Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2022.0114
Estimation to the number of limit cycles for generalized Kukles differential system
Houdeifa Melki\(^{1,*}\) and Amar Makhlouf\(^2\)
\(^1\) Department of Mathematics, University Mostefa Benboulaid Batna 2, Batna, Algeria.
\(^2\) Department of Mathematics, University of Annaba, Laboratory LMA, P.O.Box 12, Annaba 23000, Algeria.
Correspondence should be addressed to Houdeifa Melki at h.melki@univ-batna2.dz
Abstract
Keywords:
1. Introduction
The study of limit cycles, which are isolated periodic orbits in the set of solutions of differential equations, is one of the main problems in the theory of differential equations. It is done by checking their existence, number, and stability. Many mathematicians, physicists, chemists, biologists, and others were interested in knowing and discovering those properties related to the limit cycles. The origin or the motivation of limit cycles emerged from the second part of the \(16^{th}\) Hilbert problem [1], which involves finding the maximum number of limit cycles of polynomial vector fields with fixed degrees.
There are several methods exist to study the number of limit cycles that bifurcate from the periodic orbits such as the abelian integral method [2], the integrating factor [3], the Poincar\'{e} return map [4], Poincar\'{e}-Melnikov integral method [5] and averaging theory [6, 7]. The study of limit cycles for differential equations or planar differential systems by applying the averaging method has been considered by several authors see, for instance, [8, 9, 10, 11].
Here we consider a particular case of the \(16^{th}\) Hilbert problem to study the upper bound of the generalized polynomial Kukles system,In [9], Boulfoul et al., used the averaging theory to study the maximum number of limit cycles of a class of generalized polynomial Kukles differential system of the form
Theorem 1. For \(\left\vert {\varepsilon}\right\vert \) sufficiently small, the maximum number of limit cycles of the polynomial Kukles differential system 5 which can bifurcate from the periodic orbits of the linear center \(\dot{x}=y, \dot{y}=-x\),
- is \( \max \left\{\left[ \frac{n_{2}}{2}\right] ,\left[ \frac{n_{4}}{2}\right]+1 \right\}, \) by using averaging theory of first order,
- and \( \max \left\{ \left[ \frac{n_{2}}{2}\right] ,\left[ \frac{n_{4}}{2}\right]+1 ,% \left[ \frac{n_{1}}{2}\right] \right. +\left[ \frac{n_{2}-1}{2}\right] +p,% \left[ \frac{n_{1}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right] +p+1, \left[ \frac{n_{1}-1}{2}\right] +\mu +p,\left[ \frac{n_{2}-1}{2}\right] +% \left[ \frac{n_{3}}{2}\right] +p+1,\left[ \frac{n_{3}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right] +p+2, \left. \left[ \frac{n_{3}-1}{2}\right] +\mu +p+1\right\} , \) by using averaging theory of second order, where \(\mu =\min \left\{ \left[ \frac{n_{2}}{2}\right] ,\left[ \frac{n_{4}}{2}% \right]+1 \right\} \).
2. The averaging theory of first and second order
The averaging theory of first and second order, for studying periodic orbits, was developed in [6, 15]. The following result is Theorem 4.2 of [6].Theorem 2. Consider the differential system
- \(F_{1}(t,.)\in C^{1}(D)\) for all \(t \in \mathbb{R}\), \(F_{2}, R\) and
\(D_{x}F_{1}\) are locally Lipschitz with respect to \(x\), and \(R\) is differentiable
with respect to \(\varepsilon\). Define \(f_{1},f_{2}: D \rightarrow \mathbb{R}\) by
\begin{equation}\label{1.13} \left.\begin{array}{rl} f_{1}(z)=& \dfrac{1}{T}\displaystyle \int^T_{0} F_{1}(s ,z)ds,\;\;\\ f_{2}(z)=& \dfrac{1}{T} \displaystyle \int^T_{0} \left[ D_{z}F_{1}(s,z) \int^s_{0} F_{1}(t,z)dt + F_{2}(s,z) \right] ds . \end{array}\right\} \end{equation}(7)
- For \(V \subset D\) an open and bounded set and for \(\varepsilon \in (-\varepsilon_{f},\varepsilon_{f}) \setminus \{0\} \), there exists \(a_{\varepsilon} \in V\) such that \(f_{1}(a_{\varepsilon})+ \varepsilon f_{2}(a_{\varepsilon})=0\) and \(d_{B}(f_{1}+ \varepsilon f_{2},V,a)\neq 0\).
3. Proof of statement \((a)\) and \((b)\) of Theorem 1
In this proof, we use the first order averaging theory. So, we write the system 5 in polar coordinates \((r,\theta)\) where \(x=rcos\theta\), \(y=rsin\theta\), \(r>0\). We write the polynomials \(f^{1}(x), g^{1}(x),h^{1}(x)\) and \(l^{1}(x)\) which appear in 5 as,Lemma 1. Let \(A_{i,j}\left( \theta \right) =\cos ^{i}\theta \sin ^{j}\theta \) and \( \theta\xi _{i,j}\left( \theta \right) =\int_{0}^{\theta }A_{i,j}(s)ds,\) where \begin{eqnarray*} \int_{0}^{2\pi }A_{i,j}(\theta )d\theta &=&\left\{ \begin{array}{c} 0, \;\;\; if \;\;\; i\text{ is}\text{ odd}\text{ or}\; j \text{ is}\text{ odd}, \\ 2\pi\xi _{i,j}\left( 2\pi \right), \;\;\; if\;\; i\text{ }and\text{ }j \text{ }are\text{ }even, \end{array} \right. \\ && \end{eqnarray*} and \begin{eqnarray*} \xi_{2i,2j+4}(2\pi ) &=&\frac{2j+3}{2i+2j+4}\xi_{2i,2j+2}(2\pi ). \end{eqnarray*}
Using Lemma 1, we obtain the integral of the function \(F_{10}(r)\)Lemma 2. The integral \(\Upsilon _{1}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} (a_{1})\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \(.\) \begin{equation*} (b_{1})\qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{1}}{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+ \sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{1}\right)\qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{% n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}% \right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{1}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}-1}{% 2}\right] }(2i+2p+1)a_{2i+1}A_{2i+1,2p+1}\left( \theta \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right)d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}-1}{2}\right] }\sum_{s=1}^{\mu }\frac{(2i+2p+1)}{2}a_{2i+1}d_{2s-2}\sum_{l=1}^{s+p+1}\delta _{s,p,l}D_{i,p,l}r^{2i+2s+4p+1}. \end{equation*} We observe that the sum of the integrals \(\left( a_{1}\right)-\left( g_{1}\right)\) is the polynomial (15). This ends the proof of Lemma (2).
Lemma 3. The integral \(\Upsilon _{2}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}% }{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}% \tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{2}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}% \right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }(i+p)a_{2i}b_{2s+1}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}C_{i,p,l}r^{2i+2s+4p+1}, \end{equation*} \begin{equation*} \left( d_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}% _{s,p,l}\sin (2l+1)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }(i+p)a_{2i}d_{2s+1}\sum_{l=0}^{s+p+2}\bar{\gamma} _{s,p,l}C_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( g_{2}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{1}}{2}\right] }(2i+2p)a_{2i}A_{2i,2p+1}\left( \theta \right) r^{2i+2p-1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{2}\right)-\left( g_{2}\right)\) is the polynomial (16). This ends the proof of Lemma (3).
Lemma 4. The integral \(\Upsilon _{3}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( b_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1} }{2}\right] }a_{2s}r^{2s+2p}\left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1} \tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta = \end{equation*} \begin{eqnarray*} && \\ &&\sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{1}% }{2}\right] }(i+p+1)b_{2i+1}a_{2s}\sum_{l=1}^{s+p+1}\tilde{\beta}% _{s,p,l}E_{i,p,l}r^{2i+2s+4p+1}, \end{eqnarray*} \begin{equation*} \left( c_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}\sum_{l=0}^{s+p+1}\bar{\beta} _{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2} \right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}% _{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{2}-1}{2 }\right] }\sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }(i+p+1)b_{2i+1}c_{2s}% \sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}E_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( f_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{ n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}% _{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{3}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{2}-1}{2}\right] }(2i+2p+2)b_{2i+1}A_{2i+1,2p+2}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{3}\right)-\left( g_{3}\right)\) is the polynomial 17. This ends the proof of Lemma 4.
Lemma 5. The integral \(\Upsilon _{4}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{4}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}% \left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{4}\right) \qquad\frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }(2i+2p+3)c_{2i+1}A_{2i+1,2p+3}\left( \theta \right) r^{2i+2p+2}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}-1}{2}\right] }\sum_{s=1}^{\mu }\frac{(2i+2p+3) }{2}c_{2i+1}d_{2s-2}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\tilde{D}_{i,p,l}r^{2i+2s+4p+3}. \end{equation*} We observe that the sum of the integrals \(\left( a_{4}\right)-\left( g_{4}\right)\) is the polynomial 18. This ends the proof of Lemma 5.
Lemma 6. The integral \(\Upsilon _{5}(r)\) is given by the following
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{2}-1}{% 2}\right] }(i+p+1)c_{2i}b_{2s+1}\sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\tilde{C% }_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( d_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \end{equation*} \begin{eqnarray*} &&\left( f_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{% \left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \\ && \end{eqnarray*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{4}-1}{% 2}\right] }(i+p+1)c_{2i}d_{2s+1}\sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}% \tilde{C}_{i,p,l}r^{2i+2s+4p+5}, \end{equation*} \begin{equation*} \left( g_{5}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{3}}{2}\right] }(2i+2p+2)c_{2i}A_{2i,2p+3}\left( \theta \right) r^{2i+2p+1}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{5}\right)-\left( g_{5}\right)\) is the polynomial (19). This ends the proof of Lemma 6.
Lemma 7. The integral \(\Upsilon _{6}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}\left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right)\right)d\theta =0, \end{equation*} \begin{equation*} \left( b_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{1}}{% 2}\right] }(i+p+2)d_{2i+1}a_{2s}\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}% \tilde{E}_{i,p,l}r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( c_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \end{equation*} \begin{equation*} \left( d_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}\left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( e_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }\sum_{s=0}^{\left[ \frac{n_{3}}{% 2}\right] }(i+p+2)d_{2i+1}c_{2s}\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}% \tilde{E}_{i,p,l}r^{2i+2s+4p+5}, \end{equation*} \begin{equation*} \left( f_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}% \sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{6}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=0}^{\left[ \frac{n_{4}-1}{2}\right] }(2i+2p+4)d_{2i+1}A_{2i+1,2p+4}\left( \theta \right) r^{2i+2p+3}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{6}\right)-\left( g_{6}\right)\) is the polynomial (20). This ends the proof of Lemma 7.
Lemma 8. The integral \(\Upsilon _{7}(r)\) is given by the following,
Proof. By using the integrals in Appendix, we get \begin{equation*} \left( a_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }a_{2s+1}r^{2s+2p+1}% \left( \beta _{s,p,0}+\sum_{l=1}^{s+p+1}\beta _{s,p,l}\cos \left( 2l\right) \theta \right)\right)d\theta = \end{equation*} \begin{equation*} \sum_{i=1}^{\mu }\sum_{s=0}^{\left[ \frac{n_{1}-1}{2}\right] }\frac{(2i+2p+1)% }{2}d_{2i-2}a_{2s+1}\sum_{l=0}^{s+p+1}\beta _{s,p,l}\left( \tilde{F}_{i,p,l}-% \frac{2p+3}{2i-1}F_{i,p,l}\right) r^{2i+2s+4p+1}, \end{equation*} \begin{equation*} \left( b_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{1}}{2}\right] }a_{2s}r^{2s+2p}% \left( \tilde{\beta}_{s,p,0}+\sum_{l=1}^{s+p+1}\tilde{\beta}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right)d\theta =0, \end{equation*} \begin{equation*} \left( c_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{2}-1}{2}\right] }b_{2s+1}r^{2s+2p+2}% \sum_{l=0}^{s+p+1}\bar{\beta}_{s,p,l}\sin \left( 2l+1\right) \theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( d_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }c_{2s+1}r^{2s+2p+3}% \left( \gamma _{s,p,0}+\sum_{l=1}^{s+p+2}\gamma _{s,p,l}\cos \left( 2l\right) \theta \right) \right) d\theta = \end{equation*} \begin{equation*} \sum_{i=1}^{\mu }\sum_{s=0}^{\left[ \frac{n_{3}-1}{2}\right] }\frac{(2i+2p+1)% }{2}d_{2i-2}c_{2s+1}\sum_{l=0}^{s+p+2}\gamma _{s,p,l}\left( \tilde{F}% _{i,p,l}-\frac{2p+3}{2i-1}F_{i,p,l}\right) r^{2i+2s+4p+3}, \end{equation*} \begin{equation*} \left( e_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{3}}{2}\right] }c_{2s}r^{2s+2p+2}\left( \tilde{\gamma}_{s,p,0}+\sum_{l=1}^{s+p+2}\tilde{\gamma}_{s,p,l}\cos \left( 2l-1\right) \theta \right) \right) d\theta =0, \end{equation*} \begin{equation*} \left( f_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=0}^{\left[ \frac{n_{4}-1}{2}\right] }d_{2s+1}r^{2s+2p+4}% \sum_{l=0}^{s+p+2}\bar{\gamma}_{s,p,l}\sin (2l+1)\theta \right) d\theta =0, \end{equation*} \begin{equation*} \left( g_{7}\right)\qquad \frac{1}{2\pi }\int_{0}^{2\pi }\left( \sum_{i=1}^{\mu }(2i+2p+1)d_{2i-2}\left( A_{2i-2,2p+4}\left( \theta \right) -\frac{2p+3}{2i-1% }A_{2i,2p+2}\left( \theta \right) \right) r^{2i+2p}\right) \times \end{equation*} \begin{equation*} \left( \sum_{s=1}^{\mu }d_{2s-2}r^{2s+2p+1}\sum_{l=1}^{s+p+1}\delta _{s,p,l}\sin (2l)\theta \right) d\theta =0. \end{equation*} We observe that the sum of the integrals \(\left( a_{7}\right)-\left( g_{7}\right)\) is the polynomial (21). This ends the proof of Lemma 8.
By Lemmas 2-8, we obtain \(F_{20}^{1}\left( r\right) =r^{1+4p}P_{1}\left( r^{2}\right) \), where \(% P_{1}\left( r^{2}\right) \) is a polynomial of degree \[ \max \left\{ \left[ \frac{n_{1}}{2}\right] \right. +\left[ \frac{n_{2}-1}{2}\right], \left[ \frac{n_{1}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+1,\left[ \frac{n_{1}-1}{2}\right] +\mu, \] \[ \left. \left[ \frac{n_{2}-1}{2}\right] + \left[ \frac{n_{3}}{2}\right]+1,\left[ \frac{n_{3}}{2}\right] +\left[ \frac{n_{4}-1}{2}\right]+2,\left[ \frac{n_{3}-1}{2}\right] +\mu+1\right\} . \] Again by substituting (14) in (13) and (12), we obtain4. Applications
In this section we shall give examples to illustrate statements (a) and (b) of Theorem 1. We consider the first example corresponds to statement (a)Example 1.
Example 2. We consider an example that corresponds to statement (b) of Theorem 1
References
- Hilbert, D. (1900). Mathematische problems. lecture in: second international congress of mathematicians-Paris, France Nachrichten von der gesellschaft der wissenschaften zu göttingen, mathematisch-physikalische klasse. English Translation, 5, 253-297.[Google Scholor]
- Arnol'd, V. I., & Ilyashenko, Y. S. (1998). Ordinary Differential Equations Encyclopaedia of Mathematical Sciences, Vol. 1. Dynamical Systems I.[Google Scholor]
- Giacomini, H., Llibre, J., & Viano, M. (1996). On the nonexistence, existence and uniqueness of limit cycles. Nonlinearity, 9(2), 501-516.[Google Scholor]
- Blows, T. R., & Perko, L. M. (1994). Bifurcation of limit cycles from centers and separatrix cycles of planar analytic systems. Siam Review, 36(3), 341-376.[Google Scholor]
- Oscillators, N. (1983). Dynamical Systems, and Bifurcations of Vector Fields. New York, Springer, 1986.[Google Scholor]
- Buica, A., & Llibre, J. (2004). Averaging methods for finding periodic orbits via Brouwer degree. Bulletin des Sciences Mathematiques, 128(1), 7-22.[Google Scholor]
- Verhulst, F. (2006). Nonlinear Differential Equations and Dynamical Systems. Springer Science & Business Media.[Google Scholor]
- Llibre, J., & Mereu, A. C. (2011). Limit cycles for generalized Kukles polynomial differential systems. Nonlinear Analysis: Theory, Methods & Applications, 74(4), 1261-1271.[Google Scholor]
- Boulfoul, A., Makhlouf, A., & Mellahi, N. (2019). On the limit cycles for a class of generalized Kukles differential systems. Journal of Applied Analysis & Computation, 9(3), 864-883.[Google Scholor]
- Chen, T., & Llibre, J. (2019). Limit cycles of a second-order differential equation. Applied Mathematics Letters, 88, 111-117.[Google Scholor]
- García, B., Llibre, J., & Del Río, J. S. P. (2014). Limit cycles of generalized Liénard polynomial differential systems via averaging theory. Chaos, Solitons & Fractals, 62, 1-9.[Google Scholor]
- Kukles, I. S. (1944). Sur quelques cas de distinction entre un foyer et un centre. In Doklady Akademii Nauk (Vol. 42, No. 42, pp. 208-211).[Google Scholor]
- Lloyd, N. G., & Pearson, J. M. (1990). Conditions for a centre and the bifurcation of limit cycles in a class of cubic systems. In Bifurcations of Planar Vector Fields (pp. 230-242). Springer, Berlin, Heidelberg.[Google Scholor]
- Sadovskii, A. P. (2003). Cubic systems of nonlinear oscillations with seven limit cycles. Differential Equations, 39(4), 505-516.[Google Scholor]
- Llibre, J., Mereu, A. C., & Teixeira, M. A. (2010, March). Limit cycles of the generalized polynomial Liénard differential equations. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 148, No. 2, pp. 363-383). Cambridge University Press.[Google Scholor]
- Sanders, J. A., Verhulst, F., & Murdock, J. (2007). Averaging Methods in Nonlinear Dynamical Systems (Vol. 59, pp. xxii+-431). New York: Springer.[Google Scholor]