Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2021.0090
Some fixed point theorems for \(F\)-expansive mapping in generalized metric spaces
LASMA Laboratory Department of Mathematics Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes, Morocco.; (M.R)
Laboratory of Algebra, Analysis and Applications Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca, Morocco.;( A.K)
\(^{1}\)Corresponding Author: mohamed.rossafi@usmba.ac.ma
Abstract
Keywords:
1. Introduction
The fixed point theory is a very interesting research area in due to its wide range of applicability, to resolve diverse problems emanating from the theory of nonlinear differential equations and integral equations.
Wardowski [1], generalized the famous Banach theorem [2] for \(F-\)contraction on metric spaces, several mathematicians extended this new notion for contraction on metric spaces [3,4,5,6].
The concept of a rectangular metric space was introduced by Branciari in [7]. After that, several interesting results about the existence of fixed points in rectangular metric spaces have been obtained [8,9,10,11]. Recently, Kari et al., [12], obtained some results for generalized \(\theta-\phi-\)expansive mapping in rectangular metric spaces.
In 1984, Wang et al., [13], presented some interesting work on expansion mappings in metric spaces. Recently, Kumar et al., [14], introduced a new concept of \((\alpha, \psi)-\)expansive mappings and established some fixed point theorems for such mapping in complete rectangular metric spaces.
In this paper, inspired by the idea of \(F-\)contraction introduced by Wardowski [1] in metric spaces, we presented generalized \(F-\)expansive mapping and establish various fixed point theorems for such mappings in complete rectangular metric spaces. Our theorems extend, generalize and improve many existing results.
2. Preliminaries
By an expansion mappings [13] on a metric space \((X,d)\), we understand a mapping \(T: X \to X\) satisfying for all \(x, y\in X\): \begin{equation*} d(Tx, Ty)\geq kd(x, y), \end{equation*} where \(k\) is a real in \(]1, +\infty[\).In 2000 Branciari [7] introduced the concept of rectangular metric spaces.
Definition 1. [7] Let \(X\) be a non-empty set and \(\ d:X\times X\rightarrow \mathbb{R}^{+}\) be a mapping such that for all \(x,y\) \(\in X\) and for all distinct points \(u,v\in X\), each of them different from \(x\) and \(y,\) on has
- (i) \(d(x,y)=0\) if and only if \(x=y\);
- (ii) \(d(x,y)=d(y,x)\) for all distinct points \(x,y\in X\);
- (iii) \(d(x,y)\leq d(x,u)+d(u,v)+d(v,y)\)( the rectangular inequality).
Definition 2. [15] Let \(T:X\rightarrow X\) and \(\alpha,\eta \) :\(X\times X\rightarrow \left[ 0,+\infty \right[.\) We say that \(T\) is a triangular \(\left( \alpha ,\eta \right)\)-admissible mapping if
- \(\left( T_{1}\right) \) \(\alpha \left( x,y\right) \geq 1\) \(\Rightarrow \) \(\alpha \left( Tx,Ty\right) \geq 1,\) \(x,y\in X\);
- \(\left( T_{2}\right) \) \(\eta \left( x,y\right) \leq 1\) \(\Rightarrow \) \(\eta\left( Tx,Ty\right) \leq 1,\) \(x,y\in X\);
- \(\left( T_{3}\right) \) \(\left\{ \begin{array}{c}\alpha \left( x,y\right) \geq 1\\ \alpha \left( y,z\right) \geq 1\end{array}\right. \Rightarrow \alpha \left( x,z\right) \geq 1\) for all \(x,y,z\in X\);
- \(\left( T_{4}\right) \) \( \left\{ \begin{array}{c}\eta \left( x,y\right) \leq 1 \\ \eta \left( y,z\right) \leq 1\end{array}\right. \Rightarrow \eta \left( x,z\right) \leq 1\) for all \(x,y,z\in X\).
Definition 3. [15] Let \(\left( X,d\right) \) be a rectangular metric space and let \(\alpha ,\eta \) :\(X\times X\rightarrow \left[ 0,+\infty \right[ \) be two mappings. Then
- (a) T is \(\alpha -\)continuous mapping on \(\left( X,d\right) ,\) if for given point \(x\in X\) and sequence \(\lbrace x_{n}\rbrace \) in \(X,\) \(x_{n}\rightarrow x\) and \(\alpha \left( x_{n},x_{n+1}\right) \geq 1\) for all \(n\in \mathbb{N},\) imply that \(Tx_{n}\rightarrow Tx\).
- (b) T is \(\eta \) sub\(-\)continuous mapping on \(\left( X,d\right) ,\) if for given point \(x\in X\) and sequence \(\lbrace x_{n}\rbrace \) in \(X,\) \(x_{n}\rightarrow x\) and \(\eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \( n\in \mathbb{N},\) imply that T\(x_{n}\rightarrow Tx\).
- (c) T is \(\left( \alpha ,\eta \right) \) \(-\)continuous mapping on \(\left(X,d\right) ,\) if for given point \(x\in X\) and sequence \(\lbrace x_{n}\rbrace \) in \(X,\) \(x_{n}\rightarrow x\) and \(\alpha \left( x_{n},x_{n+1}\right) \geq 1\) or \( \eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \(n\in \mathbb{N},\) imply that \(Tx_{n}\rightarrow Tx\).
Definition 4. [16] Let \(d\left( X,d\right) \) be a rectangular metric space and let \(\alpha ,\eta \) :\(X\times X\rightarrow \left[ 0,+\infty \right[ \) be two mappings. The space \( X \) is said to be
- (a) \(\alpha -\)complete\(,\) if every Cauchy sequence \(\lbrace x_{n}\rbrace \) in \(X\) with \(\alpha \left( x_{n},x_{n+1}\right) \geq 1\) for all \(n\in \mathbb{N},\) converges in \(X.\)
- (b) \(\eta -\sup -\)complete\(,\) if every Cauchy sequence \(\lbrace x_{n}\rbrace \) in \(X\) with \(\eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \(n\in \mathbb{N},\) converges in \(X.\)
- (c) \(\left( \alpha ,\eta \right)-\)complete\(,\) if every Cauchy sequence \(\lbrace x_{n}\rbrace \) in \(X\) with \(\alpha \left( x_{n},x_{n+1}\right) \geq 1 \) or \(\eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \(n\in \mathbb{N},\) converges in \(X.\)
Definition 5. [16] Let \(\left( X,d\right) \) be a rectangular metric space and let \(\alpha ,\eta \) :\(X\times X\rightarrow \left[ 0,+\infty \right[ \) be two mappings. The space \( (X,d) \) is said to be
- (a) \(\left( X,d\right) \) is \(\alpha \) -regular, if \(x_{n}\rightarrow x\), where \(\alpha \left( x_{n},x_{n+1}\right) \geq 1\) for all \(n\in \mathbb{N},\) implies \(\alpha \left( x_{n},x\right) \geq 1\) for all \(n\in \mathbb{N}.\)
- (b) \(\left( X,d\right) \) is \(\eta -\)sub -regular, if \(x_{n}\rightarrow x\), where \(\eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \(n\in \mathbb{N},\) implies \(\eta \left( x_{n},x\right) \leq 1\) for all \(n\in \mathbb{N}.\)
- (c) \(\left( X,d\right) \) is \(\left( \alpha ,\eta \right) \)-regular, if \(x_{n}\rightarrow x\), where \(\alpha \left( x_{n},x_{n+1}\right) \geq 1\) or \( \eta \left( x_{n},x_{n+1}\right) \leq 1\) for all \(n\in \mathbb{N},\) imply that \(\alpha \left( x_{n},x\right) \geq 1\) or \(\eta \left( x_{n},x\right) \leq 1\) for all \(n\in \mathbb{N}.\)
Definition 6. [1] Let \(\mathbb{F} \) be the family of all functions \(F\colon \) \(\mathbb{R}^{+}\rightarrow \mathbb{R}\) such that
- (i) \(F\) is strictly increasing;
- (ii) for each sequence \(\left( x_{n}\right) _{n\in \mathbb{N} }\) of positive numbers \( \lim_{n\rightarrow\infty}x_{n}=0,\,\,\,\text{ if and only if }\,\,\,\lim_{n\rightarrow \infty }F\left( x_{n}\right) =-\infty; \)
- (iii) there exists \(k\in \left] 0,1\right[ \) such that \(\lim_{x\rightarrow 0}x^{k}F\left( x\right) =0.\)
Definition 7. [4] Let \(\Gamma \) be the family of all functions \( F\colon \) \( \mathbb{R}^{+}\rightarrow \mathbb{R}\) such that
- (i) \(F\) is strictly increasing;
- (ii) for each sequence \(\left( x_{n}\right) _{n\in \mathbb{N}}\) of positive numbers \( \lim_{n\rightarrow\infty}x_{n}=0,\,\,\,\text{ if and only if } \,\,\,\lim_{n\rightarrow \infty }F\left( x_{n}\right) =-\infty; \)
- (iii) \(F\) is continuous.
3. Fixed point theorem on rectangular metric spaces
We introduce a new notion of generalized \( F- \)expansive mapping in the context of rectangular metric spaces as follows:Definition 8. Let \( (X,d) \) be a rectangular metric space and \( T:X\rightarrow X \) be a given mapping. \(T\) is said to be generalized \(F-\)expansive mapping if there exists \( F\in\mathbb{F}\) and \( \tau >0 \) such that
Theorem 1. Let \( (X,d )\) be a \( (\alpha-\eta) \)-complete generalized metric space, and \( T:X\rightarrow X \) be a bijective, generalized \(F\)-expansive mapping satisfying following conditions
- (i) \(T^{-1}\) is a triangular \(\left( \alpha ,\eta \right) -\)admissible mapping;
- (ii) there exists \(x_{0}\in X\) such that \(\alpha \left(x_{0},T^{-1}x_{0}\right) \geq 1\) or \(\eta \left( x_{0},T^{-1}x_{0}\right)\leq 1;\)
- (iii) \(T\) is a \(\left( \alpha ,\eta \right) -\)continuous.
Proof. Let \(x_{0} \in X \) such that \(\alpha \left(x_{0},T^{-1}x_{0}\right) \geq 1\) or \(\eta \left( x_{0},T^{-1}x_{0}\right)\leq 1.\) We define the sequence \( \left\lbrace x_n \right\rbrace\) in \( X \) by \( x_{n}=Tx_{n+1} \), for all \( n\in \mathbb{N}. \)
Since \(T^{-1}\) is an triangular \(\left( \alpha ,\eta \right) -\)admissible mapping, then
\[\alpha \left( x_{0},x_{1}\right) =\alpha \left( x_{0},T^{-1}x_{0}\right) \geq 1\Rightarrow \alpha \left( T^{-1}x_{0},T^{-1}x_{1}\right) =\alpha \left( x_{1},x_{2}\right) \geq 1,\] or \[\eta \left( x_{0},x_{1}\right) =\eta \left( x_{0},T^{-1}x_{0}\right) \leq 1\Rightarrow \eta \left( T^{-1}x_{0},T^{-1}x_{1}\right) =\eta \left( x_{1},x_{2}\right)\leq 1 .\] Continuing this process we have \[\alpha \left( x_{n-1},x_{n}\right) \geq 1,\] or \[\eta \left( x_{n-1},x_{n}\right) \leq 1,\] for all \(n\in \mathbb{N}.\) By \(\left( T_{3}\right) \) and \(\left(T_{4}\right) ,\) one has.Step \( 1 \): We shall prove
\[\lim\limits_{n \rightarrow +\infty}d( x_{n}, x_{n+1})=0. \] Applying inequality (1) with \( x=x_{n}\) and \(y= x_{n+1} \), we obtainStep 2: Now, we shall prove
Step 3: We prove shall
Step 4: We shall prove that \( \left\lbrace x_n \right\rbrace \) is a Cauchy sequence in \( (X,d) \), that is
Step 5: We show that \(d\left( Tz,z\right) =0\) arguing by contradiction, we assume that
\begin{equation*} d\left( Tz,z\right)>0. \end{equation*} By rectangular inequality we get,Step 6: (Uniqueness) Now, suppose that \(z,u\in X\) are two fixed points of \(T\) such that \(u\neq z\) and \( \alpha(z,u)\geq 1 \) or \( \eta(z,u)\leq 1 \). Therefore, we have
\begin{equation*} d\left( Tz,Tu\right) =d\left( z,u\right) >0. \end{equation*} Applying (1) with \( x=z \) and \( y=u \), we have \begin{equation*} F \left( d\left( Tu,Tz\right)\right)-\tau \geq F \left( M\left( z,u\right)\right), \end{equation*} where \begin{equation*} M\left( z,u\right) =min \left\{d\left( z,u\right),d\left(z,Tz\right),d\left( u,Tu\right),d\left( z,Tu\right)\right\} =d\left(z,u\right). \end{equation*} Therefore, we have \begin{equation*} F \left( d\left( z,u\right)\right) >F\left( d\left( u,z\right)\right)-\tau \geq F \left( d\left( z,u\right)\right). \end{equation*} It is a contradiction. Therefore \(u=z\).Theorem 2. Let \(\alpha ,\eta \) : \(X\times X\rightarrow \mathbb{R}^{+}\) be two function and let \(\left( X,d\right) \) be a \(\left( \alpha,\eta \right) -\)complete rectangular metric space. Let \(T:X\rightarrow X\) be a bijective mapping satisfying the following conditions:
- (i) \(T^{-1}\) is a triangular \(\left( \alpha ,\eta \right) \)-admissible mapping;
- (ii) \(T\) is a generalized \(\left( \alpha ,\eta \right) -F\)-expansive mapping ;
- (iii) \(\alpha \left( z,T^{-1}z\right) \geq 1\) or \(\eta \left(z,T^{-1}z\right) \leq 1,\) for all \(z\in \) Fix \(\left( T\right) .\)
Proof. Let \(z\) \(\in \) Fix \(\left( T^{n}\right) \) for some fixed \(n>1\). As \(\alpha \left( z,T^{-1}z\right) \geq 1\) or \(\eta \left( z,T^{-1}z\right) \leq 1\) and \(T^{-1}\) is a triangular \(\left( \alpha ,\eta \right) \)-admissible mapping, then \begin{equation*} \alpha \left( T^{-1}z,T^{-2}z\right) \geq 1 \text{ or } \eta \left( T^{-2}z,T^{-1}z\right)\leq 1. \end{equation*} Continuing this process, we have \begin{equation*} \alpha \left( T^{-n}z,T^{-n-1}z\right) \geq 1\text{ or }\eta \left( T^{-n}z,T^{-n-1}z\right) \leq 1, \end{equation*} for all \(n\in \mathbb{N}\). By \(\left( T3\right)\) and \(\left( T4\right),\) we get \begin{equation*} \alpha \left( T^{-m}z,T^{-n}z\right) \geq 1\text{ or }\eta \left( T^{-m}z,T^{-n}z\right) \leq 1,\text{ }\forall \text{ }m,n\in \mathbb{N},\text{ }n\neq m. \end{equation*} Since \( T \) is a bijective mapping, then \( T^{-n}z=z=T^{n}z \) for all \(n\in\mathbb{N} \) and \( z\in \) Fix \(\left( T\right)\). Therefore, \begin{equation*} \alpha \left( T^{m}z,T^{n}z\right) \geq 1\text{ or }\eta \left( T^{m}z,T^{n}z\right) \leq 1,\text{ }\forall \text{ }m,n\in \mathbb{N},\text{ }n\neq m. \end{equation*} Assume that \(z\notin \) Fix \(\left( T\right) ,\) i.e. \(d\left( z,Tz\right) >0.\) Then, we have \begin{equation*} d\left( z,Tz\right) =d\left( T^{n}z,Tz\right) =d\left( TT^{n-1}z,Tz\right). \end{equation*} Applying (1) with \(x=z \) and \(y= T^{n-1}z \), we obtain \begin{equation*} F\left( d\left( z,Tz\right)\right)-\tau= F\left( d\left( TT^{n-1}z,Tz\right)\right)-\tau \geq F \left(M\left( T^{n-1}z,z\right)\right), \end{equation*} where
Example 1. Let \( X=\left[1,+\infty \right[ \) and \( d:X\times X\rightarrow \left[0,+\infty \right[\) define by \begin{equation*} d\left( x,y\right) = \vert x-y\vert. \end{equation*} Then \( (X,d) \) is a metric space and rectangular metric space. Define mapping \(T:X\rightarrow X\) and \(\alpha ,\eta :X\times X\rightarrow \left[ 0,+\infty \right[ \) by \begin{equation*} T(x)=x^{2} \end{equation*} and \[ \alpha \left( x,y\right) =\frac{x+y}{\max \left\{ x,y\right\}+1 },\] \ \[% \eta \left( x,y\right) =\frac{\left\vert x-y\right\vert }{\max \left\{x,y\right\}+1 }.\] Then, \(T\) is an \(\left( \alpha ,\eta \right) -\)continuous triangular \(\left(\alpha ,\eta \right) -\)admissible mapping and \( T \) is a bijective mapping.
Let \(F \left( t\right) =ln(t),\) \(\tau =ln(2).\) Evidently, \(\left( \alpha \left( x,y\right) \geq 1\text{ or }\left( x,y\right) \leq 1\right) \) and \(\min\lbrace d\left( x,y\right),d\left( x,Tx\right),d\left( y,Ty\right),d\left( y,Tx\right)\rbrace >0\) are when \( x\neq y\neq 1 \).
Now, consider the following two cases:
Case 1: \(( x>y>1 )\)
As \[d(Tx,Ty)=x^{2}-y^{2},\ F(d(Tx,Ty))= ln(x^{2}-y^{2})= ln(x-y)+ln(x+y).\] Thus, \[ F( d(Tx,Ty))-\tau =ln(x^{2}-y^{2})-ln(2)= ln(x-y)+ln(x+y)-ln(2).\] We have \[ F(d(x,y)) =ln(x-y).\] On the other hand \begin{align*} F( d(x,y))- F( d(Tx,Ty))+\tau& =ln(x^{2}-y^{2})= ln(x-y)-ln(x-y)-ln(x+y)+ln(2)=ln(x-y)+ln(2). \end{align*} Since \( x,y\in \left] 1,+\infty \right[ \), then \begin{align*} -ln(x+y)+ln(2)\leq 0. \end{align*} Which implies that \begin{align*} F( d(Tx,Ty))-\tau &\geq F( d(x,y)) \geq F \left[ \min\lbrace d\left( x,y\right),d\left( x,Tx\right),d\left( y,Ty\right),d\left( y,Ty\right)\right] . \end{align*}Case 2: \( (y>x>1) \)
As \[d(Ty,Tx)=y^{2}-x^{2},\ F(d(Ty,Tx))= ln(y^{2}-x^{2})= ln(y-x)+ln(y+x),\] Thus, \[ F( d(Ty,Tx))-\tau =ln(y^{2}-x^{2})-ln(2)= ln(y-x)+ln(y+x)-ln(2).\] We have \[ F(d(x,y)) =ln(y-x).\] On the other hand \begin{align*} F( d(y,x))- F( d(Ty,Tx))+\tau&= ln(y-x)-ln(y-x)-ln(y+x)+ln(2)=-ln(x-y)+ln(2). \end{align*} Since \( y,x\in \left] 1,+\infty \right[\), then \begin{align*} ln(y-x)+ln(2)\leq 0. \end{align*} Which implies that \begin{align*} F( d(Ty,Tx))-\tau &\geq F( d(y,x)) \geq F \left[ \min\lbrace d\left( y,x\right),d\left( y,Ty\right),d\left( x,Tx\right),d\left( x,Ty\right)\right] . \end{align*} Hence, the condition (1) is satisfied. Therefore, \( T \) has a unique fixed point \( z=1 \).Theorem 3. Let \(\alpha,\eta :\) \(X\times X\rightarrow \mathbb{R} ^{+}\) be two functions and let \(d\left( X,d\right) \) be a \(\left( \alpha,\eta \right) -\)complete rectangular metric space. Let \(T:X\rightarrow X\) be a bijective mapping satisfying the following assertions:
- (i) \(T^{-1}\) is triangular \(\left( \alpha ,\eta \right) -\)admissible;
- (ii) \(T\) is a generalized \(\left( \alpha ,\eta \right) -F-\)expansive mapping;
- (iii) there exists \(x_{0}\in X\) such that \(\alpha \left(x_{0},T^{-1}x_{0}\right) \geq 1\) or \(\eta \left( x_{0},T^{-1}x_{0}\right) \leq 1;\)
- (iv) \(\left( X,d\right) \) is a \(\left( \alpha ,\eta \right) \)-regular rectangular metric space.
Proof. Let x\(_{0}\in X\) such that \(\alpha \left(x_{0},T^{-1}x_{0}\right) \geq 1\) or \(\eta \left( x_{0},T^{-1}x_{0}\right) \leq 1\). Similar to the proof of Theorem 1, we can conclude that \begin{equation*} \left( \alpha \left( x_{n},x_{n+1}\right) \geq 1\text{ or }\eta \left(x_{n},x_{n+1}\right) \leq 1\right),\text{ and }x_{n}\rightarrow z\text{ as }n\rightarrow \infty, \end{equation*} and from inequality (26), we have \[\lim_{n\rightarrow \infty }d(Tx_{n},Tz)=d(z,Tz). \] From (iv) \( \alpha \left( x_{n},z\right) \geq 1\text{ or }\eta \left( x_{n},z\right)\leq 1 \), hold for \(n\in \mathbb{N}.\)
Suppose that \(Tz=x_{n_{0-1}}=Tx_{n_{0}}\) for some \(n_{0}\in \mathbb{N^{*}}.\) From Theorem 1 we know that the members of the sequence \(\lbrace x_{n}\rbrace \) are distinct. Hence, we have \(Tz\neq Tx_{n},\) i.e. \(d\left(Tz,Tx_{n}\right) >0\) for all \(n>n_{0}.\) Thus, we can apply (1) to \(x_{n}\) and \(z\) for all \(n>n_{0}\) to get
\begin{equation*}%\label{3.28} F \left( d\left( Tz,Tx_{n}\right)\right)-\tau \geq F\left( M\left( z,x_{n}\right) \right),\text{ }\forall n\geq n_0, \end{equation*} where \begin{align*} M\left( z,x_{n}\right) &=\min \left\{ d\left( z,x_{n}\right) ,d\left( z,Tz\right),d\left( x_{n},Tx_{n}\right),d\left( z,Tx_{n}\right)\right\}\\ &=\min \left\{ d\left( z,x_{n}\right) ,d\left( z,Tz\right),d\left( x_{n},x_{n-1}\right),d\left( z,x_{n-1}\right)\right\}. \end{align*} Therefore,Corollary 1. Let \( \alpha,\eta :X\times X\rightarrow \left[0,+\infty \right[ \) be two functions, \( (X,d) \) be a \( ( \alpha,\eta) \)-complete rectangular metric space and \( T:X\rightarrow X \) be a bijective mapping. Suppose that for all \( x,y\in X \) with \( \alpha(x,y)\geq 1 \) or \(\eta(x,y)\leq 1 \) and \( M(x,y) > 0\) we have \begin{equation*} F \left( d\left( Tx,Ty\right)\right)-\tau \geq F \left( d\left( x,y\right)\right). \end{equation*} Then \( T \) has a fixed point, if
- (i) \(T^{-1}\) is a triangular \(\left( \alpha ,\eta \right) -\)admissible mapping;
- (ii) there exists \(x_{0}\in X\) such that \(\alpha \left(x_{0},T^{-1}x_{0}\right) \geq 1\) or \(\eta \left( x_{0},T^{-1}x_{0}\right)\leq 1;\)
- (iii) \(T\)is a \(\left( \alpha ,\eta \right) -\)continuous; or
- (iv) \(\left( X,d\right) \) is an \(\left( \alpha ,\eta \right) \)-regular rectangular metric space.
4. Fixed point theorem on rectangular metric spaces endowed with a partial order
Definition 9. [16] Let \( (X,d,\preceq) \) be an ordered rectangular metric space and \( T: X\rightarrow X \) be a mapping. Then
- 1) \( (X,d) \) is said to be O-complete, if every Cauchy \( \left\lbrace n_n \right\rbrace \) in \( X \) with \( x_{n}\preceq x_{n+1} \) for all \( n\in \mathbb{N} \) or \(x_{n}\succeq x_{n+1} \) for all \( n\in \mathbb{N} \), converges in \( X \).
- 2) \( (X,d) \) is said to be O-regular, if for each sequence \( \left\lbrace n_n \right\rbrace \) in \( X \) \( \left\lbrace x_n \right\rbrace \rightarrow x \) and \( x_{n}\preceq x_{n+1} \) for all \( n\in \mathbb{N} \) or \(x_{n}\succeq x_{n+1} \) for all \( n\in \mathbb{N} \) imply that \( \left\lbrace n_n \right\rbrace\preceq x \) or \( \left\lbrace n_n \right\rbrace \succeq x \) respectively.
- 3) \(T \) is said to be O-continuous, if for given \( x\in X \) and sequence \( \left\lbrace n_n \right\rbrace \) with \( x_{n}\succeq x_{n+1} \) or \( x_{n}\preceq x_{n+1} \) for all \( n\in \mathbb{N} \), \( \left\lbrace n_n \right\rbrace \rightarrow x \Rightarrow Tx_n \rightarrow Tx \).
Definition 10. Let \( (X,d,\preceq) \) be an ordered rectangular metric spaces and \( T: X\rightarrow X \) be a mapping. We say that \(T\) be an ordered \( F\)- expansive mapping, if for all \( x,y \in X \) with \( x\preceq y \) or \( x\succeq y \) such that \[ M(x,y)> 0\Rightarrow F\left( d\left( Tx,Ty\right) \right)-\tau \geq F\left( M(x,y)\right),\] where \(M(x,y )=\min\left\lbrace d(x,y),d(x,Tx),d(y,Ty),d(x,Ty) \right\rbrace \).
Theorem 4. Let \( (X,d,\preceq) \) be an O-complete partially ordered rectangular metric space. Let \(T:X\rightarrow X\) be a bijective self mapping on \( X \) satisfying the following assertions:
- (i) \(T^{-1}\) is monotone ;
- (ii) \( T \) is an ordered \(F\)- expansive mapping;
- (iii) there exists \(x_{0}\in X\) such that \( x_{0}\preceq T^{-1}x_{0}\) or \( x_{0}\succeq T^{-1}x_{0}\)
- (iv) either \( T \) is O-continuous; or
- (v) \(( X,d) \) is O-regular.
Proof. Define the mapping \( \alpha :X\times X\rightarrow \left[ 0,+\infty\right[ \) by \[\alpha(x, y)=\left\{\begin{array}{ll} 1 & \text { if } x\preceq y \\ 0 & \text { otherwise } \end{array}\right. \] and the mapping \( \eta :X\times X\rightarrow \left[ 0,+\infty\right[ \) by \[\eta(x, y)=\left\{\begin{array}{ll} 1 & \text { if } x\succeq y \\ 0 & \text { otherwise } \end{array}\right. \] Using condition (iii) we have \[ x_{0}\preceq T^{-1}x_{0}\Rightarrow \alpha( x_{0},T^{-1}x_{0})\geq 1 ,\] or \[x_{0}\succeq T^{-1}x_{0}\Rightarrow \eta( x_{0},T^{-1}x_{0})\leq 1 .\] Owing to the monotonicity of \( T^{-1} \), we get \[\alpha(x,y)\geq 1 \Rightarrow x\preceq y \Rightarrow T^{-1}x \preceq T^{-1}y\Rightarrow \alpha(T^{-1}x , T^{-1}y)\geq 1,\] or \[\eta(x,y)\leq 1 \Rightarrow x\succeq y \Rightarrow T^{-1}x \succeq T^{-1}y \Rightarrow \eta(T^{-1}x , T^{-1}y)\leq 1.\] Therefore, \( (T_1) \) and \( (T_2) \) hold.
On the other hand, if
\[ \left\{\begin{array}{ll} & \alpha(x,y)\geq 1\\ & \alpha(x,y)\geq 1 \end{array}\right. \Rightarrow \left\{\begin{array}{ll} & x\preceq y\\ & y\preceq z \end{array}\right. \] or \[ \left\{\begin{array}{ll} & \eta(x,y)\leq 1\\ & \eta(x,y)\leq 1 \end{array}\right. \Rightarrow \left\{\begin{array}{ll} & x\succeq y\\ & y\succeq z \end{array}\right. \] Since \( (X,d) \) be an O-complete partially ordered rectangular metric space, we conclude that \[ x\preceq z \ or \ x\succeq z \Rightarrow \alpha(x,z)\geq 1 \ or \ \eta(x,z)\leq 1 .\] Thus, \(( T_3 )\) and \( (T_4) \) hold. This shows that \( T^{-1} \) is a triangular \(\left( \alpha ,\eta \right)-\)admissible mapping then \begin{equation*} \left( \alpha \left( x_{n},x_{n+1}\right) \geq 1\text{ or }\eta \left(x_{n},x_{n+1}\right) \leq 1\right). \end{equation*} Now, if \(T\) is O-continuous, then \( x_{n}\preceq x_{n+1} \) or \( x_{n}\succeq x_{n+1} \) \( \Rightarrow \) \(\alpha(x_{n},x_{n+1})\geq 1 \) or \(\eta(x_{n},x_{n+1})\leq 1\) and \( x_{n}\rightarrow z \) as \( n\rightarrow \infty \) with \( z\in X \Longrightarrow Tx_{n}\rightarrow Tx. \) The existence and uniqueness of a fixed point follows from Theorem 1.Now, suppose that follow \( (X,d,\preceq) \) is O-regular. Let \( \left\lbrace x_n \right\rbrace \) be a sequence such that
\[ \left\lbrace n_n \right\rbrace\preceq x \ or \ \left\lbrace n_n \right\rbrace \succeq x ,\] which implies that \begin{equation*} \left( \alpha \left( x_{n},x\right) \geq 1\text{ or }\eta \left(x_{n},x\right) \leq 1\right), \end{equation*} for all \( n \) and \( x_n \) \( \rightarrow x\) as \( n\rightarrow\infty .\) This shows that \((X,d) \) is \(\left( \alpha ,\eta\right)-\) regular. Thus, the existence and uniqueness of fixed point from Theorem 3.Corollary 2. Let \( (X,d,\preceq) \) be an O-complete partially ordered rectangular metric spaces. Further, let \(T:X\rightarrow X\) be a bijective self mapping on \( X \) be such that \( T^{-1} \) is a monotone mapping and there exist \( k \in \left]0,1 \right[ \) such that \( kd(Tx,Ty)\geq d(x,y) \), for all \( x,y \in X \) with \( x\preceq y \) or \( x\succeq y \). Also, suppose that the following conditions hold:
- (i) there exists \(x_{0}\in X\) such that \( x_{0}\preceq T^{-1}x_{0}\) or \( x_{0}\succeq T^{-1}x_{0}\);
- (ii) either \( T \) is O-continuous; or
- (iii) X is O-regular.
Proof. Let \(F(t)=ln(t)\) for all \(t \in \) \(\left] 0,+\infty \right[ \) and \( \tau =\frac{1}{ln(k)}\). Clearly \( F\in\mathbb{F}\) and \( \tau >0 \). We prove that T is a generalized \(F\)-expansive mapping. Indeed, Since \begin{align*} kd(Tx,Ty)&\geq d(x,y). \end{align*} We have \begin{align*} ln\left[ k .d(Tx,Ty)\right] &=ln\left[ d(Tx,Ty)\right] +ln(k)\\ &=ln\left( d(Tx,Ty)\right)-\frac{1}{ln(k)}\\ & \geq ln\left[ d(x,y)\right] \\ &\geq ln\left[\min\lbrace d(x,y),d(x,Tx),d(y,Ty),d(Tx,y)\rbrace \right]. \end{align*} As in the proof of Theorems 1 and 4, \(T\) has a unique fixed point \(x\in X\).
Corollary 3. Let \( (X,d,\preceq) \) be an O-complete partially ordered rectangular metric spaces. Further, let \(T:X\rightarrow X\) be a bijective self mapping on \( X \) such that \( T^{-1} \) is a monotone mapping and there exist \( \alpha \in \left]0,\frac{1}{2} \right[ \) such that \[ \alpha d(Tx,Ty)\geq \frac{ d(x,Tx)+d(y,Ty)}{2} \] for all \( x,y \in X \) with \( x\preceq y \) or \( x\succeq y \). Also suppose that the following conditions hold:
- (i) there exists \(x_{0}\in X\) such that \( x_{0}\preceq T^{-1}x_{0}\) or \( x_{0}\succeq T^{-1}x_{0}\);
- (ii) either \( T \) is O-continuous; or
- (iii) X is O-regular.
Proof. Let \(F(t)=ln(t)\) for all \(t \in \) \(\left] 0,+\infty \right[ \) and \( \tau =\frac{1}{ln(2\alpha)}\). Clearly \( F\in\mathbb{F}\) and \( \tau >0 \). We prove that \(T\) is a generalized \(F\)-expansive mapping. Indeed, since \begin{align*} \alpha d(Tx,Ty)&\geq \frac{d(x,Tx)+d(y,Ty)}{2}. \end{align*} We have \begin{align*} ln\left[ 2\alpha .d(Tx,Ty)\right] &=ln\left[ d(Tx,Ty)\right] +ln(2\alpha)\\ &=ln\left( d(Tx,Ty)\right)-\frac{1}{ln(2\alpha)}\\ & \geq ln\left[d(x,Tx)+d(y,Ty)\right] \\ &\geq ln\left[\min\lbrace d(x,y),d(x,Tx),d(y,Ty),d(Tx,y)\rbrace \right]. \end{align*} As in the proof of Theorems 1 and 4, \(T\) has a unique fixed point \(x\in X\).
Corollary 4. Let \( (X,d,\preceq) \) be an O-complete partially ordered rectangular metric spaces. Further, let \(T:X\rightarrow X\) be a bijective self mapping on \( X \), such that \( T^{-1} \) is a monotone mapping and there exist \( \lambda \in \left]0,\frac{1}{3} \right[ \) such that \[ \alpha d(Tx,Ty)\geq \frac{ d(x,y)+d(x,Tx)+d(y,Ty)}{3} \] for all \( x,y \in X \) with \( x\preceq y \) or \( x\succeq y \). Also suppose that the following conditions hold:
- (i) there exists \(x_{0}\in X\) such that \( x_{0}\preceq T^{-1}x_{0}\) or \( x_{0}\succeq T^{-1}x_{0}\);
- (ii) either \( T \) is O-continuous; or
- (iii) X is O-regular.
Proof. Let \(F(t)=ln(t)\) for all \(t \in \) \(\left] 0,+\infty \right[ \), and \( \tau =\frac{1}{ln(3\alpha)}\). Clearly \( F\in\mathbb{F}\) and \( \tau >0 \). We prove that \(T\) is a \(F\)-expansive mapping. Indeed, since \begin{align*} \lambda d(Tx,Ty)&\geq \frac{d(x,y)+d(x,Tx)+d(y,Ty)}{3} . \end{align*} We have \begin{align*} ln\left[ 3\lambda .d(Tx,Ty)\right] &=ln\left[ d(Tx,Ty)\right] +ln(3\lambda)\\ &=ln\left( d(Tx,Ty)\right)-\frac{1}{ln(3\lambda)}\\ & \geq ln\left[d(x,y)+d(x,Tx)+d(y,Ty)\right] \\ &\geq ln\left[\min\lbrace d(x,y),d(x,Tx),d(y,Ty),d(Tx,y)\rbrace \right]. \end{align*} As in the proof of Theorems 1 and 4, \(T\) has a unique fixed point \(x\in X\).
Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Conflicts of Interest
The authors declare no conflict of interest.References
- Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, 2012, Article No. 94, https://doi.org/10.1186/1687-1812-2012-94. [Google Scholor]
- Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1), 133-181.[Google Scholor]
- Kari, A., Rossafi, M., Marhrani, E. M., & Aamri, M. (2020). Fixed-point theorem for nonlinear-contraction via-distance. Advances in Mathematical Physics, 2020, Article ID 6617517, https://doi.org/10.1155/2020/6617517. [Google Scholor]
- Piri, H., & Kumam, P. (2014). Some fixed point theorems concerning \(F-\)contraction in complete metric spaces. Fixed Point Theory and Applications, 2014, Article No. 210, https://doi.org/10.1186/1687-1812-2014-210. [Google Scholor]
- Wardowski, D. (2018). Solving existence problems via \(F\)-contractions. Proceedings of the American Mathematical Society, 146(4), 1585-1598. [Google Scholor]
- Wardowski, D., & Van Dung, N. (2014). Fixed points of \(F\)-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), 146-155. [Google Scholor]
- Branciari, A. (2000). A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen, 57, 31-37. [Google Scholor]
- Jleli, M., & Samet, B. (2014). A new generalization of the Banach contraction principle. Journal of Inequalities and Applications, 2014, Article No. 38, https://doi.org/10.1186/1029-242X-2014-38. [Google Scholor]
- Kirk, W. A., & Shahzad, N. (2013). Generalized metrics and Caristi's theorem. Fixed Point Theory and Applications, 2013, Article No. 129, https://doi.org/10.1186/1687-1812-2013-129. [Google Scholor]
- Samet, B. (2009). A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type. International Journal of Mathematical Analysis, 3(25-28), 1265-1271. [Google Scholor]
- Samet, B. (2010). Discussion on: a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publicationes Mathematicae Debrecen, 76(4), 493-494. [Google Scholor]
- Rossafi, M., Kari, A., Marhrani, E. M., & Aamri, M. (2021). Fixed point theorems for generalized expansive mapping in rectangular metric spaces. Abstract and Applied Analysis, 2021, Article ID 6642723, https://doi.org/10.1155/2021/6642723. [Google Scholor]
- Wang, S. Z. (1984). Some fixed point theorems on expansion mappings. Math Japon., 29, 631-636. [Google Scholor]
- Kumar, M., Araci, S., & Kumam, P. (2016). Fixed point theorems for generalized \((\alpha,\psi)\)-expansive mappings in generalized metric spaces. Communications in Mathematics and Applications, 7(3), 227-240. [Google Scholor]
- Hussain, N., Kutbi, M. A., & Salimi, P. (2014). Fixed point theory in \(\alpha-\)complete metric spaces with applications. Abstract and Applied Analysis, 2014, Article ID 280817, https://doi.org/10.1155/2014/280817. [Google Scholor]
- Hussain, N., Parvaneh, V., Alamri, B. A., & Kadelburg, Z. (2017). F-HR-type contractions on \((\alpha,\eta)\)-complete rectangular \(b-\)metric spaces. Journal of Nonlinear Sciences and Applications, 10, 1030-1043. [Google Scholor]