Open Journal of Mathematical Sciences
ISSN: 2523-0212 (Online) 2616-4906 (Print)
DOI: 10.30538/oms2018.0032
Oscillatory Behavior of Second Order Nonlinear Difference Equations with a Non-Positive Neutral Term
Said R. Grace, Shurong Sun\(^{1}\), Limei Feng, Ying Sui
Department of Engineering Mathematics, Faculty of Engineering£¬ Cairo University, Orman, Giza 12221, Egypt. (S.R.G)
School of Mathematical Science, University of Jinan, Jinan, Shandong 250022, P R China. (S.S & L.F & Y.S)
\(^{1}\)Corresponding Author: sshrong@163.com
Abstract
Keywords:
1. Introduction
This paper deals with oscillatory behavior of all solutions of the nonlinear second order difference equations with a non-positive neutral term of the form(ii) \(\{a(t)\}\), \(\{p(t)\}\) and \(\{q(t)\}\) are positive real sequences for \(t\geqslant t_0\), and \(0< p(t)< p_0< 1\);
(iii) \(k\) is a positive integer and \(m\) is a nonnegative integer;
(iv) \(h(t)=t-m+k+1\leqslant t\), that is \(m\geqslant k+1\).
We let $$A(v,u)=\sum_{s=u}^{v-1}\frac{1}{a^{1/\gamma}(s)}, v\geqslant u\geqslant t_0,$$ and assume that
Let \(\theta=\max\{k,m-1\}\). By a solution of equation (1), we mean a real sequence \(\{x(t)\}\) defined for all \(t\geqslant t_0-\theta\) and satisfies equation (1) for all \(t\geqslant t_0\). A solution of equation (1) is called oscillatory if its terms are neither eventually positive nor eventually negative, otherwise it is called non-oscillatory. If all solutions of the equation are oscillatory then the equation itself called oscillatory.
In recent years, there has been much research activity concerning the oscillation and asymptotic behavior of solutions of various classes of difference equations see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references cited therein. Meanwhile, there also have been numerous research for second order neutral functional difference equations, due to the comprehensive use in natural science and theoretical study. Some interesting recent results on the oscillatory and asymptotic behavior of second order difference equations can be found in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. However, it seems that there are no known results regarding the oscillation of second order difference equations of type (1). More exactly existing literature does not provide any criteria which ensure oscillation of all solutions of equation (1). In view of the above motivation, our aim in this paper is to present sufficient conditions which ensure that all solutions of (1) are oscillatory.
2. Main results
For \(t\geqslant T\) for some \(T\geqslant t_0\) we let $$\mu(t)=a^{1/\gamma}(t)A(t,T)\ \ and\ \ \ Q(t)=\sum_{s=t}^{\infty}q(s).$$ We begin with the following new result.Theorem 2.1. Let conditions \((i)\) - \((iv)\) and equation (2) hold. If there exists a positive non-decreasing sequence \(\{\rho(t)\}\) such that
c(A^{(\gamma-\beta)/{\beta}}(t)),\ \ when\ \beta>\gamma\ for\ some\ constant\ c>0, \end {cases} \end{aligned} \end{equation}
Proof. Let \(x(t)\) be a non-oscillatory solution of equation (1), say \(x(t)>0\), \(x(t-m+1)>0\), \(x(t-k)>0\) for \(t\geqslant t_1\) for some \(t_1\geqslant t_0\). It follows from equation (1) that
Case 1. If \(x(t)\) is unbounded, then there exists a sequence \(\{t_n\}\) such that \(\lim\limits_{n\rightarrow\infty}t_n=\infty\) where \(x(t_n)=\max\{x(s):t_0\leqslant s\leqslant t_n\}\). Since \(t_n-k>t_0\) for all sufficiently large \(n\), $$x(t_n-k)=\max\{x(s):t_0\leqslant s\leqslant t_n-k\}\leqslant \max\{x(s):t_0\leqslant s\leqslant t_n\}=x(t_n).$$ Therefore, for all large \(n\), $$y(t_n)=x(t_n)-p(t_n)x(\tau(t_n))\geqslant(1-p(t_n))x(t_n)>0,$$ where \(\tau(t)=t-k\), which contradicts the fact that \(\lim\limits_{t\rightarrow\infty}y(t)=-\infty\).
Case 2. If \(x(t)\) is bounded, then \(y(t)\) is also bounded, which contradicts \(\lim\limits_{t\rightarrow\infty}y(t)=-\infty\). This completes the prove of the claim and conclude that \(\Delta y(t)>0\) for \(t\geqslant t_2\).
Next, we have two cases to consider:
(I) \(y(t)>0\); (II) \(y(t)< 0\), for \(t\geqslant t_2\).
First assume that (I) holds. In view of equation (7) and \(x(t)\geqslant y (t)\) , we have
\(\Delta w(t)\leqslant-\rho(t)q(t)+\left(\frac{\Delta\rho(t)}{\rho(t+1)}\right)w(t+1)-\beta\left(\frac{\rho(t)}{\rho(t+1)}\right) \left(\frac{a(t)}{a(t-m)}\right)^{1/\gamma}\left(\frac{\Delta y(t)}{y(t-m)}\right)w(t+1).\)
Now,
\(\frac{\Delta y(t)}{y^{\gamma/\beta}(t-m)}=\rho^{-1/\gamma}(t)a^{-1/\gamma}(t)w^{1/\gamma}(t)\geqslant\rho^{-1/\gamma}(t) a^{-1/\gamma}(t)\left(\frac{\rho(t)}{\rho(t+1)}\right)^{1/\gamma}w^{1/\gamma}(t+1). \)
Thus,
\(\Delta w(t)\leqslant-\rho(t)q(t)+\left(\frac{\Delta\rho(t)}{\rho(t+1)}\right)w(t+1)-\frac{\beta}{a^{1/\gamma}(t-m)} \left(\frac{\rho(t)}{\rho^{1+1/\gamma}(t+1)}\right) w^{1+(1/\gamma)}(t+1)y^{(\gamma-\beta)/\beta}(t-m),\)
and so, \begin{eqnarray*}\Delta w(t)&\leqslant&-\rho(t)q(t)+\left(\frac{\Delta\rho(t)}{\rho(t+1)}\right)w(t+1)\\&&-\frac{\beta\rho(t)} {a^{1/\gamma}(t-m)\rho^{1+1/\gamma}(t+1)} w^{1+1/\gamma}(t+1)y^{(\gamma-\beta)/\beta}(t-m).\end{eqnarray*} For the case \(\beta=\gamma\), we see that \(y^{(\gamma-\beta)/\beta}(t)=1\) while for the case \(\beta>\gamma\) and since \((a(t)(\Delta y(t)))^{\gamma}\) is decreasing, there exists a constant \(c>0\) such that $$a(t)(\Delta y(t)))^{\gamma}\leqslant c\ \ \text{for}\ \ t\geqslant t_2.$$ Summing this inequality from \(t_2\) to \(t-1\), we have $$y(t)\leqslant y(t_2)+c^{1/\gamma}A(t,t_2),$$ and thus, $$y^{(\gamma-\beta)/\beta}(t)\geqslant c^{(\gamma-\beta)/(\beta\gamma)}A^{(\gamma-\beta)/\beta}(t,t_2):=c^*A^{(\gamma-\beta)/\beta}(t,t_2),$$ where \(c^*=c^{(\gamma-\beta)/(\beta\gamma)}\). Using those two cases and the definition of \(g(t)\), we get
For the non-neutral equations, that is, equation (1) when \(p(t)=0\) and \(q(t)\) is either non-negative or non-positive for all large \(t\), equation (1) is reduced to the equation $$\Delta \left(a(t)(\Delta x(t))^\gamma\right)+\delta q(t)x^{\beta}(t+1-m)=0,$$ where \(\delta=\pm1\). From Theorem 2.1, we extract the following immediate results.
Corollary 2.2. Let conditions \((i)\)-\((iii)\) and equation (2) hold. If there exists a positive function \(\rho(t)\) and \(\Delta\rho(t)\geqslant0\) such that equation (3) holds, then equation \((1,+1)\) is oscillatory.
Proof. The proof is contained in the proof of Theorem 2.1-Case (I) and hence is omitted.
We note that Corollary 2.2 is related to some of the results in [4, 5, 6, 12, 13, 14, 15, 16, 17 ]and the references cited therein.Corollary 2.3. Let conditions \((i)\)-\((iv)\) and equation (2) hold. If equation (5) or (6) holds, then every bounded solution of equation \((1,-1)\) is oscillatory.
Proof. The proof is contained in the proof of Theorem 2.1-Case (II) and hence is omitted.
The following examples are illustrative.Example 2.4. Consider the neutral equation
Theorem 2.5. Let the hypotheses of Theorem 2.1 hold with \(\Delta\rho\leqslant0\) for \(t\geqslant t_0\) and equation (3) be replaced by
Proof.
Let \(x(t)\) be a non-oscillatory solution of equation (1), say \(x(t)>0\), \(x(t-k)>0\),
\(x(t-m+1)>0\) for \(t\geqslant t_1\). Proceeding as in the proof of Theorem 2.1, we conclude that
\(\Delta y(t)>0\) for \(t\geqslant t_2\) and we have two cases to consider: (I) \(y(t)>0\) or \(y(t)< 0\) for \(t\geqslant t_2\).
Case (I). Suppose that \(y(t)>0\). As in the proof of Theorem 2.1, we obtain (16). Thus,
$$\Delta w(t)\leqslant-\rho(t)q(t).$$
Summing this inequality and using equation (10) we arrived at the desired contradiction.
Example 2.6. Consider the neutral equation
Theorem 2.7. Let the hypotheses of Theorem 2.1 hold with \(\gamma\leqslant1\), and equation (3) be replaced by
Proof. Let \(x(t)\) be a non-oscillatory solution of equation (1), say \(x(t)>0\), \(x(t-k)>0\), \(x(t-m+1)>0\) for \(t\geqslant t_1\). Proceeding as in the proof of Theorem 2.1, we conclude that \(\Delta y(t)\) for \(t\geqslant t_2\) and \(y(t)\) satisfies either (I) or (II) for \(t\geqslant t_2\). If (I) holds, then as in the proof of Theorem 2.1, we obtain (17) and using (12) we get \[ \begin{array}{ll} \Delta w(t)&\leqslant-\rho(t)q(t)+\left(\frac{\Delta\rho(t)}{\rho(t+1)}\right)w(t+1)\\&-\frac{\beta\rho(t)}{a^{1/\gamma} (t-m+1)\rho^{1+1/\gamma}(t+1)}g(t)w^{1+1/\gamma}(t+1)\\ &\leqslant-\rho(t)q(t)+\left(\frac{\Delta\rho(t)}{\rho(t+1)}\right)w(t+1)\\&-\frac{\beta\rho(t)}{a^{1/\gamma} (t-m+1)\rho^{2}(t+1)}g(t)Q^{1/\gamma-1}(t+1)w^2(t+1)\\ &=-\rho(t)q(t)-\big(\sqrt{\frac{\beta\rho(t)}{a^{1/\gamma} (t-m+1)\rho^{2}(t+1)}g(t)Q^{(1/\gamma)-1}(t+1)}w(t+1)\\&-\frac{\frac{\Delta\rho(t)}{\rho(t+1)}}{2\sqrt{\frac{\beta\rho(t)}{a^{1/\gamma} (t-m+1)\rho^{2}(t+1)}g(t)Q^{(1/\gamma)-1}(t+1)}}\big)^2+\frac{a^{1/\gamma}(t-m+1)(\Delta\rho(t))^2}{4\beta g(t)\rho(t)Q^{1/\gamma-1}(t+1)}\\ &\leqslant-\rho(t)q(t)+\frac{a^{1/\gamma}(t-m+1)(\Delta\rho(t))^2}{4\beta g(t)\rho(t)Q^{(1/\gamma)-1}(t+1)}. \end{array} \] The rest of the proof is similar to that of Theorem 2.1 and hence is omitted.
Example 2.8. Consider the neutral equation
Theorem 2.9. Let conditions \((i)\)-\((iv)\) and equation (2) hold. Assume that equation (5) and
Proof. Let \(x(t)\) be a non-oscillatory solution of equation (1), say \(x(t)>0\), \(x(t-k)>0\), \(x(t-m+1)>0\) for \(t\geqslant t_1\) for some \(t_1\geqslant t_0\). Proceeding as in the proof of Theorem 2.1, we conclude that \(\Delta y(t)>0\) for \(t\geqslant t_2\) and \(y(t)\) satisfies either (I) or (II) for \(t\geqslant t_2\). If (I) holds, then as in the proof of Theorem 2.1, we obtain (9) and (10). Using the facts that \(\sigma(t)\leqslant t\) is decreasing, we find \[ \begin{array}{ll} &w(t):=a(t)(\Delta y(t))^{\gamma}\geqslant Q(t)\mu^{\beta}(\tau(t))(\Delta y(t-m+1))^{\beta}\\ \\ &=Q(t)\mu^{\beta}(t-m+1)(a^{-\beta/\gamma}(t-m+1))(a(t-m+1)(\Delta y(t-m+1))^{\gamma})^{\beta/\gamma}\\ \\ &\geqslant Q(t)\mu^{\beta}(t-m+1)(a^{-\beta/\gamma}(t-m+1))(a(t)(\Delta y(t))^{\gamma})^{\beta/\gamma}\\ \\ &=Q(t)\mu^{\beta}(t-m+1)(a^{-\beta/\gamma}(t-m+1))w^{\beta/\gamma}(t), \end{array} \] or \[ \begin{array}{ll} w^{1-\beta/\gamma}(t)&\geqslant Q(t)\mu^{\beta}(t-m+1)(a^{-\beta/\gamma}(\tau(t))\\ \\ &=Q(t)\left(\sum\limits_{s=t_2}^{t-m+1}a^{-1/\gamma}(s)\right)^{\beta}=A^{\beta}(t-m+1,t_2)Q(t). \end{array} \] Taking \(\limsup\) of both sides of this inequality as \(t\rightarrow\infty\), we arrive at a contradiction to equation (25) when \(\beta=\gamma\) and equation (26) when \(\beta< \gamma\). The proof of case (II) is similar to that of Theorem 2.1 and hence is omitted.
Example 2.10. Consider the neutral equation
Theorem 2.11. Let \(\tau(t)\geqslant t\), conditions \((i)\)-\((iii)\) and equation (2) hold. Assume that the conditions
Proof. Let \(x(t)\) be a non-oscillatory solution of equation (1), say \(x(t)>0\), \(x(t-k)>0\), \(x(t-m+1)>0\) for \(t\geqslant t_1\) for some \(t_1\geqslant t_0\). Proceeding as in the proof of Theorem 2.1 and consider the two cases (I) and (II). First, suppose case (I) holds. From equation (10), we have $$\Delta y(t))^{\gamma}\geqslant\left(\frac{Q(t)}{a(t)}\right)y^{\beta}(t-m+1),$$ or $$\Delta y(t)\geqslant\left(\frac{Q(t)}{a(t)}\right)^{1/\gamma}y^{\beta/\gamma}(t-m+1).$$ Using above inequality in (9), we get \begin{eqnarray*}y(t)&\geqslant&\mu(t)\Delta y(t)\\&\geqslant&\mu(t)\left(\frac{1}{a(t)}\sum_{s=t}^{\infty}q(s)\right)^{1/\gamma}y^{\beta/\gamma}(t-m+1)\\&\geqslant& A(t,t_2)Q^{1/\gamma}(t)y^{\beta/\gamma}(t),\end{eqnarray*} or $$y^{1-\beta/\gamma}(t)\geqslant A(t,t_2)Q^{1/\gamma}(t).$$ Taking \(\limsup\) of both sides of this inequality as \(t\rightarrow\infty\), we arrive at a contradiction to equation (29) when \(\beta=\gamma\) and equation (30) when \(\beta< \gamma\). If (II) holds, then as in the proof of Theorem 2.1-Case (II), we obtain equation (18). Summing this inequality from \(u\) to \(t-1\), $$a(t)(\Delta z(t)))^{\gamma}-(a(u)(\Delta z(u)))^{\gamma}\geqslant\sum_{s=u}^{t}q(s)z^{\beta}(h(s))$$ or $$-\Delta z(u)\geqslant\left(\frac{1}{a(u)}\sum_{s=u}^{t}q(s)z^{\beta}(h(s))\right)^{1/\gamma}\geqslant \left(\frac{1}{a(u)}\sum_{s=u}^{t}q(s)\right)^{1/\gamma}z^{\beta/\gamma}(h(t)).$$ Summing this inequality from \(h(t)\geqslant t_2\) to \(t-1\), we arrive at a contradiction to equation (29) when \(\beta=\gamma\) or equation (31) when \(\beta< \gamma\).
Example 2.12. Consider the neutral equation
Conclusion
We present seven sufficient conditions which ensure that all solutions of (1) are oscillatory. The corresponding examples are given to illustrate the significance of the results. From this, the oscillation criteria for the \(n\) order equation are similar.Competing Interests
\noindent The author(s) do not have any competing interests in the manuscript.Acknowledgments
The second author is supported by Shandong Provincial Natural Science Foundation (ZR2016AM17).References
- Agarwal, R. P., Grace, S. R., & O'Regan, D. (2002). Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations. Springer Science & Business Media. [Google Scholor]
- Agarwal, R. P. (2000). Difference equations and inequalities: theory, methods, and applications. CRC Press. [Google Scholor]
- Agarwal, R. P., Bohner, M., Grace, S. R., & O’Regan, D. (2005). Discrete Oscillation Theory, Hindawi Publ. Corp., New York. [Google Scholor]
- Agarwal, R. P. & Grace, S. R. (2001). Oscillation of certain third order difference equations. Computers & Mathematics with Applications, 42(3--5), 379--384. [Google Scholor]
- Agarwal, R. P., Grace, S. R., & O¡¯Regan, D. (2000). Oscillation Theory for Difference and Functional Differential Equations. Springer Netherlands.[Google Scholor]
- Agarwal, R. P., Bohner, M., Li, T., & Zhang, C. (2014). Oscillation of second-order differential equations with a sublinear neutral term. Carpathian Journal of Mathematics, 30(1), 1--6. [Google Scholor]
- El-Morshedy, H. A. (2006). Oscillation and nonoscillation criteria for half-linear second order difference equations. Dynamic Systems and Applications, 15(3), 429--450.[Google Scholor]
- El-Morshedy, H. A. (2009). New oscillation criteria for second order linear difference equations with positive and negative coefficients. Computers & Mathematics with Applications, 58(10), 1988--1997. [Google Scholor]
- Grace, S. R., Agarwal, R. P., Bohner, M. & O'Regan, D. (2009). Oscillation of second order strongly superlinear and strongly sublinear dynamic equations. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3463--3471.[Google Scholor]
- Grace, S. R., Agarwal,R. P., Kaymakalan, B. & Sae-jie, W. (2010). Oscillation theorems for second order nonlinear dynamic equations. Journal of Applied Mathematics and Computing, 32(1), 205--218. [Google Scholor]
- Grace, S. R., Bohner, M., & Agarwal, R. P. (2009). On the oscillation of second-order half-linear dynamic equations. Journal of Difference Equations and Applications, 15(5), 451--460.[Google Scholor]
- Grace, S. R., & El-Morshedy, H. A. (2000). Oscillation criteria of comparison type for second order difference equations. Journal of Applied Analysis, 6(1), 87--102. [Google Scholor]
- El-Morshedy, H. A., & Grace, S. R. (2005). Comparison theorems for second order nonlinear difference equations. Journal of mathematical analysis and applications, 306(1), 106--121.[Google Scholor]
- Liu, X. (2006). Oscillation of solutions of neutral difference equations with a nonlinear term. Comp. Math. Appl, 52(3--4), 439-448. [Google Scholor]
- Tang, X. H. (2001). Oscillation for nonlinear delay difference equations. Tamkang Journal of Mathematics, 32(4), 275--280. [Google Scholor]
- Thandapani, E., Liu, Z. S., Arul, R., & Palanisamy S. Raja. (2004). Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral terms. Applied Mathematics E - Notes, 4, 59--67.[Google Scholor]
- Thandapani, E., Pandian, S., & Balasubramanian, R. K. (2004). Oscillation of solutions of non- linear neutral difference equations with nonlinear neutral term. Far East Journal of Applied Mathematics, 15, 47--62. [Google Scholor]
- Thandapani, E., & Mahalingam, K. (2003). Necessary and sufficient conditions for oscillation of second order neutral difference equations. Tamkang Journal of Mathematics, 34(2), 137--145.[Google Scholor]
- Thandapani, E., Mahalingam, K., & Graef, J. R. (2003). Oscillatory and asymptotic behavior of second order neutral type difference equations. International Journal of Pure & Applied Mathematics, 6(2), 217--230.[Google Scholor]
- Yang, J., Guan, X., & Liu, W. (1997). Oscillation and asymptotic behavior of second order neutral difference equation. Ann. Diff. Equ., 13, 94--106. [Google Scholor]
- Yildiz, M. K., & Ogunmez, H. (2014). Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term. Hacettepe University Bulletin of Natural Sciences & Engineering, 43(5), 809--814. [Google Scholor]
- Zhang, Z., Chen, J. & Zhang, C. (2001). Oscillation of solutions for second order nonlinear differ- ence equations with nonlinear neutral term. Computers & Mathematics with Applications, 41(12), 1487--1494. [Google Scholor]