Open Journal of Mathematical Analysis
ISSN: 2616-8111 (Online) 2616-8103
DOI: 10.30538/psrp-oma2018.0008(Print)
Non-convex hybrid method corresponding to Karakaya Iterative Process
Samina Kausar, Muhammad Asif, Mubeen Munir1
Division of Science and Technology, University of Education, Lahore, 54000, Pakistan.; (S.K & M.M)
Department of Mathematics, Govt. Post Graduate College, Chistian, Pakistan.; (M.A)
1Corresponding Author; mmunir@ue.edu.pk
Abstract
Keywords:
1. Introduction
Fixed points of special mappings like nonexpansive, asymptotically nonexpansive, contractive and other mappings has become a field of interest on its on and has a variety of applications in related fields like image recovery, signal processing and geometry of objects [4]. Almost in all branches of mathematics we see some versions of theorems relating to fixed points of functions of special nature. As a result we apply them in industry, toy making, finance, aircrafts and manufacturing of new model cars. A fixed-point iteration scheme has been applied in IMRT optimization to pre-compute dose-deposition coefficient (DDC) matrix , see [5]. Because of its vast range of applications almost in all directions, the research in it ismoving rapidly and an immense literature is present now. Constructive fixed point theorems (e.g. Banach fixed point theorem) which not only claim the existence of a fixed point but yield an algorithm, too (in the Banach case fixed point iteration xn+1=f(xn). Any equation that can be written as x=f(x) for some map f that is contracting with respect to some (complete) metric on X will provide such a fixed point iteration. Mann's iteration method was the stepping stone in this regard and is invariably used in most of the occasions see [6]. But it only ensures weak convergence, see [7] but more often then not, we require strong convergence in many real world problems relating to Hilbert spaces, see [8]. So mathematician are in search for the modifications of the Mann's process to control and ensure the strong convergence,[9,10, 11, 12, 13, 14, 15, 16] and references therein). Most probably the first noticeable modification of Mann's Iteration process was propositionosed by Nakajo et al. in [19] in 2003. They introduced this modification for only one nonexpansive mapping, where as Kim et al. introduced a variant for asymptotically nonexpansive mapping in the context of Hilbert spaces in the year 2006, see [20]. In the same year Martinez et al. in [21] introduced a variation of the Ishikawa Iteration process for a nonexpansive mapping for a Hilbert space. They also gave a variant of Halpern method. Su et al. in [20] gave a hybrid iteration process for nonexpansive mapping which is monotone. Liu et al. in [21] gave a novel method for quasi-asymptotically finite family of pseudo-contractive mapping. Let H be the reserved symbol for Hilbert space and C be nonempty, closed and convex subset of it. First we recall some basic definitions that will accompany us throughout this paper. Let Pc(.) be the metric projection onto C. A mapping T:C→C is said to be non-expensive if ‖ \forall x,y \in C. And T:C\rightarrow C is said to be quasi-Lipschitz if:- FixT\neq \phi
- For all p \in FixT, \| Tx-p\|\leq L\|x-p\| where L is a constant 1\leq L<\infty.
2. Main results
In this section we give our main results.Definition 2.1. \{T_n\} is said to be asymptotic, if \lim_{n\rightarrow \infty} L_n=1
Proposition 2.2. For x\in H and z\in C, z=P_Cx iff we have \langle x-z,z-y\rangle\geq 0 for all y\in C.
Proposition 2.3. The common fixed point set F of above said {T_n} is closed and convex.
Proposition 2.4. For any given x_0\in H, we have p=P_Cx_0 \Longleftrightarrow \langle p-z,x_0-p\rangle\geq 0, \forall z\in C.
Theorem 2.5. Assume that \alpha_n, \beta_n, \gamma_n, a_n and b_n\in [0,1], \alpha_n+\beta_n\in[0,1] and a_n+b_n\in[0,1] for all n\in N and \sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty. Then \{x_n\} generated by \newpage \left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT_nz_n+\beta_nT_nt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT_nx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right. converges strongly to P_Fx_0.
Proof. We partition our proof in following seven steps.
Step 2. We know that \overline{co}C_n and Q_n are closed and convex for all n\geq 0. Next, we show that F\cap A\subset\overline{co}C_n for all n\geq 0. Indeed, for each p\in F\cap A, we have \begin{align*}\\ \nonumber \|y_n-p\|&=\|(1-\alpha_n-\beta_n)z_n+\alpha_nT_nz_n+\beta_nT_nt_n-p\|\\ &=\|(1-\alpha_n-\beta_n)[(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n]\\&+\alpha_nT_n[(1-a_n-b_n)t_n+a_nT_nt_n+b_nT_nx_n]+\beta_nT_nt_n-p\|\\ &=\|(1-\alpha_n-\beta_n)[(1-a_n-b_n)((1-\gamma_n)x_n+\gamma_nT_nx_n)\\& +a_nT_n((1-\gamma_n)x_n+\gamma_nT_nx_n)+b_nT_nx_n ]\\&+\alpha_nT_n[(1-a_n-b_n)((1-\gamma_n)x_n+\gamma_nT_nx_n)\\&+a_nT_n((1-\gamma_n)x_n+\gamma_nT_nx_n)+b_nT_nx_n ]+\beta_nT_n[(1-\gamma_n)x_n+\gamma_nT_nx_n]-p\|\\ \nonumber &=\|(1-\gamma_n-a_n-b_n-\alpha_n-\beta_n-a_n\gamma_n+b_n\gamma_n+\alpha_n\gamma_n+a_n\alpha_n\\& +b_n\alpha_n+\beta_n\gamma_n+a_n\beta_n-b_n\beta_n-a_n\alpha_n\gamma_n-b_n\alpha_n\gamma_n- a_n\beta_n\gamma_n-b_n\beta_n\gamma_n)\\&\times (x_n-p)+(\gamma_n+a_n+b_n+\beta_n+\alpha_n-b_n\alpha_n-a_n\beta_n-b_n\beta_n-2a_n\gamma_n\\& -2b_n\gamma_n-2\alpha_n\gamma_n-2a_n\alpha_n-2\beta_n\gamma_n+3a_n\alpha_n\gamma_n+2b_n\alpha_n\gamma_n+2a_n\beta_n\gamma_n\\& -b_n\beta_n\gamma_n)(T_nx_n-p)+(a_n\gamma_n-3a_n\alpha_n\gamma_n-a_n\beta_n\gamma_n+\alpha_n\gamma_n-b_n\alpha_n\gamma_n\\& +a_n\alpha_n+b_n\alpha_n+\beta_n\gamma_n)(T_{n}^2x_n-p)+(a_n\alpha_n\gamma_n)(T_{n}^3x_n-p)\|\\ \nonumber &\leq (1-\gamma_n-a_n-b_n-\alpha_n-\beta_n-a_n\gamma_n+b_n\gamma_n+\alpha_n\gamma_n+a_n\alpha_n\\& +b_n\alpha_n+\beta_n\gamma_n+a_n\beta_n-b_n\beta_n-a_n\alpha_n\gamma_n-b_n\alpha_n\gamma_n-a_n\beta_n\gamma_n\\& -b_n\beta_n\gamma_n)\|x_n-p\|+(\gamma_n+a_n+b_n+\beta_n+\alpha_n-b_n\alpha_n-a_n\beta_n-b_n\beta_n\\& -2a_n\gamma_n-2b_n\gamma_n-2\alpha_n\gamma_n-2a_n\alpha_n-2\beta_n\gamma_n+3a_n\alpha_n\gamma_n+2b_n\alpha_n\gamma_n\\& +2a_n\beta_n\gamma_n-b_n\beta_n\gamma_n)L_n\|x_n-p\|+(a_n\gamma_n-3a_n\alpha_n\gamma_n-a_n\beta_n\gamma_n\\& +\alpha_n\gamma_n-b_n\alpha_n\gamma_n+a_n\alpha_n+b_n\alpha_n+\beta_n\gamma_n)L_{n}^2\|x_n-p\|+(a_n\alpha_n\gamma_n)L_{n}^3\|x_n-p\|\\ \nonumber &=[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n\\& +\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\& +(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n\\&-a_n\gamma_n-b_n +a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n\\& -a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-p\| \end{align*} and p\in A, so p\in C_n which implies that F\cap A\subset C_n for all n\geq 0. Therefore, F\cap A\subset\overline{co}C_n for all n\geq 0.
Step 2. We show that F\cap A\subset\overline{co}C_n\cap Q_n for all n\geq 0. It suffices to show that F\cap A\subset Q_n, for all n\geq 0. We prove this by mathematical induction. For n=0 we have F\cap A\subset C=Q_0. Assume that F\cap A\subset Q_n. Since x_{n+1} is the projection of x_0 onto \overline{co}C_n\cap Q_n, from Proposition 2.2, we have \langle x_{n+1}-z,x_{n+1}-x_0\rangle\leq 0, \forall z\in \overline{co}C_n\cap Q_n as F\cap A\subset\overline{co}C_n\cap Q_n, the last inequality holds, in particular, for all z\in F\cap A. This together with the definition of Q_{n+1} implies that F\cap A\subset Q_{n+1}. Hence the F\cap A\subset\overline{co}C_n\cap Q_n holds for all n\geq 0.
Step 3. We prove \{x_n\} is bounded. Since F is a nonepmty, closed, and convex subset of C, there exists a unique element z_0\in F such that z_0=P_Fx_0. From x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, we have \|x_{n+1}-x_0\|\leq \|z-x_0\| for every z\in \overline{co}C_n\cap Q_n. As z_0\in F\cap A\subset\overline{co}C_n\cap Q_n, we get \|x_{n+1}-x_0\|\leq \|z_0-x_0\| for each n\geq 0. This implies that \{x_n\} is bounded.
Step 4. We show that \{x_n\} converges strongly to a point of C by showing that \{x_n\} is a cauchy sequence. As x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0\subset Q_n and x_n=P_{Q_n}x_0 (Proposition 2.4), we have \|x_{n+1}-x_0\|\geq \|x_n-x_0\| for every n\geq 0, which together with the boundedness of \|x_n-x_0\| implies that there exsists the limit of \|x_n-x_0\|. On the other hand, from x_{n+m}\in Q_n, we have \langle x_n-x_{n+m},x_n-x_0\rangle\leq 0 and hence \begin{align*} \|x_{n+m}-x_n\|^2&=\|(x_{n+m}-x_0)-(x_n-x_0)\|^2\\ \nonumber &\leq\|x_{n+m}-x_0\|^2-\|x_n-x_0\|^2-2\langle x_{n+m}-x_n,x_n-x_0\rangle\\ \nonumber &\leq\|x_{n+m}-x_0\|^2-\|x_n-x_0\|^2\rightarrow0,\ n\rightarrow\infty \end{align*} for any m\geq 1. Therefore \{x_n\} is a cauchy sequence in C, then there exists a point q\in C such that \lim_{n\rightarrow \infty} x_n=q.
Step 5. We show that y_n\rightarrow q, as n\rightarrow\infty. Let D_n=\{z\in C:\|y_n-z\|^2\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}. From the definition of D_n, we have \begin{align*} D_n&=\{z\in C:\langle y_n-z,y_n-z\rangle\leq\langle x_n-z,x_n-z\rangle+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}\\ \nonumber &=\{z\in C:\|y_n\|^2-2\langle y_n,z\rangle+\|z\|^2\leq\|x_n\|^2-2\langle x_n,z\rangle\\&+\|z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\}\\ \nonumber &=\{z\in C:2\langle x_n-y_n,z\rangle\leq\|x_n\|^2-\|y_n\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\} \end{align*} This shows that D_n is convex and closed, n \in \mathbb{Z^{+}}\cup \{0\}. Next, we want to prove that C_n\subset D_n,n\geq 0. In fact, for any z\in C_n, we have \begin{align*} \|y_n-z\|^2&\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n\\&-b_n\gamma_n+a_n+b_n) +a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\&+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n) +L_{n}^2(-a_n\gamma_n+\gamma_n)\\&-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)\\&+a_nL_{n}^2 +b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]^2\|x_n-z\|^2\\ &=\|x_n-z\|^2+2[(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)\\&+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n) +a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n\\&-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n -b_n\gamma_n)\\& +L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n\\& +(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\\& +[(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n) +L_{n}^2(-3a_n\gamma_n+\gamma_n\\&-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n \\&+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)\\&-b_n\gamma_n-a_n\gamma_n-b_n+a_n +\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)\\&+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]^2\alpha_n^2]\|x_n-z\|^2\\ &\leq\|x_n-z\|^2+[2(L_{n}^3-2L_n-6)+(L_{n}^3-2L_n-6)^2]\|x_n-z\|^2\\ &=\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\|x_n-z\|^2. \end{align*} From C_n=\{z\in C:\|y_n-z\|\leq[1+(L_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n+2b_n\gamma_n)+L_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nL_{n}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(L_n(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)+L_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n+\gamma_n-1)\beta_n+(L_n(1-2a_n-2b_n)+a_nL_{n}^2+b_n-a_n-1)\gamma_n-a_n-b_n+L_n(a_n+b_n)]\|x_n-z\|\}\cap A,\ n\geq 0, we have C_n\subset A, n\geq 0. Since A is convex, we also have \overline{co}C_n\subset A, n\geq 0. Consider x_n\in\overline{co}C_{n-1}, we know that \begin{align*} \|y_n-z\|&\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\|x_n-z\|^2\\ &\leq\|x_n-z\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4). \end{align*} This implies that z\in D_n and hence C_n\subset D_n, n\geq 0. Sinnce D_n is convex, we have \overline{co}(C_n)\subset D_n, n\geq 0. Therefore \|y_n-x_{n+1}\|^2\leq\|x_n-x_{n+1}\|^2+(L_{n}^3-2L_n-6)(L_{n}^3-2L_n-4)\rightarrow 0, as n\rightarrow\infty. That is, y_n\rightarrow q as n\rightarrow\infty.
Step 6. To prove that q\in F, we use definition of y_n. So we have (\alpha_n+\beta_n+\gamma_n+a_n+b_n-a_n\gamma_n-b_n\gamma_n-\alpha_n\gamma_n-a_n\alpha_n+a_n\alpha_n\gamma_n-b_n\alpha_n+b_n\alpha_n\gamma_n-\beta_n\gamma_n-a_n\beta_n+a_n\beta_n\gamma_n-b_n\beta_n+b_n\beta_n\gamma_n-a_n\beta_n\gamma_nT_n-a_n\alpha_n\gamma_nT_n+\alpha_n\gamma_nT_n+a_n\alpha_nT_n-a_n\alpha_n\gamma_nT_n+b_n\alpha_nT_n-b_n\alpha_n\gamma_nT_n+\beta_n\gamma_nT_n+a_n\alpha_n\gamma_nT_{n}^2+a_n\gamma_nT_n)\|T_nx_n-x_n\|=\|y_n-x_n\|\rightarrow 0, as n\rightarrow \infty. Since \alpha_n\in(a,1]\subset[0,1], from the above limit we have \lim_n\rightarrow\infty\|T_nx_n-x_n\|=0. Since \{T_n\} is uniformly closed and x_n\rightarrow q, we have q\in F.
Step 7. We claim that q=z_0=P_Fx_0, if not, we have that \|x_0-p\|>\|x_0-z_0\|. There must exist a positive integer N, if n>N then \|x_0-x_n\|>\|x_0-z_0\|, which leads to \|z_0-x_n\|^2=\|z_0-x_n+x_n-x_0\|^2=\|z_0-x_n\|^2+\|x_n-x_0\|^2+2\langle z_0-x_n,x_n-x_0\rangle. It follows that \langle z_0-x_n,x_n-x_0\rangle<0 which implies that z_0\overline{\in} Q_n, so that z_0\overline{\in} F, this is a contradiction. This completes the proof.
Now, we present an example of C_n which does not involve a convex subset.Example 2.6 Take H=R^2, and a sequence of mappings T_n:R^2\rightarrow R^2 given by T_n:(t_1,t_2)\mapsto(\frac{1}{8}t_1,t_2),\ \forall(t_1,t_2)\in R^2, \forall n\geq 0. It is clear that \{T_n\} satisfies the desired definition of with F=\{(t_1,0):t_1\in(-\infty,+\infty)\} common fixed point set. Take x_0=(4,0), a_0=\frac{6}{7}, we have y_0=\frac{1}{7}x_0+\frac{6}{7}T_0x_0=(4\times\frac{1}{7}+\frac{4}{8}\times\frac{6}{7},0)=(1,0). Take 1+(L_0-1) a_0=\sqrt{\frac{5}{2}}, we have C_0=\{z\in R^2:\|y_0-z\|\leq\sqrt{\frac{5}{2}}\|x_0-z\|\}. It is easy to show that z_1=(1,3), z_2=(-1,3)\in C_0. But z^{'}=\frac{1}{2}z_1+\frac{1}{2}z_2=(0,3)\overline{\in} C_0, since \|y_0-z\|=2, \|x_0-z\|=1. Therefore C_0 is not convex.
Corollary 2.7 Assume that \alpha_n, \beta_n, \gamma_n, a_n and b_n\in [0,1], \alpha_n+\beta_n\in[0,1] and a_n+b_n\in[0,1] for all n\in N and \sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty. Then \{x_n\} generated by \left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nTz_n+\beta_nTt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nTt_n+b_nTx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nTx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1-(\gamma_n-b_n)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(2a_n+b_n)\gamma_n-2b_n\beta_n(1+\gamma_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{C_n\cap Q_n}x_0, \end{array} \right. converges strongly to P_{F(T)}x_0.
Proof. Take T_n\equiv T, L_n\equiv 1 in Theorem 2.5, in this case, C_n is convex and closed and , for all n\geq 0, by using Theorem 2.5, we obtain Corollary 2.7. Take T_n\equiv T, L_n\equiv 1 in Theorem 2.5, in this case, C_n is closed and convex, for all n\geq 0, by using Theorem 2.5, we obtain Corollary 2.7.
Corollary 2.8 Assume that \alpha_n, \beta_n, \gamma_n, a_n and b_n\in [0,1], \alpha_n+\beta_n\in[0,1] and a_n+b_n\in[0,1] for all n\in N and \sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty. Then \{x_n\} generated by \left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nTz_n+\beta_nTt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nTt_n+b_nTx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nTx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1-(\gamma_n-b_n)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(2a_n+b_n)\gamma_n-2b_n\beta_n(1+\gamma_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{C_n\cap Q_n}x_0, \end{array} \right. converges strongly to P_{F(T)}x_0.
3. Applications
Here, we give an application of our result for the following case of finite family of asymptotically quasi-nonexpansive mappings \{T_n\}_{n=0}^{N-1}. Let \|T_{i}^{j}x-p\|\leq k_{i,j}\|x-p\|, \forall x\in C, p\in F, where F is common fixed point set of \{T_n\}_{n=0}^{N-1},\lim_j\rightarrow \infty k_{i,j}=1 for all 0\leq i\leq N-1. The finite family of asymptotically quasi-nonexpansive mappings \{T_n\}_{n=0}^{N-1} is uniformly L-Lipschitz, if \|T_{i}^{j}x-T_{i}^{j}y\|\leq L_{i,j}\|x-y\|, \forall x,y\in C for all i\in \{0,1,2,...,N-1\}, j\geq1, where L\geq1.Theorem 3.1 Let \{T_n\}_{n=0}^{N-1}: C\rightarrow C be a uniformly L-Lipschitz finit family of asymptotically quasi-nonexpansive mappings with nonempty common fixed point set F. Assume that \alpha_n, \beta_n, \gamma_n, a_n and b_n\in [0,1], \alpha_n+\beta_n\in[0,1] and a_n+b_n\in[0,1] for all n\in N and \sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty. Then \{x_n\} generated by \left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT_{i(n)}^{j(n)}z_n+\beta_nT_{i(n)}^{j(n)}t_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT_{i(n)}^{j(n)}t_n+b_nT_{i(n)}^{j(n)}x_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT_{i(n)}^{j(n)}x_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(k_{i(n),j(n)}(1-b_n-2\gamma_n-2a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+3a_n\gamma_n+2b_n\gamma_n)+k_{i(n),j(n)}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+b_n)+a_n\gamma_nk_{i(n),j(n)}^3+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+(k_{i(n),j(n)}(1-a_n-b_n-2\gamma_n+2a_n\gamma_n-b_n\gamma_n)\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+k_{i(n),j(n)}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n+a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+\gamma_n-1)\beta_n+(k_{i(n),j(n)}(1-2a_n-2b_n)+a_nk_{i(n),j(n)}^2\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+b_n-a_n-1)\gamma_n-a_n-b_n+k_{i(n),j(n)}(a_n+b_n)]\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right. converges strongly to P_Fx_0, where n=(j(n)-1)N+i(n) for all n\geq0.
Proof
We can drive the prove from the following two conclusions:
conclusion1
\{T_{n=0}^{N-1}\}_{n=0}^{\infty} is a uniformly closed asymptotically family of countable quasi-L_n-Lipschitz mappings from C into itself.
conclusion1
F=\bigcap_{n=0}^{N}F(T_n)=\bigcap_{n=0}^{\infty}F(T_{i(n)}^{j(n)}), where F(T) denotes the fixed point set of the mappings T.
Corollary 3.2 Let T: C\rightarrow C be a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common fixed point set F. Assume that \alpha_n, \beta_n, \gamma_n, a_n and b_n\in [0,1], \alpha_n+\beta_n\in[0,1] and a_n+b_n\in[0,1] for all n\in N and \sum_{n=0}^\infty(\alpha_n+\beta_n)=\infty. Then \{x_n\} generated by \left\{ \begin{array}{ll} x_0\in C=Q_0, & \text{choosen arbitrarily,}\\ y_n=(1-\alpha_n-\beta_n)z_n+\alpha_nT^nz_n+\beta_nT^nt_n, & n\geq 0,\\ z_n=(1-a_n-b_n)t_n+a_nT^nt_n+b_nT^nx_n , & n\geq 0,\\ t_n=(1-\gamma_n)x_n+\gamma_nT^nx_n, & n\geq 0,\\ C_n=\{z\in C:\|y_n-z\|\leq[1+(k_n(1-b_n-2\gamma_n-2a_n+3a_n\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2b_n\gamma_n)+k_{n}^2(-3a_n\gamma_n+\gamma_n-b_n\gamma_n+a_n+b_n)+a_n\gamma_nk_{n}^3\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+b_n-a_n\gamma_n-b_n\gamma_n-1)\alpha_n+(k_n(1-a_n-b_n-2\gamma_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2a_n\gamma_n-b_n\gamma_n)+k_{n}^2(-a_n\gamma_n+\gamma_n)-b_n\gamma_n-a_n\gamma_n-b_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+a_n+\gamma_n-1)\beta_n+(k_n(1-2a_n-2b_n)+a_nk_{n}^2+b_n-a_n\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-1)\gamma_n-a_n-b_n+k_n(a_n+b_n)]\|x_n-z\|\}\cap A, & n\geq 0,\\ Q_n=\{z\in Q_{n-1}:\langle x_n-z,x_0-x_n\rangle\geq 0\},& n\geq 1,\\ x_{n+1}=P_{\overline{co}C_n\cap Q_n}x_0, \end{array} \right. converges strongly to P_Fx_0, where \overline{co}C_n denotes the closed convex closure of C_n for all n\geq 1, A=\{z\in H:\|z-P_Fx_0\|\leq 1\}.
Proof. Take T_n\equiv T in Theorem 3.1, we proved.
Competing interests
The authors declare that they have no competing interests.Referances
- Karakaya, V., Doğan, K., Gürsoy, F., & Ertürk, M. (2013). Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. In Abstract and Applied Analysis (Vol. 2013). Hindawi. [Google Scholor]
- Guan, J., Tang, Y., Ma, P., Xu, Y., & Su, Y. (2015). Non-convex hybrid algorithm for a family of countable quasi-Lipschitz mappings and application. Fixed Point Theory and Applications, 2015(1), 214.[Google Scholor]
- Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3), 506-510.[Google Scholor]
- Youla, D. C. (1987). Mathematical theory of image restoration by the method of convex projections. Image Recovery: Theory and Application, 29-77.[Google Scholor]
- Tian, Z., Zarepisheh, M., Jia, X., & Jiang, S. B. (2013). The fixed-point iteration method for IMRT optimization with truncated dose deposition coefficient matrix. arXiv preprint arXiv:1303.3504.[Google Scholor]
- Genel, A., & Lindenstrauss, J. (1975). An example concerning fixed points. Israel Journal of Mathematics, 22(1), 81-86. [Google Scholor]
- Bauschke, H. H., & Combettes, P. L. (2001). A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Mathematics of operations research, 26(2), 248-264.[Google Scholor]
- Matsushita, S. Y., & Takahashi, W. (2005). A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 134(2), 257-266.[Google Scholor]
- Nakajo, K., & Takahashi, W. (2003). Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. Journal of Mathematical Analysis and Applications, 279(2), 372-379. [Google Scholor]
- Kim, T. H., & Xu, H. K. (2006). Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups. Nonlinear Analysis: Theory, Methods & Applications, 64(5), 1140-1152. [Google Scholor]
- Martinez-Yanes, C., & Xu, H. K. (2006). Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Analysis: Theory, Methods & Applications, 64(11), 2400-2411.[Google Scholor]
- Su, Y., & Qin, X. (2008). Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3657-3664. [Google Scholor]
- Liu, Y., Zheng, L., Wang, P., & Zhou, H. (2015). Three kinds of new hybrid projection methods for a finite family of quasi-asymptotically pseudocontractive mappings in Hilbert spaces. Fixed Point Theory and Applications, 2015(1), 118. [Google Scholor]
- Moudafi, A. (2000). Viscosity approximation methods for fixed-points problems. Journal of Mathematical Analysis and Applications, 241(1), 46-55.[Google Scholor]
- Xu, H. K. (2004). Viscosity approximation methods for nonexpansive mappings. Journal of Mathematical Analysis and Applications, 298(1), 279-291.[Google Scholor]
- Podilchuk, C. I., & Mammone, R. J. (1990). Image recovery by convex projections using a least-squares constraint. JOSA A, 7(3), 517-521. [Google Scholor]