Ptolemy Scientific Research Press (PSR Press)is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.

Latest Published Articles

Analysis of the dynamics of avian influenza A(H7N9) epidemic model with re-infection

OMS-Vol. 3 (2019), Issue 1, pp. 417 – 432 Open Access Full-Text PDF
Abayomi Samuel OKE, Oluwafemi Isaac BADA
Abstract: Since the emergence of the avian influenza A(H7N9) in the year 2013 in China, several researches have been carried out to investigate the spread. In this paper, a mathematical model describing the transmission dynamics of avian influenza A(H7N9) between human and poultry proposed by Li et al. [1] is modified by introducing re-infections into the susceptible human compartment. The method of next generation matrix is used to calculate the reproduction number. We also establish the local and global stability of the equilibria using Lyapunov functions. Finally, we use numerical simulations to validate our results.
Read Full Article

On chromatic polynomial of certain families of dendrimer graphs

OMS-Vol. 3 (2019), Issue 1, pp. 404 – 416 Open Access Full-Text PDF
Aqsa Shah, Syed Ahtsham Ul Haq Bokhary
Abstract: Let \(G\) be a simple graph with vertex set \(V(G)\) and edge set \(E(G)\). A mapping \(g:V (G)\rightarrow\{1,2,…t\}\) is called \(t\)-coloring if for every edge \(e = (u, v)\), we have \(g(u) \neq g(v)\). The chromatic number of the graph \(G\) is the minimum number of colors that are required to properly color the graph. The chromatic polynomial of the graph \(G\), denoted by \(P(G, t)\) is the number of all possible proper coloring of \(G\). Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture. They can be synthesized in a controlled manner either by a divergent or a convergent procedure. Dendrimers have gained a wide range of applications in supra-molecular chemistry, particularly in host guest reactions and self-assembly processes. Their applications in chemistry, biology and nano-science are unlimited. In this paper, the chromatic polynomials for certain families of dendrimer nanostars have been computed.
Read Full Article

A series solution for melting heat transfer characteristics of hybrid Casson fluid under thermal radiation

EASL-Vol. 2 (2019), Issue 4, pp. 21 – 32 Open Access Full-Text PDF
Emran Khoshrouye Ghiasi, Reza Saleh
Abstract: In the present paper, we focus on the melting heat transfer characteristics of Casson fluid involving thermal radiation and viscous dissipation. To this end, the governing partial differential equations (PDEs) are transformed into the ordinary differential equations (ODEs) via the similarity variables. Besides establishing a homotopy-based methodology and its optimization performed in MATHEMATICA package BVPh2.0, the present findings are compared and validated by those available results in the literature. It can be shown that regardless of the variable fluid properties, this methodology predicts the heat transfer rate with and without melting effect at any Prandtl number. Furthermore, it is seen that the velocity distribution is significantly affected by the melting parameter.
Read Full Article

An extension of Petrović’s inequality for \(h-\)convex (\(h-\)concave) functions in plane

OMS-Vol. 3 (2019), Issue 1, pp. 398 – 403 Open Access Full-Text PDF
Wasim Iqbal, Khalid Mahmood Awan, Atiq Ur Rehman, Ghulam Farid
Abstract: In this paper, Petrović’s inequality is generalized for \(h-\)convex functions on coordinates with the condition that \(h\) is supermultiplicative. In the case, when \(h\) is submultiplicative, Petrović’s inequality is generalized for \(h-\)concave functions. Also particular cases for \(P-\)function, Godunova-Levin functions, \(s-\)Godunova-Levin functions and \(s-\)convex functions has been discussed.
Read Full Article

On smarandachely adjacent vertex total coloring of subcubic graphs

OMS-Vol. 3 (2019), Issue 1, pp. 390 – 397 Open Access Full-Text PDF
Enqiang Zhu, Chanjuan Liu
Abstract: Inspired by the observation that adjacent vertices need possess their own characteristics in terms of total coloring, we study the smarandachely adjacent vertex total coloring (abbreviated as SAVTC) of a graph \(G\), which is a proper total coloring of \(G\) such that for every vertex \(u\) and its every neighbor \(v\), the color-set of \(u\) contains a color not in the color-set of \(v\), where the color-set of a vertex is the set of colors appearing at the vertex or its incident edges. The minimum number of colors required for an SAVTC is denoted by \(\chi_{sat}(G)\). Compared with total coloring, SAVTC would be more likely to be developed for potential applications in practice. For any graph \(G\), it is clear that \(\chi_{sat}(G)\geq \Delta(G)+2\), where \(\Delta(G)\) is the maximum degree of \(G\). We, in this work, analyze this parameter for general subcubic graphs. We prove that \(\chi_{sat}(G)\leq 6\) for every subcubic graph \(G\). Especially, if \(G\) is an outerplanar or claw-free subcubic graph, then \(\chi_{sat}(G)=5\).
Read Full Article

On oscillatory second-order nonlinear delay differential equations of neutral type

OMS-Vol. 3 (2019), Issue 1, pp. 382 – 389 Open Access Full-Text PDF
Sandra Pinelas, Shyam Sundar Santra
Abstract: In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay differential equations of the form \(\frac{d}{dt} \Biggl[r(t) \frac{d}{dt} \biggl [x(t)+p(t)x(t-\tau)\biggr]\Biggr]+q(t)G\bigl(x(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr)=0, \;\; t \geq t_0,\) under the assumptions \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}=\infty\) and \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}<\infty\) for \(|p(t)|<+\infty\). Two illustrative examples are included.
Read Full Article
BOOK-foundations-of-mathematical-analysis-and-semigroups-theory
BOOK - NULL CONTROLLABILITY OF DEGENERATE AND NON-DEGENERATE SINGULAR PARABOLIC