Open Journal of Mathematical Sciences
ISSN: 2523-0212 (Online) 2616-4906 (Print)
DOI: 10.30538/oms2019.0085
On the vector Fourier multipliers for compact groups
Department of Mathematics, University of Lomé, POBox 1515, Lomé, Togo.; (A.I & Y.M)
International Chair in Mathematical Physics and Applications (ICMPA)-Unesco Chair, University of Abomey-Calavi, Benin.; (Y.M)
\(^{1}\)Corresponding Author: mensahyaogan2@gmail.com
Abstract
Keywords:
1. Introduction
The theory of Fourier multipliers is part of the theory of Fourier integral operators and localization operators. Roughly speaking, a Fourier multiplier is an operator defined through a multiplication by a symbol on a function's frequency spectrum. It is a way to reshape the frequencies involved in the function. Therefore this theory has many applications for instance in Signal processing where the Fourier multiplier is called a filter. Research on the Fourier multipliers is very active and quite flourishing. As recent articles in this field we can quote [1, 2, 3].
In [4], Atto et al. investigated the Fourier multipliers for a kind of \(p\)-Fourier spaces introduced in [5]. They obtained important results related to the boundedness of such operators. However, the underlying multiplication function (the symbol) takes values in the set of complex numbers though authors dealt with the Fourier transform of vector valued functions. It may have been interesting to consider vector valued symbols. So, in order to harmonize things, it seems necessary to complete/extend the study by the case where the symbols are vector valued functions. This is the main purpose of this paper. Thanks to the Fourier inversion formula in [6], it is possible to introduce what we call a vector Fourier multiplier.
The paper is organized as follows. In Section 2, we set some preliminaries related to the Fourier transform of vector valued functions. In Section 3, we investigate properties of the Fourier multipliers for Bochner integrable functions and in Section 4, we study the Fourier multipliers for \(p\)-Fourier spaces.
2. Preliminaries
Details on group representations can be found in [7, 8]. Let \( G \) be a compact group with normalized Haar measure \(dx\). We denote by \(\widehat{G}\) the unitary dual of \( G\), that is the set of equivalence classes of unitary irreducible representations of \(G\). In each class \( \sigma \in \widehat{G} \), we choose an element, still denoted \(\sigma\), with representation space \(H_\sigma\) the dimension of which is denoted by \(d_\sigma\). We designate by \( (\xi^{\sigma}_{1},\xi^{\sigma}_{2},.....,\xi^{\sigma}_{d_\sigma}) \) a basis of \( H_{\sigma}\). Let \(\mathfrak{A}\) be a complex Banach algebra. The Fourier transform \(\widehat{f}\) of a strong Bochner integrable function \(f\in L^1(G,\mathfrak{A})\) is given by the formula3. Vector Fourier multipliers for \(L^{1}(G,\mathfrak{A})\)
SetTheorem 1. If \(f,g \in L^1 (G, \mathfrak{A})\) then \( \widehat{f \ast g}= \widehat{f} \times \widehat{g}\).
The next theorem gives a characterization of the vector Fourier multipliers on \( L^{1}(G,\mathfrak{A})\).Theorem 2.
Proof. Let \( T_\varphi \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\). Let \( \sigma' \in \widehat{G}\). Vectors \(\xi \in H_{\sigma'}\) and \(\eta \in \overline{H}_{\sigma'}\) can be written in the forms \(\xi= \sum\limits_{n=1}^{d_{\sigma'}}\alpha_{n}\xi_{n}^{\sigma'}\) and \( \eta=\sum\limits_{m=1}^{d_{\sigma'}} \overline{\beta}_m\xi_{m}^{\sigma'} \) in the basis \( (\xi_{1}^{\sigma'}, \xi_{2}^{\sigma'},\cdots,\xi_{d_{{\sigma'}}}^{\sigma'} )\) of \(H_{\sigma'}\). Then \begin{align*} \widehat{T_{\varphi}f}(\sigma')(\xi\otimes \eta) &=\widehat{T_{\varphi}f}(\sigma')(\sum_{n=1}^{d_{\sigma'}}\alpha_{n}\xi_{n}^{\sigma'} \otimes\sum_{m=1}^{d_{\sigma'}} \overline{\beta}_m\xi_{m}^{\sigma'} )\\ &=\sum_{n=1}^{d_{\sigma'}}\sum_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m\widehat{T_{\varphi}f}(\sigma')(\xi_{n}^{\sigma'}\otimes\xi_{m}^{\sigma'})\\ &=\sum_{n=1}^{d_{\sigma'}}\sum_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\langle\sigma'(x^{-1})\xi_{n}^{\sigma'},\xi_{m}^{\sigma'}\rangle(T_\varphi f)(x)dx\\ &=\sum_{n=1}^{d_{\sigma'}}\sum_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\overline{u_{nm}^{\sigma'}(x)}(T_{\varphi}f)(x)dx\\ &=\sum_{n=1}^{d_{\sigma'}}\sum_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m\displaystyle\int_{G}\overline{u_{nm}^{\sigma'}(x)}\sum\limits_{\sigma\in\widehat{G}}d_\sigma \sum\limits_{i=1}^{d_{\sigma}} \sum\limits_{j=1}^{d_{\sigma}} \varphi(\sigma) \widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}(x)dx \\ &=\sum_{n=1}^{d_{\sigma'}}\sum_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m \sum\limits_{\sigma\in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma} \varphi(\sigma)\widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})\displaystyle\int_{G}\overline{u_{mn}^{\sigma'}(x)}u_{ij}^{\sigma}(x)dx. \end{align*} By appealing to the Schur orthogonality relations, we get \begin{eqnarray*} \widehat{T_{\varphi}f}(\sigma')(\xi\otimes\eta)&=& \sum\limits_{n=1}^{d_{\sigma'}}\sum\limits_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m d_{\sigma'} \sum\limits_{i=1}^{d_{\sigma}}\sum\limits_{j=1}^{d_{\sigma}} \varphi(\sigma')\widehat{f} (\sigma')(\xi_{j}^{\sigma'}\otimes\xi_{i}^{\sigma'})(\frac{1}{d_{\sigma'}}\delta_{im} \delta_{jn})\\ &=& \sum\limits_{n=1}^{d_{\sigma'}}\sum\limits_{m=1}^{d_{\sigma'}}\alpha_{n}\overline{\beta}_m \varphi(\sigma') \widehat{f} (\sigma')(\xi_{n}^{\sigma'}\otimes\xi_{m}^{\sigma'})\\ &=&\varphi(\sigma') \widehat{f}(\sigma')(\sum_{n=1}^{d_{\sigma'}}\alpha_{n}\xi_{n}^{\sigma'}\otimes\sum_{m=1}^{d_{\sigma'}}\overline{\beta_{m}}\xi_{m}^{\sigma'})\\ &=&\varphi(\sigma') \widehat{f}(\sigma')(\xi\otimes\eta)\\ &=&(\varphi\boxtimes \widehat{f})(\sigma')(\xi\otimes\eta) \end{eqnarray*} Thus \( \widehat{T_{\varphi}f}=\varphi\boxtimes \widehat{f}. \) Conversely, let us assume that \(\forall f \in L^{1}(G,\mathfrak{A}), \widehat{T_{\varphi}f}=\varphi \boxtimes \widehat{f}\). Then, using the inversion formula we obtain \begin{align*} T_{\varphi}f&=\sum\limits_{\sigma\in \widehat{G}}d_\sigma\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\widehat{T_{\varphi}f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}\\ &=\sum\limits_{\sigma \in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma}(\varphi\boxtimes\widehat{f})(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma} \\ &=\sum\limits_{\sigma \in \widehat{G}}d_\sigma\sum_{i=1}^{d_\sigma}\sum_{j=1}^{d_\sigma}\varphi(\sigma) \widehat{f}(\sigma)(\xi_{j}^{\sigma}\otimes\xi_{i}^{\sigma})u_{ij}^{\sigma}. \end{align*} Thus \( T_{\varphi}f \) is a vector Fourier multiplier for \( L^{1}(G,\mathfrak{A})\).
Theorem 3. If \(T_{\varphi}, T_{\phi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A}) \) then the following equalities hold:
Proof. Let \( T_{\varphi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A})\). \begin{align*} \mathcal{F}({T_{\varphi}(f \ast g)})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) &=(\varphi \boxtimes\widehat{f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=\varphi(\sigma) \widehat{f \ast g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &= \varphi(\sigma) [(\widehat{f}\times \widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})]\\ &= \varphi(\sigma) [\sum_{k=1}^{d_{\sigma}}\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma}) \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})]\\ &=\sum_{k=1}^{d_{\sigma}}\varphi(\sigma) \widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma}) \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma}) \\ &=\sum_{k=1}^{d_{\sigma}}[\varphi(\sigma)\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=\sum_{k=1}^{d_{\sigma}}[(\varphi \boxtimes\widehat{f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma}) \\ &=\sum_{k=1}^{d_{\sigma}}[\widehat{T_{\varphi}f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})] \widehat{g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=(\widehat{T_{\varphi}f}\times \widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=\mathcal{F}({T_{\varphi}f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) \end{align*} Since the Fourier transformation is injective, we have \(T_{\varphi}(f \ast g)=T_{\varphi}f \ast g.\) Let \( T_{\varphi}, T_{\phi} \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f,g\in L^{1}(G,\mathfrak{A})\). \begin{eqnarray*} \mathcal{F}({T_{\varphi \phi}(f \ast g)})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) &=&(\varphi \phi\boxtimes \widehat{ f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&(\varphi \phi)(\sigma) (\widehat{ f \ast g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\varphi(\sigma) \phi(\sigma) (\widehat{ f} \times \widehat{ g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\varphi(\sigma) \phi(\sigma) \sum_{k=1}^{d_{\sigma}}\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}\phi(\sigma)\widehat{f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}(\phi \boxtimes\widehat{f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\varphi(\sigma) \sum_{k=1}^{d_{\sigma}}\widehat{T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}\varphi(\sigma)\widehat{T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}(\varphi\boxtimes\widehat{T_{\phi}f})(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&\sum_{k=1}^{d_{\sigma}}\widehat{T_{\varphi}T_{\phi}f}(\sigma)(\xi_{k}^{\sigma}\otimes\xi_{j}^{\sigma})\widehat{ g}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{k}^{\sigma})\\ &=&(\widehat{T_{\varphi}T_{\phi}f}\times\widehat{g})(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma})\\ &=&\mathcal{F}((T_\varphi T_\phi f) \ast g) (\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}). \end{eqnarray*} Therefore, by the injectivity of the Fourier transformation, we have \begin{eqnarray*} T_{\varphi \phi}(f \ast g) = ( T_{\varphi}T_{\phi}f) \ast g. \end{eqnarray*}
For \( \psi \in \mathcal{L}(\widehat{G},\mathfrak{A})\), we setTheorem 4. If \( T_\varphi \in \mathcal{M}(L^{1}(G,\mathfrak{A}))\) and \(f\in L^{1}(G,\mathfrak{A})\) then \(\widehat{T_{\varphi}f}\in \mathcal{L}_{\infty}(\widehat{G},\mathfrak{A})\) and \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}\rVert_{\infty} \leq\lVert\varphi\rVert_{\infty} \lVert f\rVert_1. \end{eqnarray*}
Proof. Let \(\xi\otimes\eta \in H_{\sigma} \otimes \overline{H}_\sigma\). \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}(\sigma)(\xi\otimes\eta)\rVert &=&\lVert (\varphi \boxtimes \widehat{f})(\sigma)(\xi\otimes\eta)\rVert \\ &=&\lVert \varphi(\sigma) \widehat{f}(\sigma)(\xi\otimes\eta)\rVert\\ &\leq & \lVert \varphi(\sigma) \rVert \lVert \widehat{f}(\sigma)(\xi\otimes\eta)\rVert\\ &\leq & \lVert\varphi\rVert_{\infty} \lVert \xi \rVert \lVert \eta \rVert \lVert f \rVert_1. \end{eqnarray*} Hence \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}(\sigma)\rVert \leq \lVert \varphi\rVert_{\infty} \lVert f \rVert_1,\, \forall \sigma \in \widehat{G}. \end{eqnarray*} Thus \begin{eqnarray*} \lVert \widehat{T_{\varphi}f}\rVert_{\infty} \leq \lVert \varphi\rVert_{\infty} \lVert f \rVert_1. \end{eqnarray*}
4. Vector Fourier multipliers on \(p\)-Fourier spaces
For \( 1 \leq p < \infty\), considerTheorem 6. If \(f \in \mathcal{A}_{p}(G,\mathfrak{A})\) then \(T_{\varphi}f \in \mathcal{A}_{p}(G,\mathfrak{A})\).
Proof. Let us assume that \( f \in \mathcal{A}_{p}(G,\mathfrak{A})\). Then \begin{eqnarray*} \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_p}^{p} &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert\widehat{T_{\varphi}f}(\sigma)(\xi_{i}^{\sigma}\otimes\xi_{j}^{\sigma}) \rVert^{p}\\ &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert (\varphi \boxtimes \widehat{f})(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}\\ &=&\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \varphi(\sigma) \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}\\ &\leq &\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \varphi(\sigma) \rVert^{p}\lVert \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}. \end{eqnarray*} Since \( \varphi \) is bounded, we obtain \begin{eqnarray*} \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}}^{p} & \leq & \|\varphi\|_\infty^{p}\sum\limits_{\sigma \in \widehat{G}}d_{\sigma}\sum\limits_{i=1}^{d_\sigma}\sum\limits_{j=1}^{d_\sigma}\lVert \widehat{f}(\sigma)(\xi_{i}^{\sigma}\otimes \xi_{j}^{\sigma}) \rVert^{p}.\\ & \leq & \|\varphi\|_\infty^{p} \lVert \widehat{f} \rVert_{\mathcal{L}_{p}}^{p}< \infty. \end{eqnarray*} Thus \( T_{\varphi}f \in \mathcal{A}_{p}(G,\mathfrak{A})\).
Remark 1. From the inclusion property in Theorem 5, One can extend the operator \(T_\varphi\) to the topological dual \(\mathcal{A}_p^*(G, \mathfrak{A})\) of \( (\mathcal{A}_p(G, \mathfrak{A}), \|\cdot\|_{\mathcal{A}_p})\) or \((\mathcal{A}_p(G, \mathfrak{A}), \|\cdot\|^{\mathcal{A}_p})\), exactly as the Fourier tansform is extended from the Schwartz space to the space of tempered distributions, by the relation
Corollary 6. \(T_\varphi\) is a bounded operator on \(\mathcal{A}_p(G, \mathfrak{A})\) when the latter is endowed with the norm \(\|\cdot\|^{\mathcal{A}_p}\). \end{corollary}
Proof. In the proof of Theorem 5 we have established that \( \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}} \leq \|\varphi\|_\infty\lVert\widehat{f}\rVert_{\mathcal{L}_{p}}\). But \( \lVert \widehat{ T_{\varphi}f }\rVert_{\mathcal{L}_{p}}=\lVert T_{\varphi}f \rVert^{{\mathcal{A}_{p}}} \) and \( \lVert \widehat{f} \rVert_{\mathcal{L}_{p}}=\lVert f \rVert^{{\mathcal{A}_{p}}} \). Therefore \begin{eqnarray*} \lVert T_{\varphi}f \rVert^{{\mathcal{A}_{p}}} \leq \|\varphi\|_\infty \lVert f \rVert^{\mathcal{A}_{p}}. \end{eqnarray*} Thus \( T_{\varphi} \) is bounded on \( \mathcal{A}_{p}(G,\mathfrak{A}) \) endowed with the norm \( \lVert.\rVert^{\mathcal{A}_{p}}.\)
Theorem 7. If \( T_{\varphi} \) is a bounded operator on \( L^{1}(G,\mathfrak{A}) \) then \( T_{\varphi} \) is also a bounded operator on \( \mathcal{A}_{p}(G,\mathfrak{A})\) when the latter is endowed with the norm \( \lVert.\rVert_{\mathcal{A}_{p}}\).
Proof. \begin{eqnarray*} \lVert T_{\varphi}f \rVert_{\mathcal{A}_{p}}&=& \lVert T_{\varphi}f\rVert_1+\lVert \widehat{T_{\varphi}f}\rVert_{\mathcal{L}_{p}}\\ &\leq& \|T_\varphi\|\lVert f \rVert_1+ \|\varphi\|_\infty \lVert \widehat{f}\rVert_{\mathcal{L}_p}\\ &\leq & \max\{ \|T_\varphi\|, \|\varphi\|_\infty \} (\lVert f \rVert_1 + \lVert \widehat{f}\rVert_{\mathcal{L}_p})\\ &\leq & C \lVert f \rVert_{\mathcal{A}_{p}} \end{eqnarray*} where \(C=\max\{ \|T_\varphi\|, \|\varphi\|_\infty \}\). Thus \( T_{\varphi} \) is bounded on \( \mathcal{A}_{p}(G,\mathfrak{A})\) endowed with the norm \( \lVert \cdot \rVert_{\mathcal{A}_{p}}\) .
Acknowledgments
The authors would like to express their thanks to the referee for his useful remarks.Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.Competing Interests
The author(s) do not have any competing interests in the manuscript.References
- Cleanthous, G., Georgiadis, A. G. & Nielsen, M. (2019). Fourier multipliers on anisotropic mixed-norm spaces of distributions. Mathematica Scandinavica, 124 (2), 289-304. [Google Scholor]
- Julio, D. & Ruzhansky, M. (2018). Fourier multipliers in Hilbert spaces., in Integral Fourier Operators, Proceedings of a Summer School, ed. Sylvie Paycha and Pierre. J. Clavier, 3 167-191, Germany Universit\"{a}tsverlag Potsdam, Potsdam. [Google Scholor]
- Rozendaal; J. (2018). Fourier multipliers theorems involving type and cotype. Journal of Fourier Analysis and Applications, 24(2), 583-619.[Google Scholor]
- Atto, E. J., Mensah, Y. & Assiamoua, V. S. K. (2014). The Fourier multipliers of \(p\)-Fourier spaces on compact groups. British Journal of Mathematics and Computer Science, 4(5), 667-673. [Google Scholor]
- Mensah, Y. & Assiamoua, V. S. K. (2010). The \(p\)-Fourier spaces \(\mathcal{A}_p(G, A)\) of vector valued functions on compact groups. Advances and Applications in Mathematical Science, 6(1), 59-66. [Google Scholor]
- Assiamoua, V. S. K. & Olubummo, A. (1989). Fourier-Stieltjes transforms of vector-valued measures on compact groups. Acta Scientiarum Mathematicarum (Szeged), 53, 301-307. [Google Scholor]
- Deitmar, A. & Echterhoff, S. (2009). Principles of Harmonics Analysis. Springer, New York. [Google Scholor]
- Gaal, S. A. (1973). Linear analysis and representation theory. Springer, Berlin. [Google Scholor]
- Mensah, Y. (2013). Facts about the Fourier-Stieltjes transform of vector measures on compact groups. International Journal of Analysis and Applications, 2(1), 19-25. [Google Scholor]