Ptolemy Scientific Research Press (PSR Press)is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.

Latest Published Articles

Introduction to total chromatic vertex stress of graphs

ODAM-Vol. 6 (2023), Issue 2, pp. 32 – 38 Open Access Full-Text PDF
Johan Kok

Abstract:This paper introduces the new notion of total chromatic vertex stress of a graph. Results for certain tree families and other \(2\)-colorable graphs are presented. The notions of chromatically-stress stability and chromatically-stress regularity are also introduced. New research avenues are also proposed.

Read Full Article

Arc coloring of odd graphs for hamiltonicity

ODAM-Vol. 6 (2023), Issue 2, pp. 14 – 31 Open Access Full-Text PDF
Italo Dejter

Abstract:Coloring the arcs of biregular graphs was introduced with possible applications to industrial chemistry, molecular biology, cellular neuroscience, etc. Here, we deal with arc coloring in some non-bipartite graphs. In fact, for \(1< k \in\mathbb{Z}\), we find that the odd graph \(O_k\) has an arc factorization with colors \(0,1,\ldots,k\) such that the sum of colors of the two arcs of each edge equals \(k\). This is applied to analyzing the influence of such arc factorizations in recently constructed uniform 2-factors in \(O_k\) and in Hamilton cycles in \(O_k\) as well as in its double covering graph known as the middle-levels graph \(M_k\).

Read Full Article

More on second Zagreb energy of graphs

ODAM-Vol. 6 (2023), Issue 2, pp. 7 – 13 Open Access Full-Text PDF
Mitesh J. Patel, Kajal S. Baldaniya and Ashika Panicker

Abstract:Let \(G\) be a graph with \(n\) vertices. The second Zagreb energy of graph \(G\) is defined as the sum of the absolute values of the eigenvalues of the second Zagreb matrix of graph \(G\). In this paper, we derive the relation between the second Zagreb matrix and the adjacency matrix of graph \(G\) and derive the new upper bound for the second Zagreb energy in the context of trace. We also derive the second Zagreb energy of \(m-\)splitting graph and \(m-\)shadow graph of a graph.

Read Full Article

On the product of Sombor and modified Sombor indices

ODAM-Vol. 6 (2023), Issue 2, pp. 1 – 6 Open Access Full-Text PDF
Ivan Gutman, Redžepović and Boris Furtula

Abstract:The Sombor index (\(SO\)) and the modified Sombor index (\(^mSO\)) are two closely related vertex-degree-based graph invariants. Both were introduced in the 2020s, and have already found a variety of chemical, physicochemical, and network-theoretical applications. In this paper, we examine the product \(SO \cdot {^mSO}\) and determine its main properties. It is found that the structure-dependence of this product is fully different from that of either \(SO\) or \(^mSO\). Lower and upper bounds for \(SO \cdot {^mSO}\) are established and the extremal graphs are characterized. For connected graphs, the minimum value of the product \(SO \cdot {^mSO}\) is the square of the number of edges. In the case of trees, the maximum value pertains to a special type of eclipsed sun graph, trees
with a single branching point.

Read Full Article

Limit cycles obtained by perturbing a degenerate center

OMA-Vol. 7 (2023), Issue 1, pp. 56 – 70 Open Access Full-Text PDF
Nabil Rezaiki and Amel Boulfoul

Abstract: This paper deals with the maximum number of limit cycles bifurcating from the degenerate centre
\[ \dot{x}=-y(3x^2+y^2),\: \dot{y}=x(x^2-y^2), \]
when we perturb it inside a class of all homogeneous polynomial differential systems of degree \(5\). Using averaging theory of second order, we show that, at most, five limit cycles are produced from the periodic orbits surrounding the degenerate centre under quintic perturbation. In addition, we provide six examples that give rise to exactly \(5, 4, 3, 2, 1\) and \(0\) limit cycles.

Read Full Article
BOOK-foundations-of-mathematical-analysis-and-semigroups-theory
BOOK - NULL CONTROLLABILITY OF DEGENERATE AND NON-DEGENERATE SINGULAR PARABOLIC