Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2020.0076
Some applications of second-order differential subordination for a class of analytic function defined by the lambda operator
Department of Mathematics, GSS, GITAM University, Doddaballapur- 562 163, Bengaluru Rural, Karnataka, India.; (B.V & S.S & S)
Department of Mathematics, Kakatiya Univeristy, Warangal- 506 009, Telangana, India.; (P.T.R)
\(^{1}\)Corresponding Author: bvlmaths@gmail.com
Abstract
Keywords:
1. Introduction
Let \( \mathbb{C} \) be complex plane and let \(\mathbb{ U } = \{z: z \in \mathbb{C} ~\text{and}~ |z| < 1\} = \mathbb{ U } \setminus \{0\}\) be an open unit disc in \( \mathbb{C} .\) Also let \(H(\mathbb{ U } )\) be a class of analytic functions in \(\mathbb{ U } .\) For \(n \in \mathbb{N}= \{1, 2, 3, \cdots , \} \) and \(a \in \mathbb{C} ,\) let \(H[a, n]\) be a subclass of \(H(\mathbb{ U } )\) formed by the functions of the form \[ f(z) = z+ a_n z^n + a_{n+1} z^{n+1} + \cdots \] with \(H_0 \equiv H[0, 1]\) and \(H \equiv H[1, 1].\) Suppose that \(A_n\) is a class of all analytic functions of the form
Let \(f\) and \(F\) be elements of \(H(\mathbb{ U } ).\) A function \(f\) is said to be subordinate to \(F\), if there exists a Schwartz function \(w\) analytic in \(\mathbb{ U } \) with \( w (0) = 0 ~~ \text{ and } ~~ |w(z) | < 1, \ \ z \in \mathbb{ U } , \) such that \(f(z) = F(w(z)).\) In this case, we write \( f(z) \prec F(z) ~~~ \text{ or } ~~ f \prec F.\) Furthermore, if the function \(F\) is univalent in \(\mathbb{ U } ,\) then we get the following equivalence [1,2]:
\[f(z) \prec F(z) \Leftrightarrow f(0) = F(0) ~~~ \text{ and}~~ f(\mathbb{ U } ) \prec F(\mathbb{ U } ). \] The method of differential subordinations (also known as the method of admissible functions) was first introduced by Miller and Mocanu in 1978 [3], and the development of the theory was originated in 1981 [4]. All details can be found in the book by Miller and Mocanu [2]. In recent years, numerous authors studied the properties of differential subordinations (see [5,6,7,8], etc.).Let \( \Psi : \mathbb{C}^3 \times \mathbb{ U } \rightarrow \mathbb{C} \) and let \(h\) be univalent in \(\mathbb{ U } .\) If \(p\) is analytic in \(\mathbb{ U } \) and satisfies the second-order differential subordination:
Let us recall lambda function [9] defined by:
\[ \lambda (z, s ) = \sum \limits _{k =2} ^{\infty} \frac{z^k }{ (2k +1) ^k }\] where \(z \in \mathbb{ U } , s \in \mathbb{C},\) when \(|z| < 1, \Re (s) > 1, \) when \(|z| = 1\) and let \(\lambda ^{(-1)} (z, s ) \) be defined such that \[ \lambda (z, s ) * \lambda ^{(-1)} (z, s ) = \frac{1}{(1- z) ^{ \mu +1}}, ~ \mu > -1 .\] We now define \(\left( z \lambda ^{(-1)} (z, s ) \right)\) as: \begin{align*} (z \lambda (z,s)) * \left( z \lambda ^{(-1)} (z, s ) \right) = \frac{z}{(1-z)^{\mu+1}} = z+ \sum \limits _{k =2} ^{\infty} \frac{ ( \mu +1)_{k -1}}{ (k -1) !} z^k , \mu > -1 \end{align*} and obtain the linear operator \( \mathcal{I}_{\mu}^{s} f(z)= \left( z \lambda ^{(-1)} (z, s ) \right) * f(z),\) where \(f \in A, z \in \mathbb{ U } \) and \( \left( z \lambda ^{(-1)} (z, s ) \right) = z+ \sum \limits _{k =2} ^{\infty} \frac{ ( \mu +1)_{k -1} (2k -1) ^s}{ (k -1) !} z^k .\) A simple computation gives usDefinition 1. Let \(\mathfrak{ L} _{\mu , s } ( \varrho ) \) be a class of function \(f \in A\) satisfying the inequality \[ \mathfrak { \Re } \left( \mathcal{I}_ {\mu}^{s}f(z) \right) \geq \varrho ,\] where \( z\in \mathbb{ U }, \ \ 0 \leq \varrho < 1 \) and \(\mathcal{I}_ {\mu}^{s}f(z) \) is the Lambda operator.
Lemma 1. let \(h\) be a convex function with \(h(0)=a \) and let \(\gamma\in \mathbb { C^* }:= \mathbb { C } \setminus \{ 0 \} \) be a complex number with \( \mathfrak { \Re \{ \gamma \} }\geq 0. \) If \( p \in H[a, n] \) and
Lemma 2. [10] Let \( \mathfrak { \Re \{ \mu \} }> 0, ~~n\in \mathbb { N } \) and \( w= \frac{n^2 + |\mu|^2-|n^2-\mu^2|}{4n \mathfrak { \Re \{ \mu \} }} . \) Also, let \(h\) be an analytic function in \(\mathbb { U } \) with \( h(0)=1.\) Suppose that \( \mathfrak { \Re }\left \{ 1+\frac{zh''(z)}{h'(z)} \right \} > -w. \) If \( p(z) = 1+p_nz^n+p_{n+1}z^{n+1}+ \cdots \) is analytic in \(\mathbb { U } \) and
Lemma 3. [11] Let \(r\) be a convex function in \(\mathbb { U } \) and let \( h(z)=r(z)+n\varrho zr'(z), ~~ z\in \mathbb { U } , \) where \(\varrho > 0 ~~ and ~~ n \in \mathbb { N }.\) If \( p(z)= r(0)+p_nz^n+p_{n+1}z^{n+1}+ \cdots , ~~z\in \mathbb { U } , \) is holomorphic in \( \mathbb { U } \) and \( p(z)+\varrho zp'(z)\prec h(z), ~~z\in \mathbb { U } , \) then \( p(z)\prec r(z) \) and this result is sharp.
In the present paper, we use the subordination results from [10] to prove our main results.
2. Main results
Theorem 1. The set \( \mathfrak{ L} _{\mu , s } ( \varrho ) \) is convex.
Proof. Let \( f_j(z)=z+\sum\limits_{k=2}^{\infty}a_{k,j}z^k, ~~ z\in \mathbb { U } , ~~ j= 1, \cdots , m \) be in the class \( \mathfrak{ L} _{\mu , s } ( \varrho ). \) Then, by Definition 1, we get
Theorem 2. Let \(q\) be convex function in \(\mathbb {U} \) with \(q(0)=1\) and \( h(z)=q(z) + \frac{1}{\gamma+1}zq'(z), ~~ z\in \mathbb { U } , \) where \(\gamma\) is a complex number with \(\mathfrak{ \Re } \{ {\gamma} \} > -1\). If \(f\in \mathfrak{ L} _{\mu , s } ( \varrho ) \) and \( \aleph =\Upsilon_\gamma f,\) where
Proof. In view of equality (10), we can write
Example 1. If we choose \( \gamma=i+1\) and \(q(z)= \frac{1+z}{1-z}, \) in Theorem 2, then we get \( h(z)=\frac{(i+2)-((i+2)z+2)z}{(i+2)(1-z)^2}. \) If \( f \in \mathfrak{ L} _{\mu , s } ( \varrho ) \) and \(\aleph\) is given as \( \aleph(z)= \Upsilon_if(z)=\frac{i+2}{z^{i+1}}\int\limits_0^zt^if(t)dt, \) then, by virtue of Theorem 2, we find \( (\mathcal{I}_ {\mu}^{s}f(z))'\prec h(z) = \frac{(i+2)-((i+2)z+2)z}{(i+2)(1-z)^2},\) implies \((\mathcal{I}_ {\mu}^{s}f(z))' \prec \frac{1+z}{1-z}.\)
Theorem 3. Let \( \mathfrak{ \Re }{ \left \{ \gamma \right \} } > -1 \) and \( w=\frac{1+|\gamma+1|^2-|\gamma^2+2\gamma|}{4\mathfrak{ \Re }{ \left \{ \gamma+1 \right \}}}. \) Suppose that \(h\) is an analytic function in \(\mathbb{ U } \) with \(h(0)=1\) and that \( \mathfrak { \Re }\left \{ 1+\frac{zh''(z)}{h'(z)} \right \} > -w. \) If \( f \in \mathfrak{ L} _{\mu , s } ( \varrho ) \) and \( \aleph = \Upsilon_\mu ^s f, \) where \(\aleph\) is defined by (10), then
Proof. If we choose \( n=1 \) and \( \mu={\gamma+1} \) in Lemma 1, then the proof is obtained by means of the proof of Theorem 3.
Theorem 4. Let
Proof. If \( h(z)=\frac{1+(2\varrho - 1)z}{1+z}, ~~ 0\leq \varrho < 1, \) then \( h\) is convex and, in view of Theorem 3, we can write \( (\mathcal{I}_ \mu ^s \aleph(z))' \prec q(z). \) Now, by using Lemma 1, we get \begin{align*} q(z) = \frac{\gamma+1}{z^{\gamma+1}}\int\limits_0^zt^\gamma h(t)dt = \frac{\gamma+1}{z^{\gamma+1}}\int\limits_0^zt^\gamma \left \{ \frac{1+(2\varrho -1)t}{1+t} \right \} dt = (2\varrho -1)+\frac{2(1-\varrho )(\gamma+1)}{z^{\gamma+1}}\tau(\gamma), \end{align*} where \(\tau\) is given by (19). Hence, we obtain \begin{equation*} (\mathcal{I}_ \mu ^s \aleph (z))' \prec q(z)=(2\varrho -1)+\frac{2(1-\varrho )(\gamma+1) \tau(\gamma)}{z^{\gamma+1}}. \end{equation*} The function \( q\) is convex. Moreover, it is the best dominant. Hence the theorem is proved.
Theorem 5. If \( 0 \leq \varrho < 1, 0 \leq \mu < 1, \delta \geq 0, \mathfrak{ \Re } \{ {\gamma} \} > -1, \) and \(\aleph= \Upsilon_\gamma f \) is defined by (10), then \( \Upsilon_\gamma( \mathfrak{ L} _{\mu , s } ( \varrho )) \subset \mathfrak{ L} _{\mu , s } ( \rho ), \) where
Proof. Assume that \(h\) is given by equation (18), \(f \in \mathfrak{ L} _{\mu , s } ( \varrho ), \) and \( \aleph = \Upsilon_\gamma f \) is defined by (10). Then \(h\) is convex and, by Theorem 3, we deduce
Theorem 6. Let \(q\) be a convex function with \( q(0) = 1 \) and \(h\) be a function such that \( h(z)= q(z) + zq'(z), ~~ z\in \mathbb{ U }. \) If \( f \in A,\) then the subordination
Proof. Let
Example 2. If we take \( \mu = 0 \) and \( s = 1 \) in equality (4) and \( q(z) = \frac{1}{1-z} \) in Theorem 5, then \( h(z)=\frac{1}{(1-z)^2} \) and
Theorem 7. Let \( h(z)=\frac{1+(2\varrho -1)z}{1+z}, ~~ z\in \mathbb{ U } \) be convex in \( \mathbb { U } \) with \( h(0)=1\) and \( 0 \leq \varrho < 1.\) If \( f \in A \) satisfies the differential subordination
Proof. Let
Corollary 1. If \( f \in \mathfrak{ L} _{\mu , s } ( \varrho ), \) then \( \mathfrak { \Re } \left( \frac{\mathcal{I}_ \mu ^s f(z)}{z} \right) > (2\varrho -1)+2(1-\varrho )ln(2). \)
Proof. If \( f \in \mathfrak { L} _{\mu , s } ( \varrho ), \) then it follows from Definition 1 that \( \mathfrak { \Re } \left \{ (\mathcal{I}_ \mu ^s f(z))' \right \} > \varrho , ~~ z \in \mathbb { U }, \) which is equivalent to \( (\mathcal{I}_ \mu ^s f(z))' \prec h(z) = \frac{1+(2\varrho -1)z}{1+z}. \) Now, by using Theorem 7, we obtain \begin{equation*} \frac{\mathcal{I}_ \mu ^s f(z)}{z} \prec q(z) = (2\varrho -1)+\frac{2(1-\varrho )ln(1+z)}{z}. \end{equation*} Since \(q\) is convex and \(q( \mathbb { U } ) \) is symmetric about the real axis, we conclude that \begin{equation*} \mathfrak { \Re } \left( \frac{\mathcal{I}_ \mu ^s f(z)}{z} \right) > \mathfrak { \Re } (q(1)) = (2\varrho -1)+2(1-\varrho )ln(2). \end{equation*}
Theorem 8. Let \(q\) be a convex function such that \(q(0)=1\) and \(h\) be the function given by the formula \( h(z)=q(z)+zq'(z), ~~z \in \mathbb { U }. \) If \( f \in A \) and verifies the differential subordination
Proof. For function \( f \in A, \) given by Equation (1), we get \begin{equation*} \mathcal{I}_ \mu ^s \aleph (z) = z + \sum\limits_{k=2}^{\infty}L(k,\mu,s)\frac{\gamma+1}{k+\gamma}a_kb_kz^k, ~~z\in \mathbb { U }. \end{equation*} We now consider the function \begin{align*} p(z)=\frac{\mathcal{I}_ \mu ^s f(z)}{\mathcal{I}_ \mu ^s \aleph (z)} = \frac{z+\sum\limits_{k=2}^{\infty}L(k,\mu,s )a_kb_kz^k}{z+\sum\limits_{k=2}^{\infty}L(k,\mu,s)\frac{\gamma+1}{k+\gamma}a_kb_kz^k} = \frac{1+\sum\limits_{k=2}^{\infty}L(k,\mu,s)a_kb_kz^{k-1}}{1+\sum\limits_{k=2}^{\infty}L(k,\mu,s)\frac{\gamma+1}{k+\gamma}a_kb_kz^{k-1}}. \end{align*} In this case, we get \begin{equation*} (p(z))'=\frac{(\mathcal{I}_ \mu ^s f(z))'}{\mathcal{I}_ \mu ^s \aleph(z)} - p(z) \frac{(\mathcal{I}_ \mu ^s \aleph(z))'}{\mathcal{I}_ \mu ^s \aleph(z)}. \end{equation*} Then
Acknowledgments
The authors warmly thank the referees for the careful reading of the paper and their comments.Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Conflicts of Interest
The authors declare no conflict of interest.References
- Bulboaca, T. (2005). Differential subordinations and superordinations: Recent results. Casa Cartii de Stiinta. [Google Scholor]
- Miller, S. S., & Mocanu, P. T. (2000). Differential Subordinations: Theory and Applications. CRC Press. [Google Scholor]
- Miller, S. S., & Mocanu, P. T. (1978). Second order differential inequalities in the complex plane. Journal of Mathematical Analysis and Applications, 65(2), 289-305. [Google Scholor]
- Miller, S. S., & Mocanu, P. T. (1981). Differential subordinations and univalent functions. The Michigan Mathematical Journal, 28(2), 157-172. [Google Scholor]
- Akgül, A. (2017). On second-order differential subordinations for a class of analytic functions defined by convolution. Journal of Nonlinear Sciences and Application, 10, 954-963.[Google Scholor]
- Lupas, A. A. (2012). Certain differential subordinations using Salagean and Ruscheweyh operators. Acta Universitatis Apulensis, 29, 125-129. [Google Scholor]
- Bulut, S. (2014). Some applications of second-order differential subordination on a class of analytic functions defined by Komatu integral operator. International Scholarly Research Notices, 2014, Artical ID 606235. [Google Scholor]
- Oros, G. I., & Oros, G. (2008). On a class of univalent functions defined by a generalized Salagean operator. Complex Variables and Elliptic Equations, 53(9), 869-877. [Google Scholor]
- Spanier, J., & Oldham, K. B. (1987). An Atlas of Functions. New York: Hemisphere publishing corporation. [Google Scholor]
- Hallenbeck, D. J., & Ruscheweyh, S. (1975). Subordination by convex functions. Proceedings of the American Mathematical Society, 52(1), 191-195.[Google Scholor]
- Oros, G., & Oros, G. I. (2003). A class of holomorphic functions II. Libertas Mathematica, 23, 65-68. [Google Scholor]
- Salagean, G. S. (1983). Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar (pp. 362-372). Springer, Berlin, Heidelberg. [Google Scholor]