Open Journal of Mathematical Sciences

Moments of generalized order statistics for Pareto-Rayleigh distribution

M. Alam, R. U. Khan, Z. Vidović1
Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202 002, India.; (M.A & R.U.K)
Teacher Education Faculty, Belgrade 11000, Serbia.; (Z.V)
1Corresponding Author: zoran.vidovic@uf.bg.ac.rs

Abstract

In this paper, we derive the explicit expressions for single and product moments of generalized order statistics from Pareto-Rayleigh distribution using hypergeometric functions. Also, some interesting remarks are presented.

Keywords:

Generalized order statistics; Pareto-Rayleigh distribution; Single moments; Product moments; Hypergeometric functions.

1. Introduction

Kamps [1] introduced the concept of generalized order statistics (gos) as follows: Let us note nN, k1, and ˜m=(m1,m2,,mn1)Rn1, 1rn1, such that

γr=k+nr+n1j=rmj>0   for   1rn1. The random variables X(1,n,˜m,k),X(2,n,˜m,k),,X(n,n,˜m,k) are said to be gos from a continuous population with cumulative distribution function (cdf) F(x) and probability distribution function (pdf) f(x) if their joint pdf is of the form
k(n1j=1γj)(n1i=1[ˉF(xi)]mif(xi))[ˉF(xn)]k1f(xn),
(1)
defined on the cone F1(0+)<x1x2xn<F1(1) of Rn, where ˉF(x)=1F(x).

The model of gos contains special cases such as ordinary order statistics (γi=ni+1;i=1,2,,n i.e. m1=m2==mn1=0,k=1), k-th record values (γi=k i.e., m1=m2==mn1=1,kN), sequential order statistics (γi=(ni+1)αi;α1,α2,,αn>0), order statistics with non-integer sample size (γi=αi+1;α>0), Pfeifer's record values (γi=βi;β1,β2,,βn>0) and progressive type II censored order statistics (γr=nr+1+li=rmi,1rln,miN,k=mn+1), see [1,2,3].

Here we shall obtain the results for γiγj and then deduce the results for γi=γj (m1=m2==mn1=m1).

Therefore, we will consider two cases:

Case I: γi=γj(m1=m2==mn1=m1) [1].

Case II: γiγj,iji,j=1,2,,n1 [2].

Case I: The pdf of rth gos X(r,n,m,k), is given by

fX(r,n,m,k)(x)=Cr1(r1)![ˉF(x)]γr1f(x)gr1m(F(x)),
(2)
and the joint pdf of X(r,n,m,k) and X(s,n,m,k), 1r<sn, is given by
fX(r,n,m,k),X(s,n,m,k)(x,y)=Cs1(r1)! (sr1)![ˉF(x)]mgr1m(F(x))
(3)
×[hm(F(y))hm(F(x))]sr1[ˉF(y)]γs1f(x)f(y),  x<y,
(4)
where Cr1=ri=1γi,   γi=k+(ni)(m+1), hm(x)={1m+1(1x)m+1,   m1ln(1x),   m=1 and gm(x) = hm(x)hm(0)=x0(1t)mdt,  x[0,1). Case II: The pdf of rth gos X(r,n,˜m,k), is given by
fX(r,n,˜m,k)(x) = Cr1ri=1ai(r)[ˉF(x)]γi1f(x)
(5)
with the joint pdf of X(r,n,˜m,k) and X(s,n,˜m,k), 1r<sn,
fX(r,n,˜m,k),X(s,n,˜m,k)(x,y)= Cs1[si=r+1a(r)i(s){ˉF(y)ˉF(x)}γi][ri=1ai(r){ˉF(x)}γi]f(x)ˉF(x)f(y)ˉF(y)
(6)
where Cr1=ri=1γi,γr=k+nr+n1j=rmj,ai(r) = rj=11(γjγi),    ji,    γjγi,    1irn,a(r)i(s) = nj=r+11(γjγi),    ji,    γjγi,    r+1isn. For m1=m2==mn1=m1, it can be shown that [3]:
ai(r)= (1)ri(m+1)r1(r1)!(r1ri)
(7)
and
a(r)i(s)= (1)si(m+1)sr1(sr1)!(sr1si).
(8)
In this paper we are interested in a situation when a random variable X follows the Pareto-Rayleigh(P-R) distribution with pdf
f(x;α,σ)=ασ2x(1+x22σ2)(α+1)x>0,α>1,andσ>0,
(9)
and with df
F(x;α,σ)=1(1+x22σ2)αx>0,α>1,andσ>0.
(10)
In view of (8) and (9),
(1+x22σ2)f(x)=ασ2xˉF(x)
(11)
Pareto-Rayleigh distribution can be seen as a member of Transformed-Transformer family (or T-X family) of distributions proposed by Alzaatreh et al., [4]. This distribution is recognized as a good model for fitting various lifetime data, see Jebeli and Deiri [5]. This is also confirmed in [6] were a comparative study on the performance of Pareto-Rayleigh distribution against biased Lomax distribution was conducted. Further, for more details on Pareto-Rayleigh distribution one can see [7,8,9].

Exact moments expressions of gos for different distributions have been obtained by literature. Some examples are exponentiated Log-logistic distribution, Burr type XII distribution, linear exponential distribution, Erlang-truncated exponential distribution, Burr distribution, power function distribution, type II exponentiated Log-logistic distribution, extended exponential distribution, generalized Pareto distribution, q-Weibull distribution; see, respectively, Athar and Nayabuddin [10], Khan et al., [11], Ahmad [12], Khan et al., [13], Khan and Khan [3], Kumar and Khan [14], Kumar [15], Kumar and Dey [16], Malik and Kumar [17], Singh et al., [18] and Kumar et al., [19].

In this paper, we have derived explicit expression for single and product moments of Pareto-Rayleigh distribution based on gos.

2. Relations for Product Moments

In this section, we derive the exact expressions for product moments of generalized order statistics in the following theorems. Before coming to the main result, the following lemma is proved.

Lemma 1. For the Pareto-Rayleigh distribution with cdf (1.9) next relations holds

Φj,l(a,b)=(2σ2)(j+l2+2)2(j+2)B(j+l2+2,αbl2)3F2(j2+1,1aα+j2,j+l2+2;j2+2,j2+αb+2;1)
(12)
where Φj,l(a,b)=0y0xj+1(1+x22σ2)aα+1yl+1(1+y22σ2)αb+1dxdy and pFq[a1,,ap;b1,,bq;x]=r=0[pj=1Γ(aj+r)Γ(aj)][qj=1Γ(bj)Γ(bj+r)]xrr!, for p=q+1 and qj=1bjpj=1aj>0.

Proof. We have

Φj,l(a,b)=0yl+1(1+y22σ2)αb+1[y0xj+1(1+x22σ2)aα+1dx]dy
(13)
Let
B(y)=y0xj+1(1+x22σ2)aα+1dx
(14)
Substituting 1u=1(1+x22σ2) in (14), we get B(y)=(2σ2)(1+j2)2y22σ2(1+y22σ2)0uj2(1u)aαj21du=(2σ2)(1+j2)2By22σ2(1+y22σ2)(j2+1,aαj2). From (13), we have
Φj,l(a,b)=(2σ2)(1+j2)20yl+1(1+y22σ2)αb+1By22σ2(1+y22σ2)(j2+1,aαj2)dy,
(15)
where Bx(p,q)=x0up1(1u)q1du. We know that
Bx(p,q)=p1xp2F1(p,1q;p+1;x)
(16)
and
10ua1(1u)b12F1(c,d;e;u)du=B(a,b)3F2(c,d,a;e,a+b;1)
(17)
Substituting (16) and (17) in (15), we get
Φj,l(a,b)=(2σ2)(1+j2)20yl+1(1+y22σ2)αb+1(y22σ21+y22σ2)j2+1(j2+1)12F1[j2+1,1aα+j2,;j2+2;(y22σ21+y22σ2)]dy.
(18)
Setting t=y22σ21+y22σ2 in (18), we get Φj,l(a,b)=(2σ2)(j+l2+2)2(j+2)10tj+l2+1(1t)αbl212F1[j2+1,1aα+j2,;j2+2;t]dt=(2σ2)(j+l2+2)2(j+2)B(j+l2+2,αbl2)3F2(j2+1,1aα+j2,j+l2+2;j2+2,j2+αb+2;1).

Lemma 2. Setting j=0 or l=0 in Lemma 1, we obtain

Φ0,l(a,b)=σ2aα[Φl(b)Φl(a+b)]
(19)
and
Φj,0(a,b)=σ2bα[Φj(a+b)]
(20)
where Φj(a)=0xj+1(1+x22σ)aα+1  dx=(2σ2)(1+j2)2B(aαj2,1+j2).

Proof. Substituting j=0 in (13), we get Φ0,l(a,b)=0yl+1(1+y22σ2)αb+1[y0x(1+x22σ2)aα+1dx]dy=σ2aα0yl+1(1+y22σ2)αb+1[11(1+y22σ2)aα]dy=σ2aα[Φj(b)Φl(a+b)]. Similarly, we get (20) by noting that 3F2(a,b,c;c,d;1)=2F1(a,b;d;1)=Γ(d)Γ(dab)Γ(da)Γ(db).

Theorem 1. Generalized product moments for Pareto-Rayleigh distribution are given as

μ(j,l)r,s,n,˜m,k=E[Xj(r,n,˜m,k)Xl(s,n,˜m,k)]= Cs1(ασ2)2[st=r+1a(r)t(s)(ri=1ai(r)Φj,l(γiγt,γt))].
(21)

Proof. We have μ(j,l)r,s,n,˜m,k= Cs10y0xjyl[si=r+1a(r)i(s){ˉF(y)ˉF(x)}γi](ri=1ai(r){ˉF(x)}γi)f(x)ˉF(x)f(y)ˉF(y)dxdy. which yields (21).

Corollary 2. Product moment for Pareto-Rayleigh distribution, when m1=m2==mn1=m1 is given as

μ(j,l)r,s,n,m,k=E[Xj(r,n,m,k)Xl(s,n,m,k)]=Cs1(r1)!(sr1)!(m+1)s2(ασ2)2r1i=0sr1t=0(1)i+t(r1i)(sr1t)Φj,l(γriγst,γst).
(22)

Remark 1. Setting m1=m2==mn1=0 and k=1 in (22), we get the result as the product moment of order statistics as

μ(j,l)r,s,n,0,1=μj,lr,s:n=Cs1(r1)!(sr1)!(ασ2)2r1i=0sr1t=0(1)i+t(r1i)(sr1t)Φj,l(srt+i,ns+t+1).
(23)

Corollary 3. Single moments of the Pareto-Rayleigh distribution are of the form

μ(l)s,n,˜m,k= Cs1(ασ2)si=1ai(s)Φl(γi).
(24)

Proof. Putting j=0 in (21) and using (19), we get μ(l)r,s,n,˜m,k=Cs1(ασ2)[st=r+1a(r)t(s)(γiγt)(ri=1ai(r){Φl(γt)Φl(γi)})].μ(l)s,n,˜m,k=Cs1(ασ2)[st=r+1a(r)t(s)Φl(γt)(ri=1ai(r)(γiγt))]+ Cs1(ασ2)[ri=1ai(r)Φl(γi)(st=r+1a(r)t(s)(γiγt))]. Now using the results found in [20] we obtain ri=1ai(r)(γiγj) = rj=11(γiγj),ji,γjγi,1irn, and si=r+1a(r)i(s)(γiγj) = sj=r+11(γiγj),ji,γjγi,r+1isn. Hence, μ(l)s,n,˜m,k= Cs1(ασ2)[st=r+1a(r)t(s)Φl(γt)(rj=11(γiγj))] + Cs1(ασ2)[ri=1ai(r)Φl(γi)(sj=r+11(γiγj))], which yields (24).

Corollary 4. Single moments of gos for Pareto-Rayleigh distribution, when m1=m2==mn1=m1, are given as

μ(l)s,n,m,k= Cs1(s1)!1(m+1)s1(ασ2)s1i=0(1)i(r1i)Φj(γsi).
(25)

Proof. Setting m1=m2==mn1=m1 in (24) and using (7) we get the result as the single moment.

Remark 2. Setting m1=m2==mn1=0 and k=1 in (25), we get the result as the single moment from order statistics

μ(l)s,n,0,1=μ(l)s:n= Cs1(s1)!(ασ2)s1i=0(1)i(s1i)Φj(ns+i+1).
(26)

Remark 3. Setting j=0 and l=0 in (21) we get

ri=1st=r+1ai(r)art(s)γiγt=1Cs1,
(27)
and setting l=0 in (24) we obtain
ri=1ai(r)γi=1Cr1.
(28)
Combining (27) and (28), we get another identity,
st=r+1art(s)γt=Cr1Cs1.
(29)
When m1=m2==mn1=m1, (29) reduces to another identity
sr1t=0(1)t(sr1t)1γst=Cr1(sr1)!(m+1)sr1Cs1,
(30)
which is obtained in [3].

Remark 4. Setting γr=k+nr+li=rmj, 1rln, miN, in (21), then the product moments of progressive type II censored order statistics of Pareto-Rayleigh distribution can be obtained.

3. Numerical Computations

Here we have calculated means and variances for order statistics (Table 1 & 2), and generalized order statistics (gos) (Table 3 & 4). All computations here we obtained using Mathematica. Mathematica like other algebraic manipulation packages allow for arbitrary precisions, so the accuracy of the given values is not an issue. In case of order statistics, the relation nr=1μjr,n,0,1=nμj1,1,0,1,j=1,2, is used to evaluate the means and variancess, see [21]. It is observed that when the sample size n is fixes, increasing the value of r directly increases the means and variances, whereas, for fixed r, the opposite occurs in the case when the sample size n increases.

Table 1. Means of order statistics from Pareto-Rayleigh distribution (α=2, σ=1).
n
r 1 2 3 4 5 6 7 8
1 1.1107 0.6942 0.5469 0.4653 0.4120 0.3736 0.3443 0.3209
2 1.5272 0.9892 0.7907 0.6786 0.6040 0.5496 0.5078
3 1.7962 1.1877 0.9589 0.8279 0.7398 0.6752
4 1.9991 1.3403 1.0900 0.9453 0.8474
5 2.1638 1.4654 1.1984 1.0433
6 2.3035 1.5722 1.2916
7 2.4253 1.6658
8 2.5339
Table 2. Variances of order statistics from Pareto-Rayleigh distribution (α=2, σ=1).
n
r 1 2 3 4 5 6 7 8
1 0.7663 0.1847 0.1011 0.0692 0.0525 0.0422 0.0353 0.0303
2 1.0009 0.2214 0.1176 0.0792 0.0594 0.0475 0.0395
3 1.1735 0.2464 0.1281 0.0852 0.0635 0.0504
4 1.3180 0.2672 0.1366 0.0900 0.0666
5 1.4450 0.2855 0.1441 0.0942
6 1.5599 0.3021 0.1509
7 1.6655 0.3175
8 1.7639
Table 3. Means of gos from Pareto-Rayleigh distribution (α=2, σ=1, m=1, k=2).
n
r 1 2 3 4 5 6 7 8
1 0.3471 0.2327 0.1868 0.1605 0.1428 0.1300 0.1200 0.1121
2 0.2308 0.1622 0.1329 0.1155 0.1036 0.0947 0.0878
3 0.1325 0.0957 0.0795 0.0697 0.0628 0.0577
4 0.0724 0.0532 0.0447 0.0394 0.0357
5 0.0386 0.0288 0.0243 0.0216
6 0.0203 0.0153 0.0130
7 0.0105 0.0080
8 0.0054
Table 4. Variances of gos from Pareto-Rayleigh distribution (α=2, σ=1, m=1, k=2).
n
r 1 2 3 4 5 6 7 8
1 0.2128 0.0887 0.0560 0.0409 0.0322 0.0266 0.0226 0.0197
2 0.2086 0.0971 0.0641 0.0481 0.0385 0.0321 0.0275
3 0.1480 0.0733 0.0499 0.0380 0.0308 0.0259
4 0.0914 0.0471 0.0327 0.0253 0.0207
5 0.0527 0.0280 0.0197 0.0154
6 0.0292 0.0158 0.0113
7 0.0158 0.0087
8 0.0084

Author Contributions: 

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: 

The authors declare no conflict of interest.

References

  1. Kamps, U. (1995). A Concept of Generalized Order Statistics. B. G. Teubner Stuttgart, Germany. [Google Scholor]
  2. Kamps, U., & Cramer, E. (2001). On distributions of generalized order statistics. Statistics, 35, 269-280.[Google Scholor]
  3. Khan, A. H., & Khan, M. J. S. (2012). On ratio and inverse moment of generalized order statistics from Burr distribution. Pakistan Journal of Statistics, 28, 59-68. [Google Scholor]
  4. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79. [Google Scholor]
  5. Jebeli, M., & Deiri, E. (2020). Estimation methods for the probability density function and the cumulative distribution function of the Pareto-Rayleigh distribution. Statistics, 54(1), 135-151. [Google Scholor]
  6. Al-Zahrani, B., & Al-Sobhi, M. (2013). On parameters estimation of Lomax distribution under general progressive censoring. Journal of Quality and Reliability Engineering, 2013, Article ID 431541. https://doi.org/10.1155/2013/431541. [Google Scholor]
  7. Rao, R. S., Kantam, R. R. L., & Prasad, G. (2015). Modified maximum likelihood estimation in pareto-rayleigh distribution. Golden Research Thoughts, 140-152. [Google Scholor]
  8. Rao, R. S. (2016). Discriminating between size biased Lomax distribution and Pareto-Rayleigh distribution. Open Journal of Applied and Theoretical Mathematics, 2, 409-418. [Google Scholor]
  9. Parsad, G., Rao, R. S., & Kantam, R. R. I. (2016). Acceptance sampling based on life tests: Pareto-Rayleigh model. International Journal of Advanced Research in Science, Engineering and Technology, 5, 427-436. [Google Scholor]
  10. Athar, H., & Nayabuddin. (2014). A note on exact moments of order statistics from exponentiated log-logistic distribution. ProbStat Forum, 7, 39-44. [Google Scholor]
  11. Khan, M. J. S., Sharma, A., Khan, M. I., & Kumar, S. (2015). Exact moments of record values from Burr distribution with applications. International Journal of Computational and Theoretical Statistics, 2, 107-115. [Google Scholor]
  12. Ahmad, A. E. B. A. (2008). Single and product moments of generalized order statistics from linear exponential distribution. Communications in Statistics-Theory and Methods, 37(8), 1162-1172. [Google Scholor]
  13. Khan, R. U., Kumar, D., & Athar, H. (2010). Moments of generalized order statistics from Erlang-Truncated exponential distribution and its charactersics. International Journal of Statistics and Systems, 5, 455-464. [Google Scholor]
  14. Kumar, D., & Khan, R. U. (2014). Moments of power function distribution based on ordered random variables and characterization. Sri Lankan Journal of Applied Statistics, 15, 91-105. [Google Scholor]
  15. Kumar, D. (2015). Exact moments of generalized order statistics from type II exponentiated loglogistic distribution. Hacettepe Journal of Mathematics and Statistics, 44, 715-733. [Google Scholor]
  16. Kumar, D., & Dey, S. (2017). Relations for moments of generalized order statistics from extended exponential distribution. American Journal of Mathematical and Management Sciences, 36, 378-400. [Google Scholor]
  17. Malik, M.R. and Kumar, D. (2019). Generalized Pareto distribution based on generalized order statistics and associated inference, Statistics in Transition new Series, 20, 57-79. [Google Scholor]
  18. Singh, B., Khan, R. U., & Khan, M. A. (2019). Characterizations of q-Weibull distribution based on generalized order statistics Journal of Statistics and Management Systems, 22, 1573-1595.[Google Scholor]
  19. Kumar, D., Nassar, M., & Dey, S. (2020). Inference for generalized inverse Lindley distribution based on generalized order statistics, Afrika Matematika, 31, 1207-1235. [Google Scholor]
  20. Bieniek, M., & Szynal, D. (2003). Characterizations of distributions via linearity of regression of generalized order statistics. Metrika, 58(3), 259-271. [Google Scholor]
  21. Joshi, P. C., & Balakrishnan, N. (1982). Recurrence relations and identities for the product moments of order statistics. Sankhya: The Indian Journal of Statistics, Series B, 44 39-49. [Google Scholor]