Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103 (Print)
DOI: 10.30538/psrp-oma2018.0010
New Type Integral Inequalities for Three Times Differentiable Preinvex and Prequasiinvex Functions
Huriye Kadakal1, Mahir Kadakal, İmdat İşcan
Institute of Science, Ordu University-Ordu-TÜRKİYE.; (H.K)
Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE.; (M.K & İ.İ)
1Corresponding Author; huriyekadakal@hotmail.com
Abstract
Keywords:
1. Preliminary
Definition 1.1. A function f:I⊂R→R is said to be convex if the inequality f(tx+(1−t)y)≤tf(x)+(1−t)f(y) is valid for all x,y∈I and t∈[0,1]. If this inequality reverses, then f is said to be concave on interval I≠∅ .
This definition is well known in the literature. Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences.Definition 1.2. f:I⊂R→R be a convex function on the interval I of real numbers and a,b∈I with a<b. The following celebrated double inequality is well known in the literature as Hermite-Hadamard's inequality for convex functions [1]. Both inequalities hold in the reserved direction if f is concave.
The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex or concave function. Hadamard's inequality for convex or concave functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found; for example see [1, 2, 3, 4, 5]. Hermite-Hadamard inequality [6] has been considered the most useful inequality in mathematical analysis. Some of the classical inequalities for means can be derived from Hermite-Hadamard inequality for particular choices of the function f.Definition 1.3. A function f:I⊆R→R is said to be quasi-convex if the inequality f(tx+(1−t)y)≤max holds for all x,y\in I and t\in \left[ 0,1\right] . Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex [7].
Let us recall the notions of preinvexity and prequasiinvexity which are signicant generalizations of the notions of convexity and qusi-convexity respectively, and some related results.Definition 1.4.[8] Let K be a non-empty subset in \mathbb{R}^{n} and \eta :K\times K\rightarrow\mathbb{R}^{n}. Let x\in K, then the set K is said to be invex at x with respect to \eta \left( \cdot ,\cdot \right) , if x+t\eta \left( y,x\right) \in K,~~~\forall x,y\in K~~~t\in \left[ 0,1\right] . K is said to be an invex set with respect to \eta if K is invex at each x\in K. The invex set K is also called \eta -connected set.
Definition 1.4 essentially says that there is a path starting from a point x which is contained in K. We do not require that the point y should be one of the end points of the path. This observation plays an important role in our analysis. Note that, if we demand that y should be an end point of the path for every pair of points x,y\in K, then \eta \left( y,x\right)=y-x, and consequently invexity reduces to convexity. Thus, it is true that every convex set is also an invex set with respect to \eta \left( y,x\right)=y-x, but the converse is not necessarily true, see [9, 10] and the references therein. For the sake of simplicity, we always assume that K=\left[ x,x+t\eta \left( y,x\right) \right] , unless otherwise specified [11].Definition 1.5.[8] A function f:K\rightarrow\mathbb{R} on an invex set K\subseteq\mathbb{R} is said to be preinvex with respect to \eta , if f\left( u+t\eta (v,u)\right) \leq (1-t)f(u)+tf(v),~~~\forall u,v\in K,~~t\in \left[ 0,1% \right] . The function f is said to be preconcave if and only if -f is preinvex.
It is to be noted that every convex function is preinvex with respect to the map \eta \left( y,x\right) =x-y but the converse is not true see for instance.Definition 1.6.[12] A function f:K\rightarrow\mathbb{R} on an invex set K\subseteq\mathbb{R} is said to be prequasiinvex with respect to \eta , if f\left( u+t\eta (v,u)\right) \leq \max \left\{ f(u),f(v)\right\} ,\forall u,v\in K,~~t\in % \left[ 0,1\right] .
Also every quasi-convex function is a prequasiinvex with respect to the map \eta (v,u)=v-u but the converse does not hold, see for example [12]. Mohan and Neogy [9] introduced Condition C defined as follows:Definition 1.7.[9] Let S\subseteq \mathbb{R} be an open invex subset with respect to the map \eta :S\times S\rightarrow\mathbb{R}. We say that the function satisfies the Condition C if, for any x,y\in S and any t\in \left[ 0,1\right] ,
Theorem 1.8.[18] Let f:\left[ a,a+t\eta (b,a)\right] \rightarrow \left( 0,\infty \right) be a preinvex function on the interval of the real numbers K^{\circ } (the interior of K) and a,b\in K^{\circ } with \eta (b,a)>0. Then the following inequalities holds
2. Main results for our lemma
We will use the following Lemma for obtain our main results about the preinvexity and prequasiinvexity.Lemma 2.1. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K\rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . Then the following identity hold: \begin{eqnarray*} &&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+f\left( a+\eta (b,a)\right) \left( a+\eta (b,a)\right) -f(a)a-\int_{a}^{a+\eta (b,a)}f(x)dx \\ &=&\eta ^{3}(b,a)\int_{0}^{1}\frac{t^{2}}{2}\beta _{t}f^{\prime \prime \prime }(a+t\eta (b,a))dt. \end{eqnarray*}
Proof. Integrating three times by parts and then changing the variable, we obtain \begin{eqnarray*} &&\eta ^{3}(b,a)\int_{0}^{1}\frac{t^{2}}{2}\beta _{t}f^{\prime \prime \prime }(a+t\eta (b,a))dt \\ &=&\left. \eta ^{2}(b,a)\frac{t^{2}}{2}\beta _{t}f^{\prime \prime }\left( a+t\eta (b,a)\right) \right\vert _{0}^{1}-\left. \eta (b,a)t\alpha _{t}f^{\prime }\left( a+t\eta (b,a)\right) \right\vert _{0}^{1} \\ &&+\left. \left( a+t\eta (b,a)\right) f\left( a+t\eta (b,a)\right) \right\vert _{0}^{1}-\eta (b,a)\int_{0}^{1}f\left( a+t\eta (b,a)\right) dt \\ &=&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+\left( a+\eta (b,a)\right) f\left( a+\eta (b,a)\right) -af\left( a\right) -\eta (b,a)\int_{0}^{1}f\left( a+t\eta (b,a)\right) dt \\ &=&\frac{\eta ^{2}(b,a)}{2}\beta f^{\prime \prime }\left( a+\eta (b,a)\right) -\eta (b,a)\alpha f^{\prime }\left( a+\eta (b,a)\right) \\ &&+\left( a+\eta (b,a)\right) f\left( a+\eta (b,a)\right) -af\left( a\right) -\int_{a}^{a+\eta (b,a)}f(x)dx. \end{eqnarray*} This completes the proof of lemma.
Theorem 2.2. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K \rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . If \left\vert f^{\prime \prime \prime }\right\vert ^{q} is preinvex on K for q>1, then the following inequality holds:
Proof. If \left\vert f^{\prime \prime \prime }\right\vert ^{q} for q>1 is preinvex on \left[ a,a+\eta (b,a)\right] , using Lemma 2.1, the Hölder integral inequality and \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},we get \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1 }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{ q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1 }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\frac{\eta ^{3}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}} \left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t\left\vert \beta _{t}\right\vert ^{q}dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}\left( 1-t\right) \left\vert \beta _{t}\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\frac{\eta ^{3}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left( \frac{3\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}}{\eta ^{2}(b,a)}\int_{a}^{\beta }3\left( x-a\right) \left\vert x\right\vert ^{q}dx\right. \\ &&+\left. \frac{3\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{ \eta ^{2}(b,a)}\int_{a}^{\beta }\left( \eta (b,a)-3(x-a)\right) \left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}3^{\frac{1}{q}}\frac{\eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3\left( x-a\right) \left\vert x\right\vert ^{q}dx\right. \\ &&+\left. \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }\left( \eta (b,a)-3(x-a)\right) \left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\frac{\eta ^{1+\frac{2}{p}}(b,a)}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}C_{1,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2,\eta }\left( a,b\right) \right] ^{ \frac{1}{q}}. \end{eqnarray*} This completes the proof of theorem.
Corollary 2.3. Suppose that all the assumptions of Theorem 2.2 are satisfied. If we choose \eta (b,a)=b-a then when \left\vert f^{\prime \prime \prime }\right\vert ^{q} is convex on K for q>1 we obtain following inequality: \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a} \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{1}{2}3^{\frac{1}{q}}\frac{(b-a)^{\frac{2}{p}}}{\left( 2p+1\right) ^{\frac{1}{p}}}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}C_{1}\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}C_{2}\left( a,b\right) \right] ^{\frac{1}{q}}, \end{eqnarray*} where% \begin{equation*} C_{1}\left( a,b\right) =\left\{ \begin{array}{c} (b-a)\left[ L_{q+1}^{q+1}\left( \frac{2a+b}{3},a\right)-aL_{q}^{q}\left( \frac{2a+b}{3},a\right) \right] ,~\ a>0, \frac{2a+b}{3}>0, \\ \left( 5a+b\right) L_{q+1}^{q+1}\left( \frac{2a+b}{3},-a\right)\\ -\frac{6a}{ q+1}A\left( \left( \frac{2a+b}{3}\right) ^{q+1},(-a)^{q+1}\right) ,~\ \ \ \ \ \ \ \ \ \ \ \ a< 0,\frac{ 2a+b}{3}>0, \\ -(b-a)\left[ L_{q+1}^{q+1}\left( -a,-\frac{2a+b}{3}\right) +aL_{q}^{q}\left( -a,-\frac{2a+b}{3}\right) \right],a< 0,\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*} \begin{equation*} C_{2}\left( a,b\right) =\left\{ \begin{array}{c} -(b-a)\left[ L_{q+1}^{q+1}\left( \frac{2a+b}{3},a\right) -\alpha L_{q}^{q}\left( \frac{2a+b}{3},a\right) \right] ,~ \ a>0,\frac{2a+b}{3}>0, \\ -\left( 5a+b\right) L_{q+1}^{q+1}\left( \frac{2a+b}{3},-a\right)\\ +\frac{% 6\beta }{q+1}A\left( \left( \frac{2a+b}{3}\right) ^{q+1},(-a)^{q+1}\right) ,a< 0,\frac{2a+b}{3}>0, \\ (b-a)\left[ L_{q+1}^{q+1}\left( -a,-\frac{2a+b}{3}\right) +\alpha L_{q}^{q}\left( -a,-\frac{2a+b}{3}\right) \right] ,~\ a< 0,\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*}
Remark 2.5. If the mapping \eta satisfies condition C then by use of the preinvexity of \left\vert f^{\prime \prime \prime }\right\vert ^{q} we obtain following inequality for every t\in \left[ 0,1\right] :
Theorem 2.5. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K \rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . If \left\vert f^{\prime \prime \prime }\right\vert ^{q} is preinvex on K for q>1, then the following inequality holds:
Proof. If \left\vert f^{\prime \prime \prime }\right\vert ^{q} for q>1 is preinvex on \left[ a,a+\eta (b,a)\right] , using Lemma 2.1, the Hölder integral inequality and \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}, we obtain the following inequality: \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\left( \int_{0}^{1}t^{2q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\\ &&\times \left( \int_{0}^{1}t^{2q}\left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{p}dt\right) ^{\frac{1}{p}}\\ &&\times \left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t^{2q+1}dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}\left( t^{2q}-t^{2q+1}\right) dt\right) ^{\frac{1}{q}} \end{eqnarray*} \begin{eqnarray*} &=&\frac{1}{2}3^{\frac{1}{p}}\eta ^{2+\frac{1}{q}}(b,a)\left( \int_{a}^{\beta }\left\vert x\right\vert ^{p}dx\right) ^{\frac{1}{p}}\left[ \frac{\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}}{2q+2} +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\left( \frac{1}{2q+1} -\frac{1}{2q+2}\right) \right] ^{\frac{1}{q}} \\ &=&\frac{1}{2}3^{\frac{1}{p}}\eta ^{2+\frac{1}{q}}(b,a)C_{3,\eta }^{\frac{1}{ p}}\left( a,b\right) \left[ \frac{\left( 2q+1\right) \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{ 1}{q}}. \end{eqnarray*} This completes the proof of theorem.
Corollary 2.6. Suppose that all the assumptions of Theorem 2.5 are satisfied. If we choose \eta (b,a)=b-a then when \left\vert f^{\prime \prime \prime }\right\vert ^{q} is convex on K for q>1 we have the following inequality: \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{3^{\frac{1}{p}}}{2}(b-a)^{1+\frac{1}{q}}C_{3}^{\frac{1}{p}% }\left( a,b\right) \left[ \frac{\left( 2q+1\right) \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}}{\left( 2q+1\right) \left( 2q+2\right) }\right] ^{\frac{% 1}{q}}, \end{eqnarray*} where \begin{equation*} C_{3}\left( a,b\right) =\left\{ \begin{array}{c} \frac{b-a}{3}L_{p}^{p}\left( \frac{2a+b}{3},a\right) ,~\ \ \ \ \ \ \ \ \ \ \ \ \ \ a>0,~\frac{2a+b}{3}>0, \\ \frac{2}{p+1}A\left( \left( \frac{2a+b}{3}\right) ^{p+1},(-a)^{p+1}\right) ,a< 0,~~\frac{2a+b}{3}>0, \\ \frac{b-a}{3}L_{p}^{p}\left( -a,-\frac{2a+b}{3}\right) ,~\ \ \ \ \ \ \ \ \ \ \ a< 0,~~\frac{2a+b}{3}< 0. \end{array} \right. \end{equation*}
Remark 2.7. If the mapping \eta satisfies condition C then using the inequality (5) in the proof of Theorem 2.5, then the inequality (7) becomes the following inequality:
Theorem 2.8. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K \rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . If \left\vert f^{\prime \prime \prime }\right\vert ^{q} is preinvex on K for q\geq 1 , then the following inequality holds:
Proof. Using Lemma 2.1 and Power-mean integral inequality, we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\\ &&\times\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left[ t\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}+(1-t)\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}}\\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\\ &&\times\left( \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{0}^{1}t^{3}\left\vert \beta _{t}\right\vert dt+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{0}^{1}t^{2}(1-t)\left\vert \beta _{t}\right\vert dt\right) ^{\frac{ 1}{q}}\\ &=&\frac{1}{2}\eta ^{3}(b,a)\left( \frac{27}{\eta ^{3}(b,a)}\right) ^{1- \frac{1}{q}}\left( \frac{27}{\eta ^{4}(b,a)}\right) ^{\frac{1}{q}}\left( \int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx\right) ^{1-\frac{1}{q}}\\ &&\times\left( \begin{array}{c} \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3(x-a)^{3}\left\vert x\right\vert dx\\+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }(x-a)^{2}\left[ \eta (b,a)-3(x-a)\right] \left\vert x\right\vert dx \end{array} \right)^{\frac{1}{q}} \\ &=&\frac{27}{2}\eta ^{-\frac{1}{q}}(b,a)\left( \int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx\right) ^{1-\frac{1}{q}} \\ &&\times \left( \begin{array}{c} \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\int_{a}^{\beta }3(x-a)^{3}\left\vert x\right\vert dx\\+\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}\int_{a}^{\beta }(x-a)^{2}\left[ \eta (b,a)-3(x-a)\right] \left\vert x\right\vert dx \end{array} \right) ^{\frac{1}{q}} \\ &=&\frac{27}{2}\eta ^{-\frac{1}{q}}(b,a)D_{1,\eta }^{1-\frac{1}{q}}\left( a,b\right) \left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3,\eta }\left( a,b\right) \right] ^{\frac{1}{q}}. \end{eqnarray*} This completes the proof of theorem.
Corollary 2.9. Suppose that all the assumptions of Theorem 3 are satisfied. If we choose \eta (b,a)=b-a then when \left\vert f^{\prime \prime \prime }\right\vert ^{q} is convex on K for q\geq 1 we get \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{27}{2}(b-a)^{-1-\frac{1}{q}}D_{1}^{1-\frac{1}{q}}\left( a,b\right) \left[ \left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}D_{2}\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert ^{q}D_{3}\left( a,b\right) \right] ^{\frac{1}{q}}, \end{eqnarray*} where \begin{eqnarray*} D_{1}(a,b) &=&\left\{ \begin{array}{c} \frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ \ \ a>0,\beta >0~ \\ \frac{(b-a)^{3}}{27}\frac{b+3a}{12}+\frac{a^{4}}{6},a< 0,~\beta >0 \\ -\frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \\ D_{2}(a,b) &=&\left\{ \begin{array}{c} \frac{(b-a)^{4}}{27}\frac{4b+11a}{60},~\ \ \ \ \ \ a>0,\beta >0 \\ \frac{(b-a)^{4}}{27}\frac{4b+11a}{60}-3\frac{a^{5}}{10},a< 0,\beta >0 \\ -\frac{(b-a)^{4}}{27}\frac{4b+11a}{60},~\ \ \ \ \ a< 0,\beta < 0 \end{array} \right. , \end{eqnarray*} and \begin{equation*} D_{3}(a,b)=\left\{ \begin{array}{c} \frac{(b-a)^{4}}{27}\frac{b+4a}{60},~\ \ \ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a>0,\beta >0 \\ \frac{(b-a)^{4}}{27}\frac{b+4a}{60}+(b-a)\frac{a^{4}}{6}+3\frac{a^{5}}{10} ,a< 0,\beta >0 \\ -\frac{(b-a)^{4}}{27}\frac{b+4a}{60},~\ \ \ \ \ \ ~\ \ \ \ \ \ \ \ \ \ \ \ \ a< 0,\beta < 0. \end{array} \right. \end{equation*}
Remark 2.10. If the mapping \eta satisfies condition C then using the inequality (5) in the proof of Theorem 2.8, then the inequality (9) becomes the following inequality:
Corollary 2.11. If we take q=1 in Theorem 2.8, then we have the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2\eta (b,a)}\left[ \left\vert f^{\prime \prime \prime }(b)\right\vert D_{2,\eta }\left( a,b\right) +\left\vert f^{\prime \prime \prime }(a)\right\vert D_{3,\eta }\left( a,b\right) \right] \end{equation*}
Now we will give our results for prequasiinvex functions by using Lemma 2.1.Theorem 2.12. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left( \cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K \rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . If \left\vert f^{\prime \prime \prime }\right\vert ^{q} is prequasiinvex on K for q>1 , then the following inequality holds:
Proof. If \left\vert f^{\prime \prime \prime }\right\vert ^{q} for q>1 is prequasiinvex on \left[ a,a+\eta (b,a)\right] , using Lemma 2.1, the Hölder integral inequality and \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}\leq \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1% }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{% q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2p}dt\right) ^{\frac{1% }{p}}\left( \int_{0}^{1}\left\vert \beta _{t}\right\vert ^{q}\max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} dt\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\left( \int_{a}^{\beta }\left\vert x\right\vert ^{q}dx\right) ^{\frac{1}{q}} \\ &=&\frac{3^{\frac{1}{q}}}{2}\eta ^{2+\frac{1}{p}}(b,a)\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}C_{\eta }^{\frac{1}{q}}(q,a,b) \end{eqnarray*} This completes the proof of theorem.
Corollary 2.13. Suppose that all the assumptions of Theorem 2.12 are satisfied. If we choose \eta (b,a)=b-a then when \left\vert f^{\prime \prime \prime }\right\vert ^{q} is prequasiinvex on K for q>1 we have \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)-% \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a}% \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{3^{\frac{1}{q}}}{2}(b-a)^{1+\frac{1}{p}}\left( \frac{1}{2p+1}% \right) ^{\frac{1}{p}}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}C^{\frac{1}{q}}(q,a,b) \end{eqnarray*} where \begin{equation*} C(q,a,b)=\left\{ \begin{array}{c} \frac{b-a}{3}L_{q}^{q}\left( \frac{b+2a}{3},a\right) ,~\ \ \ \ \ \ \ \ \ \ a>0,\frac{b+2a}{3}>0, \\ \frac{2}{q+1}A\left[ \left( \frac{b+2a}{3}\right) ^{q+1},\left( -a\right) ^{q+1}\right] ,a< 0,\frac{b+2a}{3}>0, \\ \frac{b-a}{3}L_{q}^{q}\left( -a,-\frac{b+2a}{3}\right) ,~\ \ \ \ \ \ a< 0, \frac{b+2a}{3}< 0. \end{array} \right. \end{equation*}
Remark 2.14. If the mapping \eta satisfies condition C then by use of the prequasiinvexity of \left\vert f^{\prime \prime \prime }\right\vert ^{q} we get
Theorem 2.15. Let K\subseteq\mathbb{R} be an open invex subset with respect to mapping \eta \left(\cdot ,\cdot \right) :K\times K\rightarrow\mathbb{R}^{n} and a,b\in K with \eta (b,a)>0. Suppose that the function f:K\rightarrow\mathbb{R} is a three times differentiable function on K such that f^{\prime \prime \prime }\in L\left[ a,a+\eta (b,a)\right] . If \left\vert f^{\prime \prime \prime }\right\vert ^{q} is prequasiinvex on K for q\geq 1, then the following inequality holds:
Proof. From Lemma 2.1 and Power-mean integral inequality, we obtain \begin{eqnarray*} &&\left\vert I_{f}(a,b,\eta )\right\vert \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert dt \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \left\vert f^{\prime \prime \prime }(a+t\eta (b,a))\right\vert ^{q}dt\right) ^{\frac{1}{q}} \\ &\leq &\frac{1}{2}\eta ^{3}(b,a)\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert dt\right) ^{1-\frac{1}{q}}\left( \int_{0}^{1}t^{2}\left\vert \beta _{t}\right\vert \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} dt\right) ^{\frac{1}{q}} \\ &=&\frac{1}{2}\eta^{3}(b,a)\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime}(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\int_{0}^{1}t^{2}\left \vert \beta _{t}\right\vert dt \\ &=&\frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}\int_{a}^{\beta }(x-a)^{2}\left\vert x\right\vert dx \\ &=&\frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right) ^{\frac{1}{q}}D_{1,\eta }(a,b). \end{eqnarray*} This completes the proof of theorem.
Corollary 2.16. Suppose that all the assumptions of Theorem 2.15 are satisfied. If we choose \eta (b,a)=b-a then when \left\vert f^{\prime \prime \prime }\right\vert ^{q} is prequasiinvex on K for q\geq 1 we have \begin{eqnarray*} &&\left\vert \frac{b-a}{2}\left( \frac{2a+b}{3}\right) f^{\prime \prime }(b)- \frac{a+b}{2}f^{\prime }(b)+\frac{f(b)b-f(a)a}{b-a}-\frac{1}{b-a} \int_{a}^{b}f(x)dx\right\vert \\ &\leq &\frac{27}{2}\frac{D_{1}(a,b)}{b-a}\left[ \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} \right] ^{\frac{1}{q}} \end{eqnarray*} where \begin{equation*} D_{1}(a,b)=\left\{ \begin{array}{c} \frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ \ \ a>0,\frac{b+2a}{3}>0~ \\ \frac{(b-a)^{3}}{27}\frac{b+3a}{12}+\frac{a^{4}}{6},a< 0,~\frac{b+2a}{3}>0 \\ -\frac{(b-a)^{3}}{27}\frac{b+3a}{12},~\ \ \ \ \ a< 0,\frac{b+2a}{3}< 0 \end{array} \right. , \end{equation*}
Remark 2.17. If we use the inequality (12) in the proof of Theorem 2.15, then the inequality (14) becomes the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\left( \max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(a+\eta (b,a))\right\vert ^{q}\right\} \right) ^{\frac{1}{q} }D_{1,\eta }(a,b) \end{equation*} This inequality is better than the inequality (14).
Corollary 2.18. If we take q=1 in Theorem 2.15, then we have the following inequality: \begin{equation*} \left\vert I_{f}(a,b,\eta )\right\vert \leq \frac{27}{2}\max \left\{ \left\vert f^{\prime \prime \prime }(a)\right\vert ^{q},\left\vert f^{\prime \prime \prime }(b)\right\vert ^{q}\right\} D_{1,\eta }(a,b) \end{equation*}
Competing Interests
The author do not have any competing interests in the manuscript.Referance
- Peajcariaac, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications . Academic Press. [Google Scholor]
- Dragomir, S. S., & Pearce, C. E. M. (2004). Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. ONLINE: http://rgmia. vu. edu. au/monographs. [Google Scholor]
- İşcan, İ., Set, E., & Özdemir, M. E. (2014). On new general integral inequalities for s-convex functions. Applied Mathematics and Computation, 246, 306-315. [Google Scholor]
- Iscan, I., Kadakal, H., & Kadakal, M. (2017). Some New Integral Inequalities for n-Times Differentiable Quasi-Convex Functions. Sigma Journal of Engineering and Natural Sciences , 35 (3), 363-368. [Google Scholor]
- Maden, S., Kadakal, H., Kadakal, M., & İşcan, İ. (2017). Some new integral inequalities for n-times differentiable convex and concave functions. J. Nonlinear Sci. Appl , 10 (12), 6141-6148. [Google Scholor]
- Hadamard, J. (1893). Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann. Journal de mathématiques pures et appliquées , 171-216. [Google Scholor]
- Ion, D. A. (2007). Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Annals of the University of Craiova-Mathematics and Computer Science Series, 34, 82-87. [Google Scholor]
- Weir, T., & Mond, B. (1988). Pre-invex functions in multiple objective optimization. Journal of Mathematical Analysis and Applications, 136(1), 29-38. [Google Scholor]
- Mohan, S. R., & Neogy, S. K. (1995). On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications, 189(3), 901-908.[Google Scholor]
- Yang, X. M., Yang, X. Q., & Teo, K. L. (2003). Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications , 117(3), 607-625. [Google Scholor]
- Antczak, T. (2005). Mean value in invexity analysis. Nonlinear Analysis: Theory, Methods & Applications, 60(8), 1473-1484. [Google Scholor]
- Barani, A., Ghazanfari, A. G., & Dragomir, S. S. (2011). Hermite-Hadamard inequality through prequsiinvex functions. RGMIA Res. Rep. Collect, 14. [Google Scholor]
- Ben-Israel, A., & Mond, B. (1986). What is invexity?. The ANZIAM Journal, 28(1), 1-9. [Google Scholor]
- Noor, M. A. (2005). Invex equilibrium problems. Journal of Mathematical Analysis and Applications , 302(2), 463-475. [Google Scholor]
- Aslam Noor, M. (1994). Variational-like inequalities. Optimization , 30(4), 323-330. [Google Scholor]
- Pini, R. (1991). Invexity and generalized convexity. Optimization, 22(4), 513-525.[Google Scholor]
- Yang, X. M., & Li, D. (2001). On properties of preinvex functions. Journal of Mathematical Analysis and Applications, 256(1), 229-241. [Google Scholor]
- Noor, M. A. (2007). Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory, 2(207), 126-131. [Google Scholor]
- Barani, A., Ghazanfari, A. G., & Dragomir, S. S. (2012). Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications , 2012(1), 247.[Google Scholor]
- Iscan, I. (2012). Ostrowski type inequalities for functions whose derivatives are preinvex. Bulletin of the Iranian Mathematical Society, 40(2), 373-386. [Google Scholor]
- Latif, M. A., & Dragomir, S. S. (2013). Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the co-oordinates. Facta Univ. Ser. Math. Inform, 28, 257-270. [Google Scholor]
- Matloka, M. (2014). On some new inequalities for differentiable (h_{1}; h_{2})-preinvex functions on the co-ordinates. Mathematics and Statistics, 2(1), 6-14.[Google Scholor]