (18) and (35) that \(u\left( 0\right) =u_{0},\) \(u^{\prime }\left( 0\right) =u_{1}.\) Thus, the proof is complete.

Lemma 3. Assume that \(p>m\) and \( u_{0}\in \mathcal{N}^{+},\) \( u_{1}\in L^{2}\left( \Omega \right) .\) If \(0< E\left( 0\right) \) and satisfy (14) then the local solution of the problem (1)-(3) is global in time.

Proof. Since the map \(t\longmapsto E\left( t\right) \) is a decreasing of the time \(t,\) we have

\begin{equation} E\left( 0\right) \geq E\left( t\right) =\frac{1}{2}\left\Vert u_{t}\right\Vert _{2}^{2}+\frac{p-m}{mp}\underset{\Omega }{\int }\sqrt{% 1+\left\vert \nabla u\right\vert ^{2m}}dx+\frac{1}{p}I\left( t\right) \label{36} \end{equation}
(36)
which give
\begin{equation} E\left( 0\right) \geq E\left( t\right) \geq \frac{1}{2}\left\Vert u_{t}\right\Vert _{2}^{2}+\frac{p-m}{mp}\underset{\Omega }{\int }\sqrt{% 1+\left\vert \nabla u\right\vert ^{2m}}dx \label{37} \end{equation}
(37)
thus, \(\forall t\in \left[ 0,\text{ }T\right) ,\) \(\left\Vert u_{t}\right\Vert _{2}^{2}+\underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx\) is uniformly bounded by a constant depending only on \(E\left( 0\right) ,\) \(p\) and \(m\) then the solution is global, so \(T_{\max }=\infty .\)

Theorem 2. Assume that \(p>m\). Let \(u_{0}\in \mathcal{N}^{+}\) and \(u_{1}\in L^{2}\left( \Omega \right) .\) Moreover, assume that \(0< E\left( 0\right) \) and satisfy (14). Then there exists two positive constants \( \alpha \) and \(\beta \) independent of \(t\) such that: \(0< E\left( t\right) \leq \beta e^{-\alpha t},\) \(\forall t>0.\)

Proof. Since we have proved that \(t\geq 0,\) \(u\left( t\right) \in \mathcal{N}^{+},\) we already have \begin{equation*} 0< E\left( t\right) ,\forall t\geq 0. \end{equation*} We define a Lyaponov function, for \(\epsilon >0.\)

\begin{equation} L\left( t\right) =E\left( t\right) +\epsilon \underset{\Omega }{\int } u_{t}udx+\frac{\epsilon \omega }{2}\left\Vert \nabla u\right\Vert _{2}^{2}. \label{38} \end{equation}
(38)
We prove that \(L\left( t\right) \) and \(E\left( t\right) \) are equivalent in the sens that there exist two constants \(B_{1}\) and \(B_{2}\) depending on \( \epsilon\) such that for \(t\geq 0\)
\begin{equation} B_{1}E\left( t\right) \leq L\left( t\right) \leq B_{2}E\left( t\right) . \label{39} \end{equation}
(39)
By the Lemma 1, we have \begin{equation*} L\left( t\right) =E\left( t\right) +\epsilon \underset{\Omega }{\int } u_{t}udx+\frac{\epsilon \omega }{2}\left\Vert \nabla u\right\Vert _{2}^{2} \leq E\left( t\right) +\epsilon \left( \frac{1}{4\delta }\left\Vert u_{t}\right\Vert _{2}^{2}+\delta \left\Vert u\right\Vert _{2}^{2}\right) + \frac{\epsilon \omega }{2}\left\Vert \nabla u\right\Vert _{2}^{2}. \end{equation*} Thanks of the Poincaré inequality and since \(\delta\) is an arbitrary constant, we choose \(\delta \) small suffisant for that,
\begin{equation} \delta \left\Vert u\right\Vert _{2}^{2}\leq \delta C\left\Vert \nabla u\right\Vert _{2}^{2}\leq \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx \label{40} \end{equation}
(40)
Then, we get \begin{equation*} L\left( t\right) \leq E\left( t\right) +\epsilon \frac{1}{4\delta } \left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \left( \delta C+\frac{\omega }{ 2}\right) \left\Vert \nabla u\right\Vert _{2}^{2} \leq E\left( t\right) +\epsilon \frac{1}{4\delta }\left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \left( 1+\frac{\omega }{2}\right) \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx. \end{equation*} By (37), we get
\begin{equation} L\left( t\right) \leq E\left( t\right) +\epsilon \frac{1}{2\delta }E\left( t\right) +\epsilon \left( 1+\frac{\omega }{2}\right) \frac{mp}{p-m}E\left( t\right) \leq B_{2}E\left( t\right) , \label{41} \end{equation}
(41)
where \(B_{2}=\left( 1+\epsilon \frac{1}{2\delta }+\epsilon \left( 1+\frac{\omega }{2}\right) \frac{mp}{p-m}\right)\).

On the other hand, we have

\begin{align*} L\left( t\right) &\geq E\left( t\right) -\epsilon \left( \frac{1}{4\delta } \left\Vert u_{t}\right\Vert _{2}^{2}+\delta \left\Vert u\right\Vert _{2}^{2}\right) +\frac{\epsilon \omega }{2}\left\Vert \nabla u\right\Vert _{2}^{2}\\ &\geq E\left( t\right) -\epsilon \frac{1}{4\delta }\left\Vert u_{t}\right\Vert _{2}^{2}-\epsilon \delta \left\Vert u\right\Vert _{2}^{2}\\ &\geq E\left( t\right) -\epsilon \frac{1}{2\delta }E\left( t\right) -\epsilon \delta \left\Vert u\right\Vert _{2}^{2}\\ &\geq \left( 1-\epsilon \frac{1}{2\delta }\right) E\left( t\right) -\epsilon \delta \left\Vert u\right\Vert _{2}^{2}. \end{align*} From (37) and (40), we obtain
\begin{equation} L\left( t\right) \geq \left( 1-\epsilon \frac{1}{2\delta }-\epsilon \frac{mp% }{p-m}\right) E\left( t\right) =B_{1}E\left( t\right) , \label{42} \end{equation}
(42)
where \(B_{1}=\left( 1-\epsilon \frac{1}{2\delta }-\epsilon \frac{mp}{p-m}% \right)\).

Now, we have

\begin{align*} \frac{d}{dt}L\left( t\right) &=-\omega \left\Vert \nabla u_{t}\right\Vert _{2}^{2}-\mu \left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \left\Vert u_{t}\right\Vert _{2}^{2} +\epsilon \underset{\Omega }{\int }{div}\left( \frac{\left\vert \nabla u\right\vert ^{2m-2}\nabla u}{\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}}% \right) udx+\epsilon \left\Vert u\right\Vert _{p}^{p}-\epsilon \mu \underset{% \Omega }{\int }u_{t}udx\\ &=-\omega \left\Vert \nabla u_{t}\right\Vert _{2}^{2}-\mu \left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \left\Vert u_{t}\right\Vert _{2}^{2}-\epsilon \underset{\Omega }{\int }\frac{\left\vert \nabla u\right\vert ^{2m}}{\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}}dx +\epsilon \left\Vert u\right\Vert _{p}^{p}-\epsilon \mu \underset{\Omega }{% \int }u_{t}udx. \end{align*} So that
\begin{equation} \frac{d}{dt}L\left( t\right) \leq -\omega \left\Vert \nabla u_{t}\right\Vert _{2}^{2}+\left( \epsilon \left( \frac{\mu }{4\delta }+1\right) -\mu \right) \left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \mu \delta \left\Vert u\right\Vert _{2}^{2} -\epsilon \underset{\Omega }{\int }\frac{\left\vert \nabla u\right\vert ^{2m} }{\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}}dx+\epsilon \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx. \label{45} \end{equation}
(43)
So
\begin{equation} \frac{d}{dt}L\left( t\right) \leq \left( \epsilon \left( \frac{\mu }{4\delta }+1\right) -\mu \right) \left\Vert u_{t}\right\Vert _{2}^{2}+\epsilon \left( 1+\mu \right) \underset{\Omega }{\int }\sqrt{1+\left\vert \nabla u\right\vert ^{2m}}dx. \label{46} \end{equation}
(44)
Using the inequality (37) and (44), we deduce \begin{eqnarray*} \frac{d}{dt}L\left( t\right) &\leq &2\left( \epsilon \left( \frac{\mu }{ 4\delta }+1\right) -\mu \right) E\left( t\right) +\epsilon \left( 1+\mu \right) \frac{mp}{p-m}E\left( t\right) \\ &\leq &-\left( 2\mu -\epsilon \left( \left( \frac{\mu }{2\delta }+2\right) +\left( 1+\mu \right) \frac{mp}{p-m}\right) \right) E\left( t\right). \end{eqnarray*} We choosing \(\epsilon \) small enough such that
\begin{equation} -\left( 2\mu -\epsilon \left( \left( \frac{\mu }{2\delta }+2\right) +\left( 1+\mu \right) \frac{mp}{p-m}\right) \right) =\zeta < 0. \label{47} \end{equation}
(45)
So
\begin{equation} \frac{d}{dt}L\left( t\right) \leq \zeta E\left( t\right). \label{48} \end{equation}
(46)
From (39), we have
\begin{equation} \frac{d}{dt}L\left( t\right) \leq \frac{\zeta }{B_{2}}L\left( t\right). \label{49} \end{equation}
(47)
Integrating the provious differential inequality (47) between \(0\) and \(t\) gives the following estimate for the function \(L:\)
\begin{equation} L\left( t\right) \leq ce^{\frac{\zeta }{B_{2}}t}, \forall t\geq 0. \label{50} \end{equation}
(48)
Consequently, by using (39) once again, we conclude
\begin{equation} E\left( t\right) \leq ke^{\frac{\zeta }{B_{2}}t}, \forall t\geq 0. \label{51} \end{equation}
(49)
By using (26) and (37) we easily have
\begin{equation} \left\Vert u\right\Vert _{p}^{p}\leq k_{1}e^{\frac{\zeta }{B_{2}}t}, \forall t\geq 0 . \label{52} \end{equation}
(50)
The proof is complete.

4. Conclusion

In this paper, we have studied a class of hyperbolic equation supplemented with Dirichlet boundary conditions as a model of wave equation with damping and source nonlinear terms. We showed that the solution with positive initial energy exponentially decay, this is mainly due to the presence of one of term of weak or strong damping.

Acknowledgments:

The authors wish to thank deeply the anonymous referee for useful remarks and careful reading of the proofs presented in this paper.

Author Contributions:

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interests:

The authors declare no conflict of interest.

References

  1. Haraux, A., & Zuazua, E. (1988). Decay estimates for some semilinear damped hyperbolic problems. Archive for Rational Mechanics and Analysis, 100(2), 191-206. [Google Scholor]
  2. Zuazua, E. (1990). Exponential decay for the semilinear wave equation with locally distributed damping. Communications in Partial Differential Equations, 15(2), 205-235.[Google Scholor]
  3. Ball, J. M. (1977). Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. The Quarterly Journal of Mathematics, 28(4), 473-486. [Google Scholor]
  4. Ono, K. (1997). On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation. Mathematical Methods in the Applied Sciences, 20(2), 151-177. [Google Scholor]
  5. Aassila, M., Cavalcanti, M. M., & Soriano, J. A. (2000). Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain. SIAM Journal on Control and Optimization, 38(5), 1581-1602. [Google Scholor]
  6. Payne, L. E., & Sattinger, D. H. (1975). Saddle points and instability of nonlinear hyperbolic equations. Israel Journal of Mathematics, 22(3-4), 273-303. [Google Scholor]
  7. Berrimi, S., & Messaoudi, S. A. (2004). Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electronic Journal of Differential Equations, 88, 1-10. [Google Scholor]
  8. Messaoudi, S. A., & Houari, B. S. (2004). Global non-existence of solutions of a class of wave equations with non-linear damping and source terms. Mathematical methods in the applied sciences, 27(14), 1687-1696. [Google Scholor]
  9. Zuazua, E. (1990). Exponential decay for the semilinear wave equation with locally distributed damping. Communications in Partial Differential Equations, 15(2), 205-235. [Google Scholor]
  10. Georgiev, V., & Todorova, G. (1994). Existence of a solution of the wave equation with nonlinear damping and source terms. Journal of Differential Equations, 109(2), 295-308. [Google Scholor]
  11. Ikehata, R., & Suzuki, T. (1996). Stable and unstable sets for evolution equations of parabolic and hyperbolic type. Hiroshima Mathematical Journal, 26(3), 475-491. [Google Scholor]
  12. Lions, J. L. (1969). Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Zbl 0189.40603. [Google Scholor]
  13. Yacheng, L., & Junsheng, Z. (2004). Multidimensional viscoelasticity equations with nonlinear damping and source terms. Nonlinear Analysis: Theory, Methods & Applications, 56(6), 851-865. [Google Scholor]
  14. Zhijian, Y. (2002). Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms. Mathematical Methods in the Applied Sciences, 25(10), 795-814.[Google Scholor]
  15. Gerbi, S., & Said-Houari, B. (2012). Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems-Series S, 5(3), 559-566. [Google Scholor]
  16. Messaoudi, S. A. (2005). On the decay of solutions for a class of quasilinear hyperbolic equations with non-linear damping and source terms. Mathematical methods in the applied sciences, 28(15), 1819-1828. [Google Scholor]
  17. Kawashima, S., & Shibata, Y. (1992). Global existence and exponential stability of small solutions to nonlinear viscoelasticity. Communications in Mathematical Physics, 148(1), 189-208.[Google Scholor]
  18. Cavalcanti, M. M., Domingos Cavalcanti, V. N., & Soriano, J. A. (2002). Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electronic Journal of Differential Equations, 44, 1-14.[Google Scholor]
  19. Strauss, W. (1966). On continuity of functions with values in various Banach spaces. Pacific journal of Mathematics, 19(3), 543-551. [Google Scholor]
  20. Wu, S. T., & Tsai, L. Y. (2006). On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwanese Journal of Mathematics, 10(4), 979-1014. [Google Scholor]
  21. Wu, S. T., & Tsai, L. Y. (2009). On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system. Taiwanese Journal of Mathematics, 13(2A), 545-558. [Google Scholor]
  22. Zhijian, Y. (2003). Initial boundary value problem for a class of non-linear strongly damped wave equations. Mathematical Methods in Applied Sciences, 26(12), 1047-1066.[Google Scholor]